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Abstract

For a large class of operator inclusions, including those generated by maps of pseudomonotone type, we
obtain a general theorem on existence of solutions. We apply this result to some particular examples. This
theorem is proved using the method of difference approximations.
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1. Introduction

The aim of this paper is to study the existence of solutions of abstract differential
inclusions with subdifferential map ∂ϕ of the type

3u +A(u)+ ∂ϕ(u) 3 f , (1)

for a large class of operators A including, as a particular case, pseudomonotone
operators.

When studying nonlinear evolutionary equations some standard methods have been
used in the past: Faedo–Galerkin approximations, singular perturbations, difference
approximations, nonlinear semigroups of operators and others (see [2, 10]). The
application of these methods to evolutionary inclusions and variational inequalities
has some technical difficulties. The method of nonlinear semigroups of operators
in Banach spaces was developed for evolutionary inclusions in the works of
Tolstonogov [20], Tolstonogov and Umanskij [21], Barbu [2] and others. The method
of singular perturbations (see Brezis [3] and Dubinski [5]) has been applied to
evolutionary inclusions by Vakulenko and Melnik [23–25], whereas the method of
Faedo–Galerkin approximations has been applied by Kasyanov [7–9].
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116 P. Kasyanov, V. Melnik and J. Valero [2]

In this work we apply the method of difference approximations, which is a well-
known method for differential equations [10], in order to obtain the existence of
solutions of evolutionary inclusions and variational inequalities, extending in this way
the results known so far to a larger class of operators.

The application of the main results to some particular differential inclusions is given
in the final part of the paper.

This paper is organized as follows. In the second section we explain briefly the
setting of the problem considered in this work. In the third section we define (in
a general multi-valued setting) the class of λ-pseudomonotone operators, which is
a generalization of the class of pseudomonotone maps, and study its properties. The
main advantage of this class of maps with respect to the previous one is that the sum of
two λ-pseudomonotone operators with bounded values is again a λ-pseudomonotone
operator. In the fourth section we state and prove the existence of solutions for the
inclusion (1). Finally, in the fifth section we apply this result to a variational inequality
and also to a problem arising in control theory.

2. Setting of the problem

Let 8 be a separable locally convex linear topological space, and let 8′ be the
topological conjugate to 8. By ( f, ξ) we denote the canonical pairing of f ∈8′ and
ξ ∈8.

Let the spaces V,H and V ′ be given. Moreover,

8⊂ V ⊂8′, 8⊂H⊂8′, 8⊂ V ′
⊂8′, (2)

with continuous and dense embeddings. We assume that H is a Hilbert space with
the scalar product (h1, h2)H and norm ‖h‖H, V is a reflexive separable Banach space
with norm ‖v‖V and V ′ is the conjugate to V with the norm ‖ f ‖V ′ associated with the
bilinear form (·, ·)H.

If ξ, ψ ∈8, then (ξ, ψ)= (ξ, ψ)H, that is it coincides with the scalar product in
H.

Let V = V1 ∩ V2 and ‖ · ‖V = ‖ · ‖V ′

1
+ ‖ · ‖V ′

2
, where (Vi , ‖ · ‖Vi ), i = 1, 2, are

reflexive separable Banach spaces and the embeddings8⊂ Vi ⊂8′ and8⊂ V ′

i ⊂8′

are dense and continuous. The spaces (V ′

i , ‖ · ‖V ′
i
), i = 1, 2, are the topologically

conjugates to (Vi , ‖ · ‖Vi ). Then V ′
= V ′

1 + V ′

2.
Let A : V1 ⇒ V ′

1 be a multi-valued map with non-empty convex closed bounded
values. Let ϕ : V2 → R be a convex lower semicontinuous functional, and let3 : V →

V ′ be an unbounded operator with domain D(3; V, V ′). We consider the following
problem:

u ∈ D(3; V, V ′), (3)

3u +A(u)+ ∂ϕ(u) 3 f, (4)

where f ∈ V ′ is a fixed element, and ∂ϕ : V2 ⇒ V ′

2 is the subdifferential of the
functional ϕ (see [18]).
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Our aim is to prove the existence of solutions by the method of finite differences
(see [10, Chapter 2.7]).

3. Preliminary results

Let us assume that the space8 is dense in (V ∩ V ′, ‖v‖V + ‖v‖V ′). It follows from
this assumption that

V ∩ V ′
⊂H. (5)

In fact, if ξ ∈8, then ‖v‖2
H ≤ ‖v‖V ′‖v‖V , so that (5) follows.

REMARK 1. If V ⊂Hwith dense and continuous embedding, it is possible to avoid
the space 8. Identifying H and H′ we obtain the following embeddings:

V ⊂H⊂ V ′. (6)

DEFINITION 2. The family of maps {G(s)}s≥0 is said to be a semigroup of class
C0 in a Banach space X if G(s) ∈ L(X; X), for any s ≥ 0, G(0)= Id, G(s + t)=

G(s) ◦ G(t), for all s, t ≥ 0, and G(t)x → x as t → 0+, for all x ∈ X .

Let the family of maps {G(s)}s≥0 be a semigroup of class C0 on V , H, V ′, that is,
there are three semigroups, defined in the spaces V,H, and V ′, respectively, which
coincide on 8. Each of them will be denoted by {G(s)}s≥0. Moreover, we assume the
following:

{G(s)}s≥0 is a non-expansive semigroup on H,
that is ‖G(s)‖L(H;H) ≤ 1 for all s ≥ 0. (7)

Furthermore, let −3 be the infinitesimal generator of the semigroup {G(s)}s≥0 with
domain D(3; V) (respectively D(3;H) or D(3; V ′)) in V (respectivelyH or V ′). It
is well known [18] that such a generator exists. Moreover, it is a densely defined closed
linear operator in the space V (respectively in H or V ′).

Let {G∗(s)}s≥0 be the semigroup conjugated to G(s). Let −3∗ be the infinitesimal
generator of the semigroup {G∗(s)}s≥0 with domain D(3∗

; V) in V , D(3∗
;H) in H

and D(3∗
; V ′) in V ′. The operator 3∗ in H (respectively in V or V ′) is conjugated to

the operator 3 in H (respectively in V or V ′).

LEMMA 3. The sets D(3; V ′) ∩ V and D(3∗
; V ′) ∩ V are dense in V .

PROOF. In fact, for any u ∈ V and ε > 0 there exists ξ ∈8 such that ‖u − ξ‖V < ε.
Then ξn := (I − 1/n3)−1ξ ∈ D(3; V ′) ∩ V , ξn → ξ in V as n → ∞. 2

Now we shall define3 as an unbounded operator, which operates from V in V ′ with
domain D(3; V, V ′). Let us put

D(3; V, V ′)= {v ∈ V | the form w→ 〈v, 3∗w〉V is continuous in D(3∗
; V ′) ∩ V

with respect to the topology induced by the space V}. (8)
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Then there is a unique element ξv ∈ V ′ such that 〈v, 3∗w〉V = 〈ξv, w〉V . If
v ∈ D(3; V ′) ∩ V , then ξv =3v. Thus, generally speaking, we can put ξv =3v,
and hence

〈v, 3∗w〉V = 〈3v, w〉V for all w ∈ D(3∗
; V ′) ∩ V . (9)

Defining on D(3; V, V ′) the norm ‖v‖V + ‖3v‖V ′ , we obtain a Banach space. We
define in a similar way the space D(3∗

; V, V ′).

REMARK 4. If V ⊂H with dense and continuous embedding, then

D(3; V, V ′)= V ∩ D(3; V ′) and D(3∗
; V, V ′)= V ∩ D(3∗

; V ′).

In the case when V is not contained in H, we shall assume that

V ∩ D(3; V ′) is dense in D(3; V, V ′),

V ∩ D(3∗
; V ′) is dense in D(3∗

; V, V ′). (10)

REMARK 5. It is known [10, Chapter 2] that

〈3v, v〉V ≥ 0 for all v ∈ D(3; V, V ′), 〈3∗v, v〉V ≥ 0 for all v ∈ D(3∗
; V, V ′).

