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H®> Functional Calculus and Mikhlin-Type
Multiplier Conditions

José E. Galé and Pedro J. Miana

Abstract. Let T be a sectorial operator. It is known that the existence of a bounded (suitably scaled)
H®° calculus for T, on every sector containing the positive half-line, is equivalent to the existence of
a bounded functional calculus on the Besov algebra A% | (R*). Such an algebra includes functions
defined by Mikhlin-type conditions and so the Besov calculus can be seen as a result on multipliers for
T. In this paper, we use fractional derivation to analyse in detail the relationship between AS_ | and
Banach algebras of Mikhlin-type. As a result, we obtain a new version of the quoted equivalence.

1 Introduction

On the basis of the work done by A. McIntosh for Hilbert spaces [12], an H*® func-
tional calculus is given for sectorial operators on general Banach spaces [4]. When
the operators under discussion are of type 0, the existence of the (suitably scaled) H*>
calculus is shown to be equivalent to the existence of a functional calculus defined on
a certain Besov space AJ, | (R*) [4, Theorem 4.10].

Every n-differentiable function F on R* := (0, co) obeying Mikhlin-type condi-
tions like

sup tX[FP (1) < 0o (k=0,1,...,n)

t>0
belongs to A%, if n > «; see [4, p. 73], [5, p. 416]. This reinforces the view of
the Besov functional calculus as a theorem about multipliers. We study more closely
such a link by using fractional derivation, in Section 2 and Section 3 of this paper.
The equivalence between the H*® calculus and the Besov calculus is proven in [4,
Theorem 4.10] through the Paley—Wiener theorem. We show in Section 4 that to go
from (bounded) analytic functions to functions in AZ,, ;, the way is in fact paved with
a formula of Cauchy type for fractional derivatives. In Section 5, we apply the results
of previous sections to give a characterization of the (scaled) H* calculus in terms
of Mikhlin algebras.

On the other hand, the sectorial H* calculus provides us, in general, with oper-
ators which are not necessarily bounded [4, 16]. It has been shown [8, 9] that these
operators can always be regarded as certain generalized multipliers, or regular quasi-
multipliers in the sense defined by J. Esterle [7]. It may be worth pointing out that as

Received by the editors December 16, 2005; revised March 29, 2006.

This research has been partially supported by Projects BEM2001-1793 and MTM2004-03036, MCYT-
DGI and FEDER, Spain, and Project E12/25, D.G.A., Spain.

AMS subject classification: Primary 47A60; secondary: 47D03, 46]15, 26A33 47160, 47B48, 43A22.

Keywords: functional calculus, fractional calculus, Mikhlin multipliers, analytic semigroups, un-
bounded operators, quasimultipliers.

(©Canadian Mathematical Society 2008.

1010

https://doi.org/10.4153/CJM-2008-045-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-045-5

H®*® Functional Calculus and Mikhlin-Type Multiplier Conditions 1011

a consequence of the results in Sections 3 and 4, an unbounded calculus is available
where operating functions of Mikhlin type yield regular quasimultipliers.

2 Mikhlin Algebras Defined by Fractional Derivation

Let h be a locally integrable function on R* := (0, c0). For d such that 0 < ¢ < 1
and w > 0, we put

h(t) := ﬁ [ w(s — 1) h(s) ds,

if0 <t < w, and If,h(t) := 0, if t > w. Then, assuming that the following limit
exists, we write

d
)= Tim (=) 4L m)(@),

(1) = lim (=) (W)
If o is a positive number with « = #n + § where n := [a] is the integer part of a, we
define p

hO(t) = (—) Hen@), > 0.

(¥) I (t),
Whenever we write h'®), we understand that the limit exists and that Iif‘sh forw >0
and B9, ... k@~ are locally absolutely continuous functions on R*.

The above definition of 4@ is a kind of Riemann—Liouville fractional derivative
introduced by Cossar [3] and reconsidered by Trebels [15]. Here, we call h(® the
Cossar—Riemann—Liouville derivative of h. In some cases, the definition of A% can be
done more directly. For example, when h is assumed to be, additionally, of compact
support in R*, then we may use the Fourier transform so that

WO (€) = (—i€)h(€), € E€R,

in the distributional sense.

Let WBV ., denote the space of functions of weak bounded variation formed by
the functions in L> N C(R") for which there exist /'Y and ||h|lca = ||Alloo +
[t (t)]|0o < 0o. The space WBV ., is a Banach space with respect to the norm
Il llco.a- Moreover, it coincides with corresponding (concerning order o and sup-
norm) localized Riesz potential spaces and localized Riemann-Liouville spaces. In
particular, the norm ||h||s o is equivalent to the norm

sup || (6h) ]| oo

t>0

for any, fixed, non-negative ¢ € C'°(R"), and where h,(s) := h(ts), for a.e. s,t > 0,
see [2, Theorem 2]. If h € WBV o, is of compact support, then

(="
I'(a)

h(s) = / (t =) ') dt, ae s>0,

see [2, p. 252]. Note that in particular if h(s) = 0 for s > r, then K@) (s) = 0fors > r.
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Although for generic elements of WBV  ,, the above formula need not hold, there
is also a reproducing formula for derivatives. This is

_1lal=lv]  poo
g(l/)(t) = (1_‘(0)44_1/) / (s — t)afyflg(a)(s) ds

forae. t > 0ifg € WBV 4 and 0 < v < a, see [11, p. 250]. This formula readily
implies that WBV ,, 5 C WBV, with [|t%¢%(£)[|ce < [[t7¢°(t)||00, if § € WBV . 5
and 0 < a < .