Let us introduce some new notation. Let X be some Banach space. For a
non-empty subset B ⊂ X we shall denote the closed convex hull of B by co(B) :=

clY (co(B)). For the multi-valued map A : X ⇒ X ′ we define the upper [A(y), ω]+ =

supd∈A(y)〈d, w〉X and lower [A(y), ω] = infd∈A(y)〈d, w〉X support functions, where
y, ω ∈ X , and also the upper ‖A(y)‖+ = supd∈A(y) ‖d‖X ′ and lower ‖A(y)‖ =

infd∈A(y) ‖d‖X ′ norms. The properties of the given maps are considered in the
works [11, 12, 15]. Later on yn ⇀ y in X means that yn converges weakly to y in
the space X . If the space X is reflexive, then yn ⇀ y in X ′ will mean that yn converges
weakly to y in the space X ′. If not, then yn converges to y weakly star in the space X ′.

Denote by Cv(X ′) (B(X ′)) the set of all non-empty, convex, weakly star closed
subsets of X ′ (the set of all non-empty bounded subsets of X ′), and by co∗ A the weakly
star closure of the convex hull of the set A in the space X ′.

PROPOSITION 6. Let A, B : X ⇒ X ′. Then for all y, v, v1, v2 ∈ X the following
results are true.

(1) Let a(· , · ) : D × X ⊂ X × X → R = R ∪ {+∞}. For each y ∈ D ⊂ X a
functional X 3 w 7→ a(y, w) is positive homogeneous convex and lower
semicontinuous if and only if when there exists a multi-valued map A : X → 2X ′

such that D(A)= D and

a(y, w)= [A(y), w]+ for all y ∈ D(A), w ∈ X.

(2) [A(y), v1 + v2]+ ≤ [A(y), v1]+ + [A(y), v2]+,
[A(y), v1 + v2]− ≥ [A(y), v1]− + [A(y), v2]−,
[A(y), v1 + v2]+ ≥ [A(y), v1]+ + [A(y), v2]−,
[A(y), v1 + v2]− ≤ [A(y), v1]+ + [A(y), v2]−.
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(3) [A(y)+ B(y), v]+ = [A(y), v]+ + [B(y), v]+,
[A(y)+ B(y), v]− = [A(y), v]− + [B(y), v]−.

(4) [A(y), v]+ ≤ ‖A(y)‖+‖v‖X ,
[A(y), v]− ≤ ‖A(y)‖−‖v‖X .

(5) [A(y), v]+ = [co∗ A(y), v]+, [A(y), v]− = [co∗ A(y), v]−.
(6) ‖A(y)− B(y)‖+ ≥ |‖A(y)‖+ − ‖B(y)‖−|,

‖A(y)− B(y)‖− ≥ ‖A(y)‖− − ‖B(y)‖+.
(7) d ∈ co∗ A(y) if and only if for all ω ∈ X [A(y), ω]+ ≥ 〈d, w〉X .
(8) dH (A(y), B(y))≥ |‖A(y)‖+ − ‖B(y)‖+|,

dH (A(y), B(y))≥ |‖A(y)‖− − ‖B(y)‖−|, where dH is the Hausdorff metric.
(9) For each A, B, C : X ⇒ X ′,

dist(A(y)+ B(y), C(y))≤ dist(A(y), C(y))+ dist(B(y), 0),

dist(C(y), A(y)+ B(y))≤ dist(C(y), A(y))+ dist(0, B(y)),

dH (A(y)+ B(y), C(y))≤ dH (A(y), C(y))+ dH (B(y), 0),

where dist(A, B)= supa∈A infb∈B ‖a − b‖X ′ .
(10) For each A ⊂ X ′ and bounded B ∈ Cv(X ′),

dist(A, B)= dist(co∗ A, B).

REMARK 7. Together with the forms [·, ·]+, [·, ·]− we shall consider the forms
[[A(y), ω]]+ = supd∈A(y) |〈d, w〉| and [[A(y), ω]] = infd∈A(y) |〈d, w〉|, for all
y, ω ∈ X . Thus it is obvious that

[A(y), ω]+ ≤ |[A(y), ω]+| ≤ [[A(y), ω]]+ ≤ ‖A(y)‖+‖ω‖X ,

[A(y), ω]− ≤ |[A(y), ω]−| ≤ [[A(y), ω]]− ≤ ‖A(y)‖−‖ω‖X .

REMARK 8. Other interesting properties can be found in [14].

PROOF. Properties (2)–(4) and (6)–(9) are proved directly. Property (5) is well
known. Let us consider property (7). Let d ∈ co∗ A(y). Then for any v ∈ X from the
definition of [·, ·]+ it follows that

〈d, v〉X ≤ [co∗ A(y), v]+ = [A(y), v]+.

Now let the inequality

[A(y), v]+ ≥ 〈d, v〉X for all v ∈ X,

be valid but nevertheless d /∈ co∗ A(y). The set co∗ A(y) is convex and closed in the
σ(X ′

; X)-topology of the space X ′. Therefore, from the separability theorem there
exists v0 ∈ X such that

[A(y), v0]+ = [co∗ A(y), v0]+ < 〈d, v0〉X ,

which contradicts the assumption.
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Now let us consider property (1). Let A : D(A)⊂ X → 2X ′

. Then for each
y ∈ D(A) the functional X 3 v 7→ a(y, v)= [A(y), v]+ is positive homogeneous.
Hence, the second property in Proposition 6 implies that it is convex. The lower
semicontinuity is obvious.

Now let X 3 v 7→ a(y, v) be a positive homogeneous, convex and lower
semicontinuous functional for each y ∈ D ⊂ X . In virtue of a(y, 0)= 0 it is the
pointwise upper bound of some set of continuous linear functionals. We denote such
a set by A(y)⊂ X ′. Thus a(y, v)= [A(y), v]+.

Finally, let us consider property (10). Let us prove first that dist(A, B)=

dist(coA, B). As A ⊂ coA, then dist(A, B)≤ dist(coA, B). Further, for any
ξ ∈ coA there exist y1, . . . , yn ∈ A and α1, . . . , αn ≥ 0 (

∑n
i=1 αi = 1), such that

ξ =
∑n

i=1 αi yi . Then dist(ξ, B)≤ ‖ξ − v‖X ′ , for all v ∈ B.
The set B is bounded and weakly star closed in X ′. Also, for any y ∈ X

′

the
functional X ′

3 v 7→ ‖y − v‖X ′ is weakly star lower semicontinuous [17]. Hence, by
virtue of the generalized Weierstrass theorem (see Lemma 19), for every yi ∈ A there
exists an element vi ∈ B such that dist(yi , B)= ‖yi − vi‖X ′ . From here, due to the
convexity of the set B, we have that, for v =

∑n
i=1 αivi ,

dist(ξ, B)≤ ‖ξ − v‖X ′ ≤

n∑
i=1

αi · ‖yi − vi‖X ′ =

n∑
i=1

αi dist(yi , B)≤ dist(A, B).

As the element ξ ∈ coA is arbitrary, then dist(coA, B)= dist(A, B).
Further, let us prove that

dist(coA, B)= dist(co∗ A, B).

For every ξ ∈ co∗ A there exists a sequence yn ∈ coA converging to ξ weakly star
in X ′. Let us prove that the functional X ′

3 y 7→ dist(A, B) is weakly star lower
semicompact, that is for each sequence yn → y weakly star in X ′ there exists a
subsequence {yn′} such that

lim
n′→∞

dist(yn′, B)≥ dist(y, B).

Indeed, let yn → y weakly star in X ′. For each yn there exists xn ∈ B such
that dist(yn, B)= ‖yn − xn‖X ′ . The set B is weakly star compact, so that the
sequence {xn} contains a subsequence {xn′} such that xn′ → x weakly star in X ′, x ∈ B.
Then

zn′ = yn′ − xn′ → z = y − x weakly star in X ′.

This means that

lim
n′→∞

dist(yn′, B)= lim
n′→∞

‖yn′ − xn′‖X ′ ≥ ‖y − x‖X ′ ≥ dist(y, B).

From here we have (passing if necessary to a subsequence) that

dist(ξ, B)≤ lim
n→∞

dist(yn, B)≤ dist(coA, B).
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As the element ξ ∈ co∗ A is arbitrary, then

dist(co∗ A, B)≤ dist(coA, B)

and the necessary equality is proved. 2

The following propositions are easy to prove.

PROPOSITION 9. The functional ‖ · ‖+ : Cv(X ′) ∩ B(X ′)→ R+ defines a norm on
Cv(X ′) ∩ B(X ′).