For convenience, we are interested here in elements f of WBV, with f and f(®
continuous.

Definition 2.1 TFor o > 0, let MY denote the closure in WBV o, of the linear
subspace WBV o, , NC*)(R™).

Clearly, MY ¢ MY for 0 < a < (. It is possible to endow M'?) with an-

other norm which is equivalent to || - ||, and involves the fractional power opera-
tor (—s%)o‘. Let us first recall some well-known facts about such an operator when
a=necN.

IfF € C"(R) and x € IR, we have (xd%)”F(x) = E;’Zl cjij(j)(x), for specific

coefficients ¢j, j = 1,...,n. If F(x) := f(e*), where f is a C™ function on R*, then

F"(x) = chej"f(j)(ex) = chsjf(j)(s)
j=1 =1

for every s = ¢* > 0. That is, the operators d‘i: - on R and (s%)" on R" are in cor-

respondence under exponential (or, conversely, logarithmic) change of variable. In-
deed, the set of functions F € C(RR) such that SUP; g1, [F7 || < oo is bijective

with the set of functions f € C"(R") for which sup;_, , [[f(s)s/[oc < 00. On
the other hand, using induction, we obtain that sup =01

,,,,,

onlyifsup, o, , [(s£)/ f||so < occ. In order to find an analog of this equivalence
for fractional derivation, we replace the usual derivation on R* with the Marchaud
derivation, and use the Hadamard fractional version of (—s% ).

Let0 < § < 1. If f € WBV 4, then

L [T 10— [0
0(=0) ), (t—9)'"

Os) = dt

for every s > 0 [11, p. 256]. Recall that the above integral is known as the Marchaud
derivative of f of order § [14, p. 110]. For higher order derivation, leta =n+4 > 0
with n = [a] and let f be a C"*V) function in M{”). From the above we get for s > 0,

fs) =

L od" (2 fO—f) 1 d 5 [T fst)—fs)
F(_(S)d_sn s (t_5)1+5 dt—r(_a) ds" (S 1 (t_1)1+(5 dt)
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In a similar way, if f € M N C"*D(R*), first note that the Hadamard operator of
order ¢ is defined by

(~s2) "9 = 15 /Oo[f(st)—f(s)] T

see [14, (18.53), (18.56")]. Thus the action of the Hadamard operator of order o on
f can be expressed as

(~2) 9 = . / T3 (0 - ) —t(logdi)m

foreverys > 0, =n+4,0< 9 < 1.

Before passing to the result about equivalent norms, note that for 0 < § < 1, the
function (t) := t ' (logt)~*® — (+ — 1)~(*9 is integrable on (1, cc). In fact, we
only need to check integrability near t = 1, and this is straightforward.

2 2 t—1 dt 2 .
) -9
/1 |k(1)| dt g/ (1+5)(Lgt u du) T leg +/1 (r— 1) dr

logt -1 _

Put(%)o‘f = fl)
Proposition 2.2 Leta = n+ 6, n = [a]. Let f be a bounded C"™*V function on R*.
The following are equivalent.
(i) sup,., |s"(%)“f(s)\ < 0.
(ii) sup,., |(—s%)“’f(s)| < 00, forevery 0 < 8 < a.
Proof Put py :=sup ., |skf(k)(s)| where k = 0,1, ..., n. Assuming either (i) or (ii)
implies that px < oo forall k = 0,1,...,n (if we assume (i), then f is in Mgé) and
so is in Mg@; if we assume (ii), then we can take 3 = k and proceed by induction).
By Leibniz’ rule we get

af AN s s\ dE [ fst) = f(s) N\ AR
) (%) f(s)_r(—(s)kz_():(k)(ﬁ L =D dt) sk

flk (st)(st)k R (s5)s
T T(= 5)2 / — 1) dt,

1

where a,, ; = 1. On the other hand,

() 19 = 15 [ () W60 101t

(=" % fR(st)(st)k — R (s)sk
e ;C" /1 ognts "
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where ¢, = 1.

Let us now consider the difference (—s%)“f(s) — (—1)"5“(%)‘7(5). In this ex-
pression the terms that correspond to k = 0,1,...,n — 1 are bounded uniformly
ins. So are

‘/‘x’ f(k)(st)(st)k — f(k)(s)sk dt‘

(t _ 1)1+6

2 f:s(/lkﬂ + k) (du/u) g+ /00 2 dt

(t _ 1)1+5 (Z’ _ 1 (+ _ 1)1+0 < o0,
fork=0,1,...,n— 1. Terms of the form
/ [FO(st)st) = fP(5)s'] £ (logt) ="+ dt,
1
withk =1,...,n — 1, are estimated analogously.
Hence the only term which is really significant for comparing both derivatives is
(=1)" / = n_ g 1 1
M(st)(st)" — f(s)s" - dt.
T—e) J, U6 = f7(s ]{ tlog)™ (1 — 1)i# }

This integral is bounded by 2p,I'(—4)~! floo ‘t_l(logt)_(”‘s) —(t— 1)_(“‘5)‘ dt,
and this is finite as shown prior to the proposition.

Finally, noting that in the direction (i) = (ii) 3 can play the role of a, we end the
proof. ]

Corollary 2.3 The expression sup, 5, SuP.q |(— sds)ﬂf(s)\ defines a norm in M
which is equivalent to || - || s a-

Cossar-Riemann-Liouville derivatives become simpler in certain spaces of abso-
lutely continuous functions of higher order. Foraa = n+4 > 0,0 < 6 < 1,
f € C([0,00)) and s > 0, set

W f(s) = % / (t — ) f(2) dt,

__1\n+l n+1
((—’jm / (£ — 970 f(1) dr.

Then, with WO f = f, (W%),cr is a group (acting on f). In [10], the space of the
functions AC ;“1) has been defined as the completion of C>)([0, 00)) in the norm

< 2 dt
= « 0<2
1 ll @21 .—/O (/ W £(s) s°| ) £

Then for every f in AC2 1> the symbol W f can be given a precise sense, and W f
is called the Weyl derivative of f. Note that if h is in C{°([0, 00)), then h(®) =

Wef(s) =
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(—1)[TWh, We extend this definition to every f in ACE‘?, and we will use f(®
rather than W f in the sequel. '

The space Acgﬁ) is a Banach algebra for pointwise multiplication provided that
a > 1/2. This is proved in [10, Proposition 3.8] as an application of the following
Leibniz formula for fractional derivatives [10, Proposition 2.5]:

For f,g € Cé‘x’)([O, o0)) and o > 0,

2.1 (f9“) = f(s)g(s) + f()g' (s)
+ (=1)lelt /°° /Oo(sﬁg;l)l(s)f(a)(t) g(”)(u) dtdu,

where 7', ! is the function defined in [10, p. 313].

We shall need to consider a certain ideal of AC;’I).

Definition 2.4 Fora > 0, let Mg“l) denote the completion of C°(R*) in the norm

2 ds\ 1/2dt
-— m (k) k|2 =
I fllavt,a ax{/o (/t FARON s) ; .k—O,a},

It is readily seen that Mgﬁ) is a Banach algebra for pointwise multiplication, and
an ideal ofACECfI) such that || fh|lne < Collfll@y2r [|Allva for every f € AC;‘}?

and h € Mgf“l), if & > 1/2 (for this we need to observe that || f||cc < C|| fll(a)2.1 if

fe ACéﬁ) and @ > 1/2 [10, Lemma 3.6]).
We finish this section with two more results about the multiplicative structure of
(@)
M@ and MY,

Theorem 2.5 For every o > 0, M%) is a Banach algebra with respect to pointwise
multiplication.

Proof Take ¢ € CEOO)(IRQ), ¢ > 0, with 0 := max(supp ¢). Let f, g be C® func-
tions in M'®) and let s, # > 0. From the Leibniz formula (2.1) we have

(@ £ig) ™ (5)] < (@) ()(dg) ()] + |(6g) ™ (5) (@ f)(5)]
/ / (@8 ) (B 1)V (r)(dg) " (w) drdu] .

+

If0 < a < 1/2, then (wﬁ;l)’(s) > 0 for s < min{r, u} [10, Lemma 2.2], whence
the double integral in the previous equality is bounded by

16 oo 1620 e / / (2)(s) drd

In turn, the above double integral is equal to ¢,(c — s5)* for a certain constant ¢,
[10, Lemma 2.4], and so it is bounded by ¢, .
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Now assume that a« > 1/2. Then [(¢%, 1)/ (5)] < calu — ) 2ifs < r < u

nu

[10, Lemma 2.2]. Take € such that 0 < ¢ < min{1, a}. Then the double integral at
the beginning of the proof is bounded by the sum (up to constant coefficients) of

/ / (u— )" (@) ()] |(dg)' (u)| drdu

plus a similar term where u and r exchange places. Since (1 — s)°~! < (r — 5)°~! for
r < u, the last integral is bounded by

([ =9 en@wlar) ([ =97 080w du)
< Cela = 9™ [(@F) oo 198 loo < Co 161 lloo [1(68) loc-

The second term in the aforementioned sum is treated similarly.
Hence, for any a > 0,

”ngOO,a ~ sup H((bzftgt)(a)”oo
>0
< (sup [(3£) o) (supl|@gilloc) + (sup ¢ filloc) (sup /(@) [loc)
>0 >0 >0 >0
+Co (sup [[(0£:) o) (sup [[(¢8)]loc) = Cll fllo.alIgllo0.a
>0 >0

as we wanted to show. |

The relationship between Mikhlin algebras and algebras of absolutely continuous
functions of higher order is given by the following result.

Theorem 2.6 Foreverya > 1/2, M;‘ﬁ) is a Banach M(o‘;)-module, that is,

Hfg”M,a < CaHfHoo.,a”gHM,a
forevery f e MY, g € Mgf?

Proof Take ¢ in C!°) ([0, 00)) with ¢(s) = 1if0 < s < 1,and ¢(s) = 0if s > 2. Put
or(s) = ¢(s/k) for s > 0, k € N. Then supp ¢ C [0, 2k], ¢r(s) = 1if0 < s < kand
Sup, s\ (5)] < 2| ¢ || o for kym € N.