PROPOSITION 10. The functional ‖ · ‖− : Cv(X ′)→ R+ satisfies the following
properties:

(1) 0 ∈ A if and only if ‖A‖− = 0;
(2) ‖αA‖− = |α‖|A‖−, for all α ∈ R;
(3) ‖A + B‖− ≤ ‖A‖− + ‖B‖−.

We shall consider a new class of maps of pseudomonotone type. As before X is a
Banach space, and let 〈·, ·〉X : X ′

× X → R be the duality form.

DEFINITION 11. The multi-valued map A : X ⇒ X ′ is called:

(1) λ-pseudomonotone, if, for any {yn}n≥0 ⊂ X such that yn ⇀ y0 in X from the
inequality

lim
n→∞

〈dn, yn − y0〉X ≤ 0, (11)

where dn ∈ co∗ A(yn), for all n ≥ 1, the existence of subsequences {ynk }k≥1 ⊂

{yn}n≥1 and {dnk }k≥1 ⊂ {dn}n≥1 such that

lim
k→∞

〈dnk , ynk − w〉X ≥ [co∗ A(y), y0 − w] for all w ∈ X, (12)

follows;
(2) λ0-pseudomonotone on X , if, for any {yn}n≥0 ⊂ X such that yn ⇀ y0 in X ,

dn ⇀ d0 in X ′, where dn ∈ co∗ A(yn), for any n ≥ 1, from the inequality (11)
the existence of subsequences {ynk }k≥1 ⊂ {yn}n≥1 and {dnk }k≥1 ⊂ {dn}n≥1, such
that (12) holds, follows;

(3) +-coercive, if ‖y‖
−1
X [A(y), y]+ → +∞ as ‖y‖X → +∞;

(4) quasi-bounded, if, for all y0 ∈ X, k1, k2 > 0, there exists N = N (k1, k2, y0) > 0
such that

for all y ∈ X such that ‖y‖X ≤ k1, for all d ∈ A(y) such that

〈d, y − y0〉X ≤ k2, ‖d‖X ′ ≤ N <+∞ follows;

(5) bounded, if A converts an arbitrary set bounded in X into a bounded set in X ′;
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(6) monotone, if

[A(y1), y1 − y2]− ≥ [A(y2), y1 − y2]+ for all y1, y2 ∈ X;

(7) a map satisfying the property (κ) if for an arbitrary bounded set D in X there
exists c ∈ R such that

[A(v), v]+ ≥ c‖v‖X for all v ∈ D.

REMARK 12. If A is either bounded, quasi-bounded, or a monotone multi-valued
operator (including subdifferential maps), then it satisfies the property (κ).

Also, if A : X → Cv(X ′), then in the first two definitions we can replace
dn ∈ co∗ A(yn) by dn ∈ A(yn), and we can put A(y) instead of co∗ A(y) in (12).

REMARK 13. Let A : X ⇒ X ′ be +-coercive multi-valued map, and let the multi-
valued map F : X ⇒ X ′ satisfy the following monotonicity condition:

[F(y1), y1 − y2]+ ≥ [F(y2), y1 − y2]− for all y1, y2 ∈ X.

Then A + F : X ⇒ X ′ is a +-coercive map.
Indeed, for each y ∈ X ,

−[F(0), y]− ≤ ‖F(0)‖−‖y‖X .

Then, owing to Proposition 6,

[A(y)+ F(y), y]+ = [A(y), y]+ + [F(y), y]+ ≥ [A(y), y]+

+ [F(0), y]− ≥ [A(y), y]+ − ‖F(0)‖−‖y‖X .

It is clear that ‖F(0)‖− <+∞. From here the +-coercivity of the map A + F follows.

REMARK 14. The idea of using subsequences in Definition 11 for single-valued
pseudomonotone operators was introduced by Skripnik [19].

REMARK 15. It is obvious that every λ-pseudomonotone map is
λ0-pseudomonotone. For bounded maps the converse implication is also true.
Indeed, let A : X ⇒ X ′ be a λ0-pseudomonotone map, yn → y weakly in X , and
(11) holds, where dn ∈ co∗ A(yn). From the boundedness of the operator A the
boundedness of the operator co∗ A follows immediately, and then also the boundedness
of the sequence {dn} in X ′. Consequently, there exist subsequences {dm} ⊂ {dn},

{ym} ⊂ {yn}, such that dm → d weakly star in X ′ and

lim
m→∞

〈dm, ym − v〉X ≤ lim
n→∞

〈dn, yn − v〉X ≤ 0.

However, the operator A is λ0-pseudomonotone. Therefore, passing again to a
subsequence,

lim
m→∞

〈dm, ym − v〉X ≥ [co∗ A(y), y − v]− for all v ∈ X,

which proves our statement.
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Let us observe that for classical definitions (not passing to subsequences) this
statement is problematic.

The concept of a pseudomonotone map has already been extended by Browder and
Hess [4], where the class of generalized pseudomonotone operators was defined.

DEFINITION 16. The map A : X ⇒ X ′ is called a generalized pseudomonotone
operator, if:

(1) A(y) ∈ Cv(X ′) and A(y) is bounded in X ′ for all y ∈ D(A);
(2) for every pair of sequences {yn}, {dn} such that dn ∈ A(yn), yn → y weakly

in X , and dn → d weakly star in X∗, satisfying (11), we have d ∈ A(y) and
〈dn, yn〉X → 〈d, y〉X .

We show now that this class is contained in the class of λ0-pseudomonotone
operators.

PROPOSITION 17. Every generalized pseudomonotone operator is λ0-
pseudomonotone.

PROOF. Let yn → y weakly in X , co∗ A(yn) 3 dn → d weakly star in X ′ and (11)
hold. Then, as A is a generalized pseudomonotone operator, 〈dn, yn〉X → 〈d, y〉X ,
d ∈ co∗ A(y). Consequently,

lim
m→∞

〈dn, yn − v〉X = 〈d, y − v〉X ≥ [co∗ A(y), y − v]− for all v ∈ X. 2

Proposition 17 is not invertible. Nevertheless, the next statement is true.

PROPOSITION 18. Let A : X ⇒ X ′ be a λ0-pseudomonotone operator. Then if
yn → y weakly in X , co∗ A(yn) 3 dn → d weakly star in X ′ and inequality (11)
holds, the existence of subsequences {ym} ⊂ {yn} , {dm} ⊂ {dn} such that 〈dm, ym〉X →

〈d, y〉X , follows as also does the fact that d ∈ co∗ A(y).

PROOF. Since A is λ0-pseudomonotone there exist subsequences {ym}, {dm} such
that inequality (12) is true. Putting w = y, we get 〈dm, ym − y〉X → 0, so that
〈dm, ym〉X → 〈d, y〉X . Hence,

〈d, y − v〉X = lim
m→∞

〈dm, ym − v〉X ≥ [co∗ A(y), y − v]− for all v ∈ X.

From here and Proposition 6 we obtain d ∈ co∗ A(y). 2

The next lemma is a generalization of the Weierstrass theorem [22].

LEMMA 19. Let X be a Banach space, K ⊂ X ′ be a weakly star closed set and L :

X ′
→ R = R

⋃
{+∞} be a weakly star lower semicontinuous functional. Moreover,

assume that either the set K is bounded or

lim
‖v‖X ′→∞

L(v)= +∞.
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Then the functional L is bounded from below on K , reaches on K its minimal lower
bound m and the set E = {v ∈ K : L(v)= m} is weakly star compact in X ′.