Let f € Mg‘g) NC)(R*) and let g € CE‘X’)(]R{*). Fix k such that suppg C [0, k]
and put ¢ = ¢, so that fg = (fy)g. Later on we will apply Leibniz formula (2.1) to
f and g, but before doing so, note that

2.2) / (t — x| (F ) dt < | fiplloaar™™ / (s— 1715 ds
s 1

= Ca-,v”fSDHOO-,axv_av
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for all x > 0 and whenever 0 < v < a. Also, if g(x) := fxoo(u — %) gl (w)] %

forx > 0,theng € ACéﬁ) and ||g]lw21 = 1€l [10, p. 325].
Now, in formula (2.1) for fy and g the double integral is bounded by

o / / (1 — 22| (£) ) (1) dt|g ()] du

iC, / / (t — )" 21g ()| dut (f0) @) (1) dt = (1) + (I0).

see [10, p. 313, 314]. To estimate (I), we choose ¢ such that 1/2 < ¢ < min(1, «).
Then, as in [10, p. 325],

(I)gCl/ / (t — 07 |(F) O (0))dt (1 — x)°~"|g (1) du

< C{llfelloca ¥ §9), x>0,

where the second inequality is obtained from (2.2) with v = ¢.
Analogously, for § such that 0 < § < min{1, a — (1/2)}, we have

1) < G, /OO /Oo(u — x)571|g(a)(u)\ du(t — x)“7571|(f%0)(a)(t)| dt

< CZIHf(P”OO,a g(“ﬂs)(x) xid, x> 0.

Hence, for every x > 0,

(' x* < [(f0) @) 2 [g)] +[(fo) )] g ()] x*
+(Cx 89 +C" x* 7 g0)) [ félloo.a

and therefore

Ifgll@iza < I fellooa llgllonza + I felloo gl
+Cll félloon (I8llerar + 1€l @—s1)
< ClIfellsoallgllne,

in particular because €, « — & > 1/2 [10, Proposition 3.7(i)] . Moreover, || f¢|co.a <
Cll fllooa 1¢]loo,a and therefore [[¢]loc.a < C'll¢[loo 1 < C2 " V|oo = C,
where n = []. Thus we have that || fg||(a)2,1 < C||fllec.allgllvg, - Finally,

oo 2y dxy 12 d
L (] 10001 %) " <1l Nl < 1l Nl
0 x Y

y

In conclusion we have obtained that || fglat;, < C|| flloo.a [I8]lvg, - |

2,1 —
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3 Mikhlin Algebras and Besov Spaces

For a > 0let A%, | (R") denote the Besov space formed by all bounded continuous
functions f on R* such that || f||, < o0, where

o0

1fllaa =D 2M0F * delloo-
k=—o00
Here F(x) := f(e*), x € R, and { ¢y} is a suitable family of functions in C.(R), see
[4,p. 73], [5, p. 415].

It is clear that A“oqu(]R{”’) is contained in AS, ; (R") whenever 8 > «, and that the
inclusion A‘:ZO’I(]RU) — A%, 1 (R") is a contraction. Moreover, the space A%, (R")
is a Banach algebra for pointwise multiplication [1, p. 163], and this algebra can be
described alternatively as the set of functions f on R* of C™ class such that

O R
0

y1+5

dy < o0,

wheren = [a],d = a —nand F = f o exp [13, pp. 9, 11]. The above sum defines a
norm in A%, ; (R*) which is equivalent to the norm || f| s . After exponential change
of variable in the integral, we will use that norm in the form

|f|+/wnquUWWmm—ﬂmewﬂ
1

(logt)1+o t’

where c; are the Stirling numbers defined by (x%)” = Z?:l cjx/ ;Tj,».
As part of the motivation for [4, Theorem 4.10], it has been pointed out there that
ME s A%, 1 (RY), provided that k is a natural number with k > a. We will now

refine this inclusion.

Theorem 3.1 Leta > 0.

(i) MY — A% (RY) forevery B > a.

(i) A2 (RY) — M.

Proof (i)Leta=n+d,n=1[a],0 < < 1.Take 3 > aand fin ME;Z)HC(OO)(]R{’r).
Fork=1,...,nands > 0, put

1= [T IfPEEE — fP | de
k= /1 (logt)1+5 P

fl1<k<n-1,

2 st -
Iy S/ (suP/ ‘f(k-*—l)(u)uk+kf(k)(u)uk—1|du) L +/ M dt
1 s ;

b t(logt)!+ (log )1+ t

2 HfHoo k+1 +kaHook st du\ dt
< , : duy dt il
S ogn™ (i‘iﬁ’/s 2) T Cilf s

= C§l| fllsokr1 + C§' | fllook < Csll flls0,3-
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Ifk = nandt > 2, we have as before || f*) (st)(st)" — f"(5)s"||oo < C|| fl|o0.3-
For k =nand 1 <t < 2 we use the representation

+1 o0 o e
F(ts) — f(s) = = / {w—t)0" = =9 D (w) du,
0
if s > 0, which holds even for n = 0, see [11, pp. 250, 252]. Then

FPst)(st)" = f(s)s"]
= 5n|f(n)(st)(t" )+ f(")(st) _ f(n)(S)‘

<[ flloont™"(¢" = 1)

L - e Ben=1 o \Ben—1q £(B)
+p(5_n)’/0 {(u—19) (=95 7 (u) dul .

The module of the integral is in turn bounded by || f || 5 times the sum of

/ S(u — ) TP du < (B —n) s — 1)

and
[ __1\B—n
s_”/ [(r— )/ = (r— PP gy = st
t f—n
oo t
+s57" p (/ B—n)(r—u)’ ! du) = g,
B—n) 1

Without loss of generality we can assume that 5 < n + 1, and therefore we obtain
flt(r —w)lr=lgy < flt(t —u)%=""du = (B — n)~'(t — 1)’~". Thus, in summary,
we have

£ 600" = FO oo < Coall flloose” = 1+ = 1),

whenever 1 <t < 2.
Hence,

214+t — 1P dr © M Fflleos dt
Lec( Y g+ [ g 2

(logt)1+9 t (log )1+ ¢

< Clflloc.s,

since 8 —n > a — n = §. (Note that if n = 0, the first term is missing.)

In conclusion, we have proved that ||F||s.o < C||F||ccs for > a.

(ii) The elements of A%, ; (R™) can be approximated in its norm by analytic func-
tions on R* [4, p. 74]. So it is enough to check the required estimates for C(>
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functions in A%, ;(R"). For such a function f, we use the former Proposition 2.2.
Thus,

‘ (_S%)aﬂs)‘ - r(l—é)’/lm(%)nm“) AL t(lo:ﬁ
dr

LIS ) RO
SF(—&)/I ‘;c][fl(st)(sty fJ(S)S]]‘t(logt)“d

R Y Bt R o S Do dt
ér(_(g)/1 H;cj[ff(st)(srv 100N e

and therefore sup,_, |[(—s£)* f(s)] < C||f|a.a-

Analogouosly, if 0 < 8 < a, sup,_ [(—s£)P £(s)| < C||fllaz < C|lflla.a since
A% (RT) — qul(lR{*) is a contraction. In conclusion, A% | (R*) — MY, as
wanted. ]

Remark 3.2. It is noticed in [4, p. 73] that for every integer m > «, the inclusion
MU s A%, 1 (RT) can be established using the norm

oo

[e )

Ao — Z 2|k‘a||F*(£k||oo

k=—o0

1]

in AZ, ;(R*). The way to do this is to apply the estimate HmeékHl < Cp2- lKm i
the convolution F * gzvbk = Fm 4 J’”QVS;(. Here J is the integration operator Jh(x) :=
I foo h(y) dy on R. This argument also works for fractional 8 > «, but it turns out to
be more involved. In this case it is also convenient to replace the usual derivation with
the Hadamard derivation (—s(d/ ds))?, as well as to replace J with the corresponding
adjoint operator of (—s(d/ds))? on R*.

4 Algebras of Analytic Functions on Sectors

The algebras which we consider here are those linked to the H* calculus such as
they are introduced in [4], see also [16]. We present these algebras under a slightly
different viewpoint which is more suitable for our aims. In this section we show that
such algebras are closely related to the Mikhlin algebras of Section 2, via a Cauchy
formula for fractional derivatives.

For 7 such that 0 < 7 < m, set S, = {\ € C\ {0} : |arg(\)| < 7}, where arg()\)
is the argument of A which takes values in [—7, 7). Let H**(S;) be the usual Banach
algebra of bounded analytic functions on S; with norm || - || (reference to the angle
7 is omitted in this norm; it will not cause any trouble). Let A;(S; ) denote the Banach
subalgebra of H*(S,) formed by all functions of H**(S,) which are continuous on
S\ {0}. Set p(\) := A(1 + A\)72,if X € S,. For § > 0, we define A(S,) as the
subalgebra of all functions f of A,(S,) for which f(A)yY~%(\) — 0as |A\| — oo or
|A| — 0. Endowed with the norm || f||5.00 := || f¥ || A}(S,) is a Banach algebra
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and a Banach module of A;(S; ). Moreover, Ay(S;) is the multiplier algebra of Ag(ST)
for every 0 > 0, Ap(S;) = Mul(Ag(ST)) [9].

Extensions of Cauchy formulae on suitable paths are tools usually considered to
define complex fractional derivatives [14, p. 422]. The following lemma is a sort of
Cauchy formula for Weyl and Cossar—Weyl derivatives of functions in A, (S;). In the
statement and proof, the mapping z + z0*! = |z|**1e(@tDargl@d) o > 0, corresponds
to the continuous branch of the argument on C \ (—o0, 0] defined by arg(z**') = 0

when z > 0.
Lemma 4.1 Leta > 0. Forevery0 < 7 < /2 andh € Ap(S;) there exists h® and
we have
I'a+1) h(\)
K@ — (—1)ladt / _
O T ey
+00 I’l
+ (=1l “smomF(a+l) W __

(1+sin 7)x (M - x)a+1
for each x > 0, where (7, x) is the circle |\ — x| = (sin 7)x positively oriented.

Proof If h € Ay(S;), then h € Mf;g*” for all integer m. This follows from the
Cauchy formula K"V (x) = (27i) =" (m +1)! fw(m) h(A) (A — x) =21 d)\, x > 0. We
will use this fact for n = [«]. So in particular we have

1 0o
h(a) — / nfozh(nJrl) d
(x) Tnri—a ), ” (x+y)dy

for every x > 0. We want to represent KV (x + y) as an integral on a path inde-
pendent of y. Fixx > 0. For R > 0, set v(R,7) := {\ : |A\| = R, |arg(\)| < 7},
pE(7,x) == {\: (cosT)x < |\|,arg(\) = £7} and denote by 7/(7, x) the sub-arc of
(7, x) which joins (cos 7)xe'™ and (cos 7)xe ' to the left of x. Take y > 0.