PROOF. The proof is similar to the proof of Theorem 9.3 in [22]. 2

PROPOSITION 20. Let A : X ⇒ X ′ be a bounded valued λ-pseudomonotone map.
Then, if yn → y weakly in X and inequality (11) holds, there exist subsequences
{ym}, {dm} such that for every v ∈ X there exists ζ(v) ∈ co∗ A(y), for which

lim
m→∞

〈dm, ym − v〉X ≥ 〈ζ(v), y − v〉X . (13)

PROOF. Let yn → y weakly in X , dn ∈ co∗ A(yn) and (11) holds. Then, up to
subsequences, we come to

lim
m→∞

〈dm, ym − v〉X ≥ [co∗ A(y), y − v]− for all v ∈ X. (14)

The set co∗ A(y) is weakly star closed and bounded. Also, the functional defined
by X ′

3 w 7→ 〈w, y − v〉X , for all v ∈ X, is weakly star lower semicontinuous. Then
from Lemma 19 there exists ζ(v) ∈ co∗ A(y)such that [A(y), y − v]− = 〈ζ(v), y −

v〉X . Then from inequality (14) we obtain (13). 2

DEFINITION 21. The multi-valued map A : X → Cv(X ′) satisfies the property
(M), if, from {yn}n≥0 ⊂ X , dn ∈ A(yn), for all n ≥ 1, and

yn ⇀ y0 ∈ X, dn ⇀ d0 ∈ X ′, lim
n→∞

〈dn, yn〉X ≤ 〈d0, y0〉X ,

it follows that d0 ∈ A(y0).

DEFINITION 22. The operator L : D(L)⊂ X → X ′ is said to be maximal
monotone if it is monotone and from 〈w − L(u), v − u〉X ≥ 0, for all u ∈ D(L), it
follows that v ∈ D(L) and L(v)= w.

DEFINITION 23. The map ∂ϕ defined by

∂ϕ(v)= {p ∈ X ′
| 〈p, u − v〉X ≤ ϕ(u)− ϕ(v) for all u ∈ X}

is called the subdifferential map for the convex, lower semicontinuous functional
ϕ : X → R at v ∈ X .

It is clear that ∂ϕ(v) ∈ Cv(X ′) for all v ∈ X. The fact that ∂ϕ(v) is non-empty
is a consequence of the property intD(ϕ)= intD(∂ϕ) (see [2, p. 56]), where D(ϕ)
and D(∂ϕ) are the domains of ϕ and ∂ϕ, respectively. Observe that in our case
D(ϕ)= intD(ϕ)= X.

PROPOSITION 24. Let A : X ⇒ X ′ be a λ0-pseudomonotone operator, and let the
map B : X→

→ X∗ possess the following properties:
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(1) the map co∗B : X ⇒ X ′ is compact, that is the image of a bounded set in X set
is precompact in X ′;

(2) the graph of co∗B is closed in Xw × X ′ (that is with respect to the weak topology
in X and the strong one in X ′).

Then the map C = A + B is λ0-pseudomonotone.

PROOF. Let yn → y weakly in X, dn ∈ co∗C(yn), dn → d weakly star in X ′, and

lim
n→∞

〈dn, yn − y〉X ≤ 0.

As the operator B : X ⇒ X ′ is bounded, co∗C = co∗ A + co∗B. Hence, dn = d ′
n + d ′′

n ,
d ′

n ∈ co∗ A(yn), d ′′
n ∈ co∗B(yn). By virtue of the boundedness of B, we obtain that

d ′′
n → d ′′ weakly star in X ′, so that d ′

n → d ′
= d − d ′′ weakly star in X ′.

From inequality (11), passing to the subsequence {ym} ⊂ {yn}, we find that

0 ≥ lim
n→∞

〈dn, yn − y〉X ≥ lim
n→∞

〈d ′
n, yn − y〉X + lim

n→∞

〈d ′′
n , yn − y〉X

≥ lim
m→∞

〈d ′
m, ym − y〉X + lim

m→∞
〈d ′′

m, ym − y〉X . (15)

Since co∗B is compact and the graph is closed in Xw × X ′, we can consider that
d ′′

m → d ′′ strongly in X ′ and, moreover, d ′′
∈ co∗B(y). Then

lim
m→∞

〈d ′
m, ym − y〉X ≤ 0.

Again, passing to subsequences, as A is λ0-pseudomonotone, we get

lim
m→∞

〈d ′
m, ym − v〉X ≥ [A(y), y − v]− for all v ∈ X,

and then

lim
m→∞

〈dm, ym − v〉X = lim
m→∞

〈d ′
m, ym − v〉X + lim

m→∞
〈d ′′

m, ym − v〉X

≥ [co∗ A(y), y − v]− + 〈d ′′, y − v〉X

≥ [co∗C(y), y − v]− for all v ∈ X. 2

PROPOSITION 25. Let A : X ⇒ X ′ be a λ0-pseudomonotone operator, the
embedding of X in the Banach space Y be compact and dense, and let co∗B : Y →

→ Y ′

be a locally bounded map such that the graph of co∗B is closed in Y × Y ′
w (that is with

respect to the strong topology of Y and the weakly star one in Y ′). Then C = A + B is
a λ0-pseudomonotone map.

PROOF. Let yn ⇀ y, dn ∈ co∗C(yn), dn ⇀ d and let (11) be fulfilled. The
operator co∗B is locally bounded, that is for all y ∈ X there exist N > 0 and ε > 0
such that

‖co∗B(ξ)‖+ ≤ N if ‖ξ − y‖X ≤ ε.
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Obviously, a locally bounded operator is bounded-valued. Therefore, co∗C(y)=

co∗ A(y)+ co∗B(y) and dn = d ′
n + d ′′

n , d ′
n ∈ co∗ A(yn), d ′′

n ∈ co∗B(yn). Since the
imbedding X ⊂ Y is compact, we have that yn → y strongly in Y and by virtue of
the local boundedness of co∗B the sequence {d ′′

n } is bounded in Y ′ (and then also
in X ′), which means that there will be a subsequence {d ′′

m} ⊂ {d ′′
n } such that d ′′

m → d ′′

weakly star in Y ′. The embedding operator I ∗
: Y ′

→ X ′ is continuous, so that I ∗

remains continuous also in the weakly star topologies [17]. Hence, d ′′
m → d ′′ weakly

star in X ′, so that d ′
m = dm − d ′′

m → d ′
= d − d ′′ weakly star in X ′. Therefore

〈d ′′
m, ym − y〉X → 0.

Then from (15) we get lim
m→∞

〈d ′
m, ym − v〉X ≤ 0, and hence after passing to a

subsequence,

lim
mk→∞

〈d ′
mk
, ymk − v〉X ≥ [co∗ A(y), y − v]− for all v ∈ X.

Furthermore, as the operator co∗B is closed in Y × Y ′
w, we have d ′′

∈ co∗B(y) and

lim
mk→∞

〈dmk , ymk − v〉X = lim
mk→∞

〈d ′
mk
, ymk − v〉X + lim

mk→∞
〈d ′′

mk
, ymk − v〉X

≥ [co∗ A(y), y − v]− + [co∗B(y), y − v]−

= [co∗C(y), y − v]− for all v ∈ X. 2

DEFINITION 26. The operator A : X ⇒ X ′ is called:

(1) upper radially continuous, if, for all x, h ∈ X ,

lim
t→0+

[A(x + th), h]+ ≤ [A(x), h]+;

(2) radially semicontinuous, if, for all x, h ∈ X ,

lim
t→0+

[A(x + th), h]− ≤ [A(x), h]+.

It is obvious that (1) implies (2).

PROPOSITION 27. Let A : X ⇒ X ′ be an upper semicontinuous operator with
respect to the strong topology of X and the weakly star topology of X ′. Then A is
radially semicontinuous.

PROOF. It is well known that A is upper hemicontinuous [1], that is from xn → x
strongly in X it follows that

lim
n→∞

[A(xn), v]+ ≤ [A(x), v]+ for all v ∈ X.

We note that an upper hemicontinuous operator is upper radially continuous, so that it
is radially semicontinuous. 2
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By 50 we will denote the class of continuous functions C : R+ × R+ → R such
that t−1C(r1, tr2)→ 0 as t → 0+, for all r1, r2 > 0.

DEFINITION 28. The map A : X ⇒ X ′ is called:

(1) an operator with semibounded variation, if, for any R > 0 and any y1, y2 ∈ X
such that ‖yi‖X ≤ R, i = 1, 2, the next inequality holds:

[A(y1), y1 − y2]− ≥ [A(y2), y1 − y2]+ − C(R; ‖y1 − y2‖
′

X ), (16)

where C ∈50, and ‖ · ‖
′

X is a compact norm on X ;
(2) an operator with l-semibounded variation, if, instead of (16), the following

inequality holds:

[A(y1), y1 − y2]− ≥ [A(y2), y1 − y2]− − C(R; ‖y1 − y2‖
′

X ). (17)

PROPOSITION 29. Let A = A0 + A1 : X ⇒ X ′, where A0 : X ⇒ X ′ is a monotone
map, and the operator A1 : X ⇒ X ′ possesses the following properties:

(1) there is a linear normalized space Y in which X is compactly and densely
embedded;

(2) the operator A1 : Y ⇒ Y ′ is single-valued and locally polynomial, that is for any
R > 0 there is a natural n = n(R) and a polynom PR(t)=

∑
0<α≤n λα(R)t

α

with continuous factors λα(R)≥ 0 such that the following estimate holds:

‖A1(y1)− A1(y2)‖Y ′ ≤ PR(‖y1 − y2‖Y )

for all ‖yi‖Y ≤ R, i = 1, 2. (18)

Then A is an operator with semibounded variation.