ForR > 2(x+ y),

h(\) R
Dt oz Il —oo U,
’/RT [A— (X+y) 72 )\‘ - _ (x+y)]”+2 H ” —R 0

and therefore the Cauchy formula 1mplies that

ey = CDOSD [
AlTx (

27ri ) (x+y — A2

where A(7,x) = p*(7,x) U~ (7,x) U p~ (7, x) is positively oriented.
Putz = x + y. Then,

|h(V)] /Oo dr
N b L < -
/p‘f('rﬁx) |Z - )\‘n+2 |d)\| - HhHOO (cos T)x ‘Z - rezr|n+2

c051)x Sn
=Cz~ (n+1) ——— s
0 |5 _ ezT|n+2

oo
< Curz” "“)/ dis.—Cz (1)
0

|S_elT|2
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A similar estimate is obtained on p* (7, x). Further,

h(A
/1 %IdM < C(x)[z — (cos T)x] ~ "2,
Y(7x -

Then Fubini’s theorem can be applied to get

h(“)(x)— (=1)r+! (n+1)1/ / - ,,+2 dyh(\)d).

2ril(n+1 — «)

The integral in the variable y defines an analytic mapping in A € C \ [x, +00) and
then its value is readily obtained, using the identity principle, as ¢, (x — A\) ~**, with
Ch = fooo (1 +7r)""Ddr = B(n — o+ 1, a + 1). Thus we have that

h (x) = (—1)””@/ _ N A\
2m o (

_ )\)(y+l

for every x > 0.

Take £ > 0. By z& we denote the intersection point of v(7, x) and the line S\ =
+e such that Rz > x. Put o(e)* := {\ : I\ = £¢, R\ > RzF}. Let v/ (7, x) be
the sub-arc of v(7, x) joining (cos 7)xe™'™ and z* in the shortest way. Application of
Cauchy’s theorem to suitable domains implies now that

h(a)(x) — (_1)n+1F(;‘7:; 1) / h(\) A\, x>0,

K(rx) (X _ /\)(wl

where K(7, x) is the path K(7,x) = o(e)* U~/ (7,x) U~ (T,x) U~ (T,x) Ua(e)™,
positively oriented. It is readily seen that

. +0o0
lim / B (x — /\)—(<y+l) d\ = :Fei(aﬂ)m/ h(u)(u — x)~ (a+1) du,
e—0" U(E)i

(14sin 7)x

and from this we obtain that

R

27i i (6= A)ott

+00 h(u)

sin
+ (=M F(a-i—l) —_—
(1+4sin 7)x (M - x)a+1

du. |

The lemma tells us in particular that H*>°(S; ) is contained in Mf;). More precisely,
we have the following.

Proposition 4.2 Let «,0 > 0, and let T be such that 0 < 7 < .
1) Ap(S,) — Mffé), With ||h||co.a < CT~%||h||co for every h € Ap(S;).
(i) ANS,) — M(zf”l), with ||h||nt.a < Csm||h]|5.00 for every h € AJ(S,). Moreover,

AY(S,) generates a dense ideal of Mgﬁ).
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Proof (i) This is immediately obtained from the formula in Lemma 4.1.
(ii) Take 7 such that 0 < 7 < 7/6 and put x := 1 + sin7. We need to estimate

the functional L,(-) = fooo( f 2y |- |22 dx) 12 dy on each integral in the Cauchy
formula of h(®). First, note that

h(\) - 5
N S < a .
’/(Tx) e d)\’ < 2m(xsinT) |\h||()700(AgA1/E1T).(X) [’ (M),

where [¢°(\)] < Csmin(|A| 7%, |A|?) and (x/2) < |A| < (3x/2) (since 0 < 7 < 7/3)
for each A € (7, x). Thus

B\ 2w||h||5oo{ /1/3 3) 0 /Zy w1 ) Ay
La ————d\) <Cs——2— - X7 dx —
(/W(T.,x) (x — A)att ) " (sinT)® 0 (2) ( y ) y
2 2 dxy 1/2 dy
+ [ 6 / —) =
‘/1/3 ( y X ) y
00 2
PRV ]
2 y Y

= Cs(sin ) ™| h||5.00-

Now, for the second integral entering the Cauchy formula of h(®), we have
* h(w)
La(/ﬁ‘x (x_ u)(Hl du)
<y du
S )
<Motal [ G
0 ")
r dr
L
5(/,i (14 xr)2 (r — 1)‘”1)
/ / /2” i dZ) 12dy  dr
'y 1+2)% z y (r— 1)+
220 dz\V2ds  dr
- ||h\|5oo/ I o) S
s (14+2)% z s (r—1)af

5 $ ds dr Cs, . _
< 2°(log2 = _
> (Og )HhHéOO/K /(; (1+5)25 s (7‘— 1)a+1 o (SII’IT

where, for the third inequality, we have used the vector Minkowsky inequality as well
as Fubini’s rule. Moreover, since the above arguments also work for o = 0, we have

S ePL) 2 < ol oo
Finally, M;‘ﬁ) is a Banach algebra, and the density of Ag(ST).Mg‘fl) in Mg(fl) follows
from the density of C!>* (R") in Mg“l) [
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Remark 4.3. (i) In Proposition 4.2(i), the algebra A;(S;) can be replaced by the
algebra H*°(S;) (with the same estimate). This is a consequence of the fact that
H®(S;) — Ap(S;/2) for every 7 > 0.

(ii) As a consequence of Proposition 4.2(i) and [4, Theorem 4.10], we obtain the
bounded homomorphism A% ; (R") < M. This inclusion has been shown di-
rectly in the above section, see Theorem 3.1(ii).

(iii) An estimate of the same type as that of Proposition 4.2(i) is given in
[6, p. 481] by interpolation. This is

2

d /2
- < —(a+e)
sup sup (I —d)\z) (nh)()\)’ <Cer 1o

>0 AES,

where 17 € C(°)(R) is fixed and £ > 0. Note that ¢ is not needed in our proposition.

5 Mikhlin Theorems for Sectorial Operators

Let X be a Banach space and let T be a closed one-to-one operator with dense domain
and dense range in X. Suppose that the spectrum o (T) of T lies in the closed sector
S.» where w € (0,00), and that ||(z — T)7!|| < C,|z|~! whenever 7 € (w,7) and
z € C\ S;. Then T is said to be a sectorial operator of type w. An operator which is of
type w for all w > 0 is called sectorial operator of type 0.

Set DR(S;) := Us=0 AS(S,) and F(S,) := Us=o =9 H*(S,) in the notation of
Section 4. Note that DR(S;) C H*°(S;) C F(S;). For a sectorial operator T (of type
w) it is possible to construct, on the basis of the Cauchy operator-valued formula,
a functional calculus (the Dunford—Riesz calculus) f — f(T), DR(S,;) — L(X),
for all 7 > w, which extends to F(S;). In general, f(T) is unbounded, even though
f € H*(S;). We say that T admits a bounded H* calculus (on S;) if f(T) € L(X)
with || f(T)]| < C||f|loo forall f € H®(S,).

When T is of type 0, then the H* calculus for T is connected with a functional
calculus for T having the Besov algebra A2_ | (R") as domain.

Theorem 5.1 ([4, Theorem 4.10]) Let T be a sectorial operator of type 0. Then the
following are equivalent.

(i)  There exist constants «,C > 0 such that for every T > 0 the operator T has a
functional calculus H*(S;) — L(X) with | f(D)|| < CT7°||f]lco forall f €
H*>(S;).

(i) T admits a bounded A‘;OJ(IRF) functional calculus, that is, a bounded algebra
homomorphism A%, | (R*) — L(X) such that (z — u)~" — (z—=T) ' ifz €
C\ ¥,

According to results obtained in previous sections we can give a variant of the
above theorem, which tells us that the Besov calculus and the Mikhlin calculus are
equivalent.

Theorem 5.2 Let T be a sectorial operator of type 0. Let o« > 0. Then the following
are equivalent.
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(i) T admits a bounded H* calculus on S;, for all T > 0, such that for every v > «
there exists C,, > 0 with

[f(DI <Cor ™ fllc, 7>0,f€H?(S,).

(ii) T admits a bounded A7, (R*) calculus for every v > .
(iii) T admits a bounded M) calculus for every v > .

Proof (i) = (ii). This is the implication (i) = (ii) of Theorem 5.1.
(ii) = (iii). This is a consequence of Theorem 3.1(i).
(iii) = (i). This is a consequence of Proposition 4.2(i). See Remark 4.3(i). [ |

X. T. Duong [5] used Theorem 5.1 to establish a multiplier theorem for certain
sub-Laplacians L on Lie groups, in terms of the Besov calculus. His method of proof
consists in showing that the structure of L? spaces on the group G, for 1 < p < o0, is
good enough to obtain the appropriate scaled H* calculus. In this way, we obtain the
following improvement to [5, Theorem 2]. As usual, if & is a bounded Borel function
on the spectrum o(L), then h(L) denotes the corresponding bounded operator on
L*(G) given by the spectral theorem for L.

Corollary 5.3 Let L be a sub-Laplacian operator on a homogeneous nilpotent Lie
group G such that the heat kernel e=“L, (Rz > 0) generated by —L satisfies property

(HG.) le |, < Ca <£Z> , Rz>0),

where a is a fixed, non-negative, real number. Then f(L) extends to a bounded operator
on LP(G) for all p € (1, 00) whenever f € MY withv > a + 1.

Proof Let p be a real number such that 1 < p < oo. If L is as in the statement,
it is proved in [5] that L admits a calculus U: H>*(S;) — L(LP(G)), T > 0, as
in Theorem 5.2(i), where h(L) = W(h) for every h € H*°(S;). Then the corollary

follows from the equivalence between parts (i) and (iii) of Theorem 5.2 above. ]
Remark 5.4. (i) Condition HG, is a natural assumption in our setting. The map-
ping s — e~%, where s, Rz > 0, defines a holomorphic semigroup in M%), (v > 0),
such that

sup |(e7*)"(s)s”| = |2 (sup |s"e ) = (v/e)"(|z|/Rz2)".

s>0 s>0

Hence, assuming that T admits the calculus M'Y) — £(X), the application of this
calculus to the function e™* shows that —T is the infinitesimal generator of a holo-
morphic semigroup (a*)r,~o in L(X) satistying condition (HG, ) for all v > «. On
the other hand, there are many semigroups a” satisfying property (HG, ) on L'-spaces
X for which, as is well known, it is not possible to get Mikhlin multiplier theorems.
(ii) It is known that the sectorial H*>® calculus provides us in general with opera-
tors which are not necessarily bounded, see [4,16]. It has been shown [8,9] that these
operators can always be regarded as regular quasimultipliers, in the sense defined by
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J. Esterle [7]. In this way, the resulting operators of the H* calculus enjoy interesting
algebraic and spectral properties [7,9].

There is a link between the above two remarks. Namely, the infinitesimal genera-
tor of an analytic semigroup satisfying property (HG,,) admits a Mikhlin-type calcu-
lus, where the resulting operators are regular quasimultipliers. This calculus may be
obtained as a consequence of the following facts.