PROPOSITION 30. Let the operator A0 : X ⇒ X ′ in Proposition 29 satisfy
[A0(y1), y1 − y2]− ≥ [A0(y2), y1 − y2]−, for all y1, y2 ∈ X (instead of monotonic-
ity), and let A1 satisfy the same conditions. Then A = A0 + A1 is an operator with
l-semibounded variation

PROOF. We prove Proposition 30. For Proposition 29 the arguments are similar.
As [A0(y1), y1 − y2] ≥ [A0(y2), y1 − y2] , for all y1, y2 ∈ X, by Proposition 6

we need to estimate only [A1(y1), y1 − y2] − [A1(y2), y1 − y2] . We have

[A1(y1), y1 − y2] − [A1(y2), y1 − y2]

= 〈A1(y1), y1 − y2〉X − 〈A1(y2), y1 − y2〉X

≥ −‖A1(y1)− A1(y2)‖Y ′‖y1 − y2‖Y .

From here and (18) at ‖yi‖X ≤ R (i = 1, 2) (and then ‖yi‖Y ≤ R̂) we obtain

[A1(y1), y1 − y2] ≥ [A1(y2), y1 − y2] − C(R̂; ‖y1 − y2‖
′

X ),

where ‖ · ‖
′

X = ‖ · ‖Y , C(R, t)= PR(t)t .
It is easy to check that C ∈50 . 2

https://doi.org/10.1017/S0004972708000130 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000130


128 P. Kasyanov, V. Melnik and J. Valero [14]

PROPOSITION 31. Let one of the following two conditions be satisfied:

(1) A : X ⇒ X ′ is a radially semicontinuous operator with semibounded variation;
(2) A : X ⇒ X ′ is an upper radially continuous operator with l-semibounded

variation and compact values.

Then A is a λ0-pseudomonotone map.

PROOF. Let yn → y weakly in X , co∗ A(yn) 3 dn → d weakly star in X ′ and
lim

n→∞
〈dn, yn − y〉X ≤ 0. Using the fact that A is an operator with semibounded

variation we conclude that

〈dn, yn − v〉X ≥ [A(yn), yn − v]− ≥ [A(v), yn − v]+ − C(R; ‖yn − v‖
′

X )

for all v ∈ X.

The function X 3 w 7→ [A(v), w]+ is convex and semicontinuous from below,
and so it is weakly semicontinuous from below. Therefore, substituting in the last
inequality v = y and passing to a limit, in view of the properties of the function C , we
have limn→∞〈dn, yn − y〉X ≥ 0, that is 〈dn, yn − y〉X → 0.

For any h ∈ X and τ ∈ [0, 1] we shall put w(τ)= τh + (1 − τ)y. Then

〈dn, yn − w(τ)〉X ≥ [A(w(τ)), yn − w(τ)]+ − C(R; ‖yn − w(τ)‖
′

X )

and
τ lim

n→∞

〈dn, y − h〉X ≥ τ [A(w(τ)), y − h]+ − C(R; τ‖y − h‖
′

X ).

Dividing by τ and passing to a limit as τ → 0+, in view of the radial semicontinuity
of A and the properties of the function C , we obtain that, for all h ∈ X ,

lim
n→∞

〈dn, y − h〉X ≥ lim
τ→0+

[A(w(τ)), y − h]+ − lim
τ→0+

1
τ

C(R; τ‖y − h‖
′

X )

≥ [A(y), y − h]−.

As 〈dn, yn − y〉X → 0, then by Proposition 6 we obtain

lim
n→∞

〈dn, yn − h〉X = lim
n→∞

〈dn, y − h〉X ≥ [A(y), y − h]−

= [co∗ A(y), y − h]− for all h ∈ X,

which proves the first statement of the proposition.
We shall stop now only on the basic distinctive moments of the second statement.

Since A is an operator with l-semibounded variation, we conclude that

lim
n→∞

〈dn, yn − v〉X ≥ lim
n→∞

[A(yn), yn − v]−

≥ lim
n→∞

[A(v), yn − v]− − C(R; ‖y − v‖
′

X ). (19)
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Let us estimate the first term on the right-hand side of (19). We shall prove that
the function X 3 h 7→ [A(v), h]− is weakly semicontinuous from below for all v ∈ X .
Let zn → z weakly in X . For any n = 1, 2, . . . there exists ξn ∈ co∗ A(v) such that
[A(v), zn]− = 〈ξn, zn〉X . From the sequence {ξn; zn} we can choose a subsequence
{ξm; zm} such that

lim
n→∞

[A(v), zn]− = lim
n→∞

〈ξn, zn〉X = lim
m→∞

〈ξm, zm〉X ,

and by virtue of the compactness of set co∗ A(v)we can conclude that ξm → ξ strongly
in X ′, and that ξ ∈ co∗ A(v). Hence

lim
n→∞

[A(v), zn]− = lim
m→∞

〈ξm, zm〉X = 〈ξ, z〉X ≥ [A(v), z]−,

which proves the weak semicontinuity from below of the map h 7→ [A(v), h]−.
In that case from (19) we obtain

lim
n→∞

〈dn, yn − v〉X ≥ lim
n→∞

[A(yn), yn − v]− ≥ [A(v), y − v]− − C(R; ‖y − v‖′

X ),

where, substituting v = y, we have 〈dn, yn − y〉X → 0. Therefore

lim
n→∞

〈dn, y − v〉X ≥ [A(v), y − v]− − C(R; ‖y − v‖′

X ) for all v ∈ X.

Substituting in the last inequality v = tw + (1 − t)y, w ∈ X, t ∈ [0, 1], dividing the
result by t and passing to the limit as t → 0+, in view of the upper radial continuity
we find

lim
n→∞

〈dn, yn − w〉X ≥ [A(y), y − w]− = [co∗ A(y), y − w]− for all w ∈ X. 2

We shall now define the space S(X; X ′). We denote by S(X; X ′) the family of all
multi-valued maps from the Banach X into X ′. Let us consider the partial order on the
set S(X; X ′) defined by

F ⊂ G if and only if F(x)⊂ G(x) for all x ∈ X.

Let us consider the following operations.

(I) For every A, B ∈ S(X; X ′) there is a unique map C ∈ S(X; X ′), which is called
the sum of A and B (C = A + B), defined by the rule

C(y)= A(y)+ B(y)= {a + b | a ∈ A(y), b ∈ B(y)}.

Moreover, the following properties hold:

(a) A + B = B + A (commutativity);
(b) A + (B + C)= (A + B)+ C (associativity);
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(c) there is an element 0 ∈ S(X; X ′) such that A + 0 = A, for all
A ∈ S(X; X ′);

(d) for each A ∈ S(X; X ′) there exists an element (−A) ∈ S(X; X ′) such that
A + (−A)≥ 0 and −(−A)= A.

(II) For each real number α and for each element A ∈ S(X; X ′) an element αA ∈

S(X; X ′) is well defined by the rule

(αA)(y)= α(A(y))= {αa | a ∈ A(y)}.

The following properties are satisfied:

(a) α(βA)= (αβ)A;
(b) 1 · A = A, for all A ∈ S(X; X ′);
(c) (α + β)A ≤ αA + βA;
(d) α(A + B)= αA + αB.

Note that the space S(X; X ′) is not a linear space concerning the operations given
above.

DEFINITION 32. The multi-valued maps A : V ⇒ V ′ and B : W ⇒ W ′ are called
s-mutually bounded if for any M > 0 there exists K (M) > 0 such that from
‖y‖X ≤ M and 〈d1(y)+ d2(y), y〉 ≤ M we have either ‖d1(y)‖V ′ ≤ K (M) or
‖d2(y)‖W ′ ≤ K (M). Here d1 and d2 are arbitrary selectors of the maps A and B,
respectively.