Let —T be the infinitesimal generator of an analytic Cy-semigroup (a*)g,~o in
L(X) which satisfies condition (HG, ), with o > 0. In [10], a functional calculus
for T has been given in the form of a bounded algebra homomorphism ®: ACE{’I) —
L(X), whenever v > a + (1/2), such that @(ACg’fl) )X is dense in X. Incidentally,
such an operator T is sectorial: if # € N, n > v, then (T — zI)™! = ®((u — 2)7 ")
and therefore ||(T — zI)7'(| < C||(u — 2) "M @r1/201 < Cup [y t"|u— 2|72 du
for every z ¢ [0, 00), by [10, Proposition 3.7]. Moreover, the last integral is equal to
2|~ 7 " |r — €l @ | =2 dr = Clz| 7Y, so T is sectorial of type 0.

Let @y denote the restriction map of ¢ to Mg’f . Set A := span{a® : Nz > 0}
in £(X) and let Ay be the closed ideal of A generated by Ta!, Ay := (Ta')A. Then
®( goes from M(z”l) into Ag. For §,7 > 0, let C denote the (bounded) inclusion

A(S,) — Mgf‘l) given by the Cauchy formula in Proposition 4.2. Then it is readily
seen that the Dunford—Riesz calculus (see the beginning of this section) factors as

C
ANS) S MY 2 Ag s A

Furthermore, this factorization can be extended to the corresponding algebras of
quasimultipliers, so that we obtain the H* functional calculus of [4, 16] (for the
operator T) given by

H™(S,) = Ap(S:) — MY — Mul(MF]) — QM. (M) — QM,(A,),

if p > 7. Note that the inclusion M%) < Mul(M{")) is Theorem 2.6. (For definitions
and properties about algebras QM,(A) of regular quasimultipliers, see [7]. For the
existence of QM,(M}]) and QM, (AJ(S,)) = A,(S,), see [9].)

We find the above result interesting in that it reveals a natural and consistent
framework for the unbounded operators (on general Banach spaces X) obtained from
Mikhlin-type conditions. Also, the algebras QM,(A) are inductive limits of certain
multiplier Banach algebras. In this way, the calculus yields (many) generalized mul-
tipliers on X, defined on Banach spaces suitably associated with X. Details of these
results will be given in a subsequent paper.

Acknowledgements

The authors wish to thank the referee for valuable advice and comments which have
improved the presentation of this paper.

https://doi.org/10.4153/CJM-2008-045-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-045-5

H® Functional Calculus and Mikhlin-Type Multiplier Conditions 1027

References

[1] ). Bergh and J. Lofstrom, Interpolation Spaces. Grundlehren der Mathematischen Wissenschaften
223, Springer-Verlag, Berlin, 1976.

[2]  A.Carbery, G. Gasper, and W. Trebels, On localized potential spaces. J. Approx. Theory 48(1986),
no. 3, 251-261.

[3]  J. Cossar, A theorem on Cesaro summability. ]. London Math. Soc. 16(1941), 56-68.

[4] M. Cowling, I. Doust, A. McIntosh, and A. Yagi, Banach operators with a bounded H*> functional
calculus. ]. Austral. Math. Soc. Ser. A 60(1996), no. 1, 51-89.

[5] X.T. Duong, From the L' norms of the complex heat kernels to a Hormander multiplier theorem for
sub-Laplacians on nilpotent Lie groups. Pacific J. Math. 173(1996), no. 2, 413-424.

[6] X.T. Duong, E. M. Ouhabaz, and A. Sikora, Plancherel-type estimates and sharp spectral multipliers.
J. Funct. Anal. 196(2002), no. 2, 443-485.

[7] ). Esterle, Quasimultipliers, representations of H®, and the closed ideal problem for commutative
Banach algebras. In: Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math.
975, Springer, Berlin 1983, pp. 66—162.

[8]  J.E. Galé, A notion of analytic generator for groups of unbounded operators. In: Topological Algebras,
Their Applications, and Related Topics. Banach Center Pub. 67, Polish Acad. Sci., Warsaw, 2005,
pp. 185-197.

[9] J.E.Galé and P. ]J. Miana, One-parameter groups of regular quasimultipliers. J. Funct. Anal.
237(2006), no. 1, 1-53.

[10] J.E. Galé and T. Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups.
J. Funct. Anal. 150(1997), no. 2, 307-355.

[11] G. Gasper and W. Trebels, A characterization of localized Bessel potential spaces and applications to
Jacobi and Hankel multipliers. Studia Math. 65(1979), no. 3, 243-278.

[12]  A. McIntosh, Operators which have an H> functional calculus. In: Miniconference on Operator
Theory and Partial Differential Equations. Proc. Centre Math. Anal. Austral. Nat. Univ. 14,
Canberra, 1986, pp. 210-231.

[13] J. Peetre, New Thoughts on Besov Spaces Equations. Duke Univsity Mathematics Series 1, Durham,
NG, 1976.

[14] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives. Theory and
applications. Gordon and Breach, Yverdon, 1993.

[15] W. Trebels, Some Fourier multiplier criteria and the spherical Bochner-Riesz kernel. Rev. Roumaine
Math. Pures Appl. 20(1975), no. 10, 1173-1185.

[16] M. Uiterdijk, A functional calculus for analytic generators of Cy groups. Integral Equations Operator

Theory 36(2000), no. 3, 349-369.

Departamento de Matemdticas, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
e-mail: gale@unizar.es

pjmiana@unizar.es

https://doi.org/10.4153/CJM-2008-045-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-045-5