LEMMA 33. Let V , W be Banach spaces, densely and continuously embedded in
the locally convex linear topological space Y . We have the following results.

(1) Let A : V ⇒ V ′, B : W ⇒ W ′ be multi-valued λ-pseudomonotone maps and
one of them be bounded-valued. Then the multi-valued operator C := A + B :

V ∩ W := X ⇒ V ′
+ W ′ is λ-pseudomonotone.

(2) Let A : V ⇒ V ′, B : W ⇒ W ′ be multi-valued λ0-pseudomonotone maps, let one
of them be bounded-valued, the pair (A; B) be s-mutually bounded and the
spaces V and W be reflexive. Then C := A + B : V ∩ W := X ⇒ V ′

+ W ′ is
λ0-pseudomonotone.

REMARK 34. Lemma 33 means that the family of all λ-pseudomonotone multi-
valued maps on X with bounded values is a convex cone in the space S(X; X ′).

REMARK 35. Obviously, if one of the operators from the pair (A; B) is bounded,
then the pair (A; B) is s-mutually bounded.

PROOF. Let yn ⇀ y in X (that is, yn ⇀ y in V and yn ⇀ y in W ) and let inequality
(11) hold with

dn ∈ co∗C(yn)= co∗ A(yn)+ co∗B(yn).

The last equality follows from the fact that one of the maps is bounded-
valued. Consequently, dn = d ′

n + d ′′
n , where d ′

n ∈ co∗ A(yn), d ′′
n ∈ co∗B(yn).
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From inequality (11)

lim
n→∞

〈d ′′
n , yn − y0〉W + lim

n→∞
〈d ′

n, yn − y0〉V ≤ lim
n→∞

〈dn, yn − y0〉X ≤ 0,

or, symmetrically,

lim
n→∞

〈d ′
n, yn − y0〉V + lim

n→∞
〈d ′′

n , yn − y0〉W ≤ lim
n→∞

〈dn, yn − y0〉X ≤ 0. (20)

In the case of the second statement we have to obtain additionally that, up to
subsequences,

d ′
n ⇀ d ′

0 in V ′ and d ′′
n ⇀ d ′′

0 in W ′. (21)

As the pair (A; B) is s-mutually bounded, from the estimate 〈dn(y), y〉X = 〈d ′
n(y)+

d ′′
n (y), y〉X ≤ M we have either ‖d ′

n(y)‖V ′ ≤ K (M) or ‖d ′′
n (y)‖W ′ ≤ K (M). Thus,

(21) follows.
Further, without loss of generality, let us consider inequality (20). Obviously there

exist subsequences {ynk }k≥1 ⊂ {yn}n≥1 and {dnk }k≥1 ⊂ {dn}n≥1 for which

lim
n→∞

〈d ′
n, yn − y0〉V + lim

n→∞
〈d ′′

n , yn − y0〉W

≥ lim
k→∞

〈d ′
nk
, ynk − y0〉V + lim

k→∞
〈d ′′

nk
, ynk − y0〉W .

From here, up to subsequences, we shall obtain one of the following two
inequalities:

lim
n→∞

〈d ′
n, yn − y〉V ≤ 0 or lim

n→∞
〈d ′′

n , yn − y〉W ≤ 0. (22)

Without loss of generality, let us consider that (up to a subsequence) limn→∞〈d ′
n,

yn − y〉V ≤ 0. Then, owing to the λ-pseudomonotonicity of A there exists {ym}m ⊂

{yn}n such that

lim
m→∞

〈d ′
m, ym − v〉V ≥ [co∗ A(y), y − v] for all v ∈ V .

We put in the last inequality v = y. Then

lim
m→∞

〈d ′
m, ym − y〉V ≥ [co∗ A(y), y − y] = 0.

Hence, there exists limm→∞〈d ′
m, ym − y〉V = 0. Then, due to (11), limn→∞〈d ′′

m,

ym − y〉W ≤ 0. In view of (22) and the λ-pseudomonotonicity of A and B there exist
{ynk }k≥1 ⊂ {yn}n≥1 and {dnk }k≥1 ⊂ {dn}n≥1 such that

lim
k→∞

〈d ′
nk
, ynk − v〉V ≥ [co∗ A(y), y − v] for all v ∈ V,

lim
k→∞

〈d ′′
nk
, ynk − w〉W ≥ [co∗B(y), y − w] for all w ∈ W.
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Then from last two relations it follows that

lim
k→∞

〈dnk , ynk − x〉X ≥ lim
k→∞

〈d ′
nk
, ynk − x〉V + lim

k→∞

〈d ′′
nk
, ynk − x〉W

≥ [A(y), y − x] + [B(y), y − x]

= [C(y), y − x] = [co∗C(y), y − x] for all x ∈ V ∩ W.

The lemma is proved. 2

LEMMA 36. Let V , W be Banach spaces, densely and continuously embedded in
the locally convex linear topological space Y , and let A : V ⇒ V ′, B : W →

→ W ′ be
multi-valued +-coercive maps, which satisfy condition (κ) (see Definition 11). Then
the multi-valued operator C := A + B : V ∩ W ⇒ V ′

+ W ′ is +-coercive.

PROOF. We prove the lemma by contradiction. Let us assume that
there exist {xn}n≥1 such that ‖xn‖X = ‖xn‖V + ‖xn‖W → +∞ as n → ∞, but
supn≥1[[C(xn), xn]+/‖xn‖X ]<+∞.

CASE 1. Let ‖xn‖V → +∞ as n → ∞, ‖xn‖W ≤ c, for all n ≥ 1. Denote

γA(r) := inf
‖v‖V =r

[A(v), v]+
‖v‖V

, γB(r) := inf
‖w‖W =r

[B(w), w]+

‖w‖W
, r > 0.

Note that γA(r)→ +∞, γB(r)→ +∞ as r → +∞. Then for any n ≥ 1 we have
‖xn‖

−1
V [A(xn), xn]+ ≥ γA(‖xn‖V ) and

[A(xn), xn]+

‖xn‖X
≥ γA(‖xn‖V )

‖xn‖V

‖xn‖X
→ +∞ as ‖xn‖V → +∞ and ‖xn‖W ≤ c.

In this case, in view of condition (κ), for all n ≥ 1 one has

[B(xn), xn]+

‖xn‖X
≥ γB(‖xn‖W )

‖xn‖W

‖xn‖X
≥ c1

‖xn‖W

‖xn‖X
→ 0 as n → ∞,

where c1 ∈ R is a constant from condition (κ). It is clear that

[C(xn), xn]+

‖xn‖X
=

[A(xn), xn]+

‖xn‖X
+

[B(xn), xn]+

‖xn‖X
→ +∞ as n → ∞.

We have a contradiction with the boundedness of the left-hand side of the given
expression.

CASE 2. The case ‖xn‖V ≤ c, for all n ≥ 1, and ‖xn‖W → ∞ as n → ∞ is proved
similarly.
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CASE 3. Let us consider the situation where ‖xn‖V → ∞ and ‖xn‖W → ∞ as
n → ∞. Then,

+∞> sup
n≥1

[C(xn), xn]+

‖xn‖X
≥ γA(‖xn‖V )

‖xn‖V

‖xn‖V + ‖xn‖W

+ γB(‖xn‖W )
‖xn‖W

‖xn‖V + ‖xn‖W
. (23)

It is obvious that, for any n ≥ 1, ‖xn‖V /‖xn‖X > 0 and ‖xn‖W /‖xn‖X > 0. If,
for example, ‖xn‖V /‖xn‖X → 0, then ‖xn‖W /‖xn‖X = 1 − ‖xn‖V /‖xn‖X → 1. We
have a contradiction with (23). Thus, the lemma is proved. 2

4. Main result

In this section we shall prove the existence of solutions of the problem (3)–(4).

THEOREM 37. Assume the following conditions:

(1) A : V1 → Cv(V ′

1) is a bounded, λ-pseudomonotone on V1 operator, which
satisfies the +-coerciveness condition on V1;

(2) the functional ϕ : V2 → R is convex, lower semicontinuous and satisfies the
following coerciveness condition:

ϕ(v)

‖v‖V2

−→ +∞ as ‖v‖V2 −→ +∞;

(3) the operator 3 satisfies all the conditions given in (7)–(10).

Then for any f ∈ V ′ there exists u ∈ V satisfying (3)–(4).

REMARK 38. If V ⊂H with dense and continuous embedding, inclusion (3) and
Remark 4 imply that u ∈ V ∩ D(3; V ′).

PROOF. Let us consider the more general problem

u ∈ D(3; V, V ′), (24)

3u +A(u)+ B(u) 3 f, (25)

where B : V2 → Cv(V ′

2) is a λ-pseudomonotone on V2, quasi-bounded multi-valued
operator, which satisfies the +-coerciveness condition on V2.

Let us prove first that B := ∂ϕ : V2 → Cv(V ′

2) satisfies these properties.

Quasi-boundedness. Let y0 ∈ V2, k1, k2 > 0 be arbitrary fixed elements. Then, for
any y ∈ V2 and d ∈ ∂ϕ(y) such that ‖y‖V2 ≤ k1 and 〈d, y − y0〉 ≤ k2, we have

〈d, u〉V2 = 〈d, u + y0 − y〉V2 + 〈d, y − y0〉V2

≤ ϕ(u + y0)− ϕ(y)+ k2 ≤ ϕ(u + y0)− inf
y∈(Bk1 )

ϕ(y)+ k2

= Constant<+∞,
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as a convex lower semicontinuous functional is bounded from below on bounded sets.
Hence, by the Banach–Steinhaus theorem, there exists N = N (y0, k1, k2) such that
‖d‖V ′

2
≤ N . Here, Bk1 denotes a closed ball of radius k1 centered at 0.

+-coerciveness on V2. Let us put u = 0 in Definition 23. Then

‖y‖
−1
V2

[∂ϕ(y), y]+ ≥ ‖y‖
−1
V2
ϕ(y)− ‖y‖

−1
V2
ϕ(0)→ +∞ as ‖y‖V2 → +∞.

λ-pseudomonotonicity on V2. Let yn ⇀ y0 in V2 and let inequality (11) hold for
dn ∈ ∂ϕ(yn), n ≥ 1. Then, in view of the quasi-boundedness of ∂ϕ on V2, it follows
that {dn}n≥1 is bounded in V ′

2. Hence, there exists a subsequence {dnk }k≥1 ⊂ {dn}n≥1
such that dnk ⇀ d in V ′

2. On the other hand, due to the monotonicity of ∂ϕ, for any
d0 ∈ ∂ϕ(y0), for all k ≥ 1,

〈dnk , ynk − y0〉V2 = 〈dnk − d0, ynk − y0〉V2 + 〈d0, ynk − y0〉V2 ≥ 〈d0, ynk − y0〉V2 .

Then limk→+∞〈dnk , ynk − y0〉V2 ≥ limk→+∞〈d0, ynk − y0〉V2 = 0, which together
with (11) gives

lim
k→+∞

〈dnk , ynk − y0〉V2 = 0.

Thus, for all w ∈ V2,

lim
k→+∞

〈dnk , ynk − w〉V2 ≥ lim
k→+∞

〈dnk , ynk − y0〉V2 + lim
k→+∞

〈dnk , y0 − w〉V2

= 〈d0, y0 − w〉V2 . (26)

On the other hand,

〈d0, w − y0〉V2 ≤ lim
k→+∞

〈dnk , w − y0〉V2

≤ ϕ(w)− lim
k→+∞

ϕ(ynk )

≤ ϕ(w)− ϕ(y0), (27)

because a convex lower semicontinuous function is weakly lower semicontinuous.
From (27) and Definition 23 it follows that d0 ∈ ∂ϕ(y0). From here, thanks to
Proposition 6 and (26), we get inequality (12) for A = ∂ϕ on V2.

Theorem 37 is then a direct consequence of the following result.

THEOREM 39. For any f ∈ V ′ there exists u ∈ V satisfying (24)–(25).

PROOF. Let us use the coercivity condition. From Lemma 36 and Remark 12 it
follows that A+ B is +-coercive on V . Hence, there exists R > 0 such that, for all
u ∈ V satisfying ‖u‖V = R , we get

[A(u)+ B(u), u]+ ≥ 0. (28)
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We shall now consider approximative solutions. The natural approximation of
inclusion (25) is the inclusion

I − G(h)

h
uh +A(uh)+ B(uh) 3 f (h > 0). (29)

However, if V is not contained in H, then (29), generally speaking, has no solutions,
and it is necessary to modify the given inclusion in an appropriate way. We shall
choose a sequence θh ∈ (0, 1) such that

1 − θh

h
→ 0 as h → 0. (30)

We put θh = 1 if V ⊂H. Further, we define

3h =
I − θhG(h)

h
,

and replace (29) by the inclusion

3huh +A(uh)+ B(uh) 3 f. (31)

LEMMA 40. Inclusion (31) has a solution uh ∈ V ∩H such that ‖uh‖V ≤ R.

PROOF. Let us consider the map

Dh =3h +A :H ∩ V1 → Cv(H+ V ′

1),

and also the following inclusion:

Dh(uh)+ B(uh) 3 f.

The existence of a solution uh ∈ V ∩H of this inclusion such that ‖uh‖V ≤ R
follows from [13, Theorem 2.1] with V =H ∩ V1, W = V2, A = Dh , B = B, L ≡ 0,
D(L)= V , f = f , R = R, and the following lemma.

LEMMA 41. The operator Dh satisfies the following conditions:

[Dh(u)+ B(u), u]+ ≥ 0 for all u ∈ V such that ‖u‖V = R; (32)

Dh is λ-pseudomonotone on H ∩ V1; (33)

Dh is bounded on H ∩ V1. (34)

PROOF. As G(s) is non-expansive on H, it follows that, for any v ∈H,

(3hv, v)H =
1
h
(v − θhG(h)v, v)≥

1
h
(‖v‖2

H − θh‖G(h)v‖H‖v‖H)

≥
1 − θh

h
‖v‖2

H. (35)

From here the +-coercitivity for 3h on H follows.
Using (28), (35) and Proposition 6, we obtain (32).
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For (34) note that the boundedness ofDh onH ∩ V1 follows from the boundedness
of 3h on H and the boundedness of A on V1. The boundedness of 3h on H follows
immediately from the definition of 3h and estimate (7). Hence, form Remark 12 it
also follows that Dh satisfies the property (κ).

Finally, let us prove the λ-pseudomonotonicity of Dh on H ∩ V1. For this purpose
Lemma 33 is used with A =3h on V =H and B =A on W = V1. From here,
since A is λ-pseudomonotone and has bounded values on V1, it is enough to prove
the λ-pseudomonotonicity of 3h on H. Let us prove it. Indeed, let

yn ⇀ y in H, lim
n→∞

(3h yn, yn − y)H ≤ 0.

Then, from estimate (35), we have

lim
n→∞

(3h yn, yn − y)H ≥ lim
n→∞

(3h yn −3h y, yn − y)H + lim
n→∞

(3h y, yn − y)H ≥ 0.

Hence, limn→∞(3h yn, yn − y)H = 0. Further, for any u ∈H, s > 0, let
w := y + s(u − y). Then from

(3hw −3h yn, yn − y)H = (3hw −3h yn, yn − w)H + (3hw −3h yn, w − y)H
≤ s(3hw −3h yn, u − y)H

we have

s(3h yn, y − u)H ≥ −(3h yn, yn − y)H + (3hw, yn − y)H
− s(3hw, u − y)H for all n ≥ 1,

and
s lim

n→∞

(3h yn, y − u)H ≥ −s(3hw, u − y)H,

so that limn→∞(3h yn, y − u)H ≥ −(3hw, u − y)H.
Let s → 0+. Then limn→∞(3h yn, y − u)H ≥ −(3h y, u − y)H = (3h y, y − u)H

and

lim
n→∞

(3h yn, yn − u)H ≥ lim
n→∞

(3h yn, yn − y)H + lim
n→∞

(3h yn, y − u)H

≥ (3h y, y − u)H for all u ∈H.

Thus we have the required statement. Lemma 41 is proved. 2

Now Lemma 40 is also proved. 2

We continue now the proof of Theorem 39. We shall pass to the limit as h → 0+.
From Lemma 40 for arbitrary h > 0 the existence of uh ∈H ∩ V , d ′

h ∈A(uh) and
d ′′

h ∈ B(uh) follows such that

3huh + d ′

h + d ′′

h = f (36)
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and
‖uh‖V ≤ R for any h > 0 (37)

follows. From estimate (37) and the boundedness of the operator A on V1 it follows
that

A(uh) is bounded in V ′

1 as h → 0. (38)

Let us prove that
d ′′

h is bounded in V ′

2 as h → 0. (39)

First, from (35), (36), estimate (37), the boundedness of the operator A and
Proposition 6 we obtain that, for any {hn} ⊂ (0,+∞) such that hn → 0, as n → ∞,

sup
n

〈d ′′

hn
, uhn 〉V2 ≤ sup

n
〈 f, uhn 〉V2 + sup

n
〈−d ′

hn
, uhn 〉V2 + sup

n
〈−3hn uhn , uhn 〉V2

≤ ‖ f ‖V ′ sup
n

‖uhn ‖V + sup
n

‖uhn ‖V sup
n

‖A(uhn )‖+ <+∞.

Hence, owing to the quasi-boundedness of B, estimate (39) follows.
From equality (36) and estimates (37)–(39), using the Banach–Alaoglu theorem,

we obtain the existence of subsequences {uhn }n≥1 ⊂ {uh}h>0, {d ′

hn
}n≥1 ⊂ {d ′

h}h>0,
{d ′′

hn
}n≥1 ⊂ {d ′′

h }h>0 (0< hn → 0), denoted again by {uh}h>0, {d ′

h}h>0, {d ′′

h }h>0, and
u ∈ V , d ′

∈ V1, d ′′
∈ V2, such that

uh ⇀ u in V , d ′

h ⇀ d ′ in V ′

1, d ′′

h ⇀ d ′′ in V ′

2, 3huh ⇀3u in V ′.

From here, in particular, it follows that

vh := d ′

h + d ′′

h ⇀ d ′
+ d ′′

:= w in V ′. (40)

Let us introduce the map C(v)=A(v)+ B(v) : V → Cv(V ′). We shall prove that
this map satisfies the property (M) (see Definition 21). For this it is enough to show
the λ-pseudomonotonicity of C on V . Indeed, if C is λ-pseudomonotone on V and
{yn}n≥0 ⊂ V , dn ∈ C(yn), for all n ≥ 1, are such that

yn ⇀ y0 in V, dn ⇀ d0 in V ′ and lim
n→∞

〈dn, yn〉V ≤ 〈d0, y0〉V ,

then

lim
n→∞

〈dn, yn − y0〉V ≤ lim
n→∞

〈dn, yn〉V + lim
n→∞

〈dn,−y0〉V

≤ 〈d0, y0〉V − 〈d0, y0〉V = 0.

Hence, thanks to the λ-pseudomonotonicity of C the existence of {ynk }k≥1 ⊂ {yn}n≥1,

{dnk }k≥1 ⊂ {dn}n≥1 follows, such that

lim
k→∞

〈dnk , ynk − w〉V ≥ [C(y0), y0 − w] = [co∗C(y0), y0 − w] for all w ∈ V .
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From here

[C(y0), y0 − w]− ≤ lim
k→∞

〈dnk , ynk − w〉V ≤ lim
n→∞

〈dn, yn − w〉V

≤ 〈d0, y0 − w〉V for all w ∈ V .

Hence, Proposition 6 and C(y) ∈ Cv(V ′) imply d0 ∈ C(y0). Thus, C satisfies the
property (M) on V .

Further, sinceA is a λ-pseudomonotone operator with bounded values on V1 and B
is λ-pseudomonotone on V2, Lemma 33 implies that C is λ-pseudomonotone.

We use the fact that C satisfies the property (M) on V . Take v from V ∩ D(3∗
; V ′).

From (36) and (40) it follows that

〈uh, 3
∗

hv〉V + 〈vh, v〉V = 〈 f, v〉V . (41)

But

3∗

hv =
I − G(h)∗

h
v +

1 − θh

h
G(h)∗v,

and, by (30), 3∗

hv →3∗v in V ′. Consequently, passing to the limit in (41) as h → 0
we shall obtain that

〈u, 3∗v〉V + 〈w, v〉V = 〈 f, v〉V for all v ∈ V ∩ D(3∗
; V ′),

and then by (8) we get u ∈ D(3, V, V ′) and

3u + w = f.

The proof of Theorem 39 will be finished if we can show that

w ∈ C(u). (42)

From (36) and (40) for v ∈ V ∩ D(3; V ′)⊂H,

〈vh, uh − v〉V = 〈 f, uh − v〉V − 〈3hv, uh − v〉V − 〈3h(uh − v), uh − v〉V

≤ 〈 f, uh − v〉V − 〈3hv, uh − v〉V ,

as 3h ≥ 0 in L(H,H). From here

lim sup〈vh, uh〉V ≤ 〈w, v〉V + 〈 f, u − v〉V − 〈3v, u − v〉V

for all v ∈ V ∩ D(3; V ′).

But, by (10), the same inequality is fulfilled for any v ∈ D(3; V, V ′), and, putting
v = u, we obtain

lim sup〈vh, uh〉V ≤ 〈w, u〉V ,

and (42) follows, as C is an operator of type (M). Theorem 39 is proved. 2
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Now, Theorem 37 is a direct consequence of Theorem 39. 2

The next proposition follows from Definition 23 and Theorem 37.

PROPOSITION 42. Under the assumptions of Theorem 37 the problem

u ∈ D(3; V, V ′), (43)

〈3u, v − u〉V + [A(u), v − u]+ + ϕ(v)− ϕ(u)≥ 〈 f, v − u〉V for all v ∈ V,
(44)

has a solution u ∈ V . Furthermore, inequality (44) is equivalent to inclusion (4).

PROOF. Thanks to Proposition 6 it is enough to show that inequality (44) is
equivalent to

〈3u, v − u〉V + [A(u), v − u]+ + [∂ϕ(u), v − u]+ ≥ 〈 f, v − u〉V for all v ∈ V .

This follows from Definition 23 and from the formula [1]

D+ϕ(u; v − u) := lim
t→0+

ϕ(u + t (v − u))− ϕ(u)

t
= [∂ϕ(u), v − u]+. 2

5. Applications

In this section we shall apply our main theorem to some particular equations.

EXAMPLE 1. Let �⊂ Rn be a bounded region with smooth boundary ∂�,
S = [0, T ] be a finite time interval, Q =�× (0; T ) and 0T = ∂�× (0; T ). The
operator A is defined by (Au)(t)=A(u(t)), where

A(u)= −

n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣p−2
∂u

∂xi

)
+ |u|

p−2u (45)

(see [10, Chapter 2.9.5]). Let V be a closed subspace in the Sobolev space W 1,p(�),
p > 1, such that

W 1,p
0 (�)⊂ V ⊂ W 1,p(�). (46)

We define the space
H := L2(�),

and
V1 = L p(0, T ; V ), H= L2(0, T ; H), V2 = L2(0, T ; H).

The operator A : V1 → V ′

1 is bounded, +-coercive and pseudomonotone (see
[10, Chapter 2]). Thus, it is also λ-pseudomonotone.
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Let us consider a convex lower semicontinuous functional ψ : R → R. Assume the
existence of constants M, C > 0 such that

ψ(s)≥ Ms2
+ C for all u, (47)

and also that ψ(u) ∈ L1((0, T )×�), for all u ∈H. Denote by 8 : R ⇒ R its
subdifferential. It is well known [2, p. 61] that ϕ : V2 → R defined by

ϕ(u)=

∫ T

0

∫
�

ψ(u(x)) dx,

is a convex, lower semicontinuous function in V2. Moreover, w ∈ ∂ϕ(u) if and only
if w(x) ∈8(u(x)), almost everywhere on (0, T )×�, and wi ∈ V2. It follows easily
from (47) that B = ∂ϕ is +-coercive.

Putting V = V1 ∩ V2 (and then V ′
= Lq(0, T ; V ′)+ L2(0, T ; L2(�))), where

(1/p)+ (1/q)= 1, we have that (6) holds if p ≥ 2. For 1< p < 2 we can take
8=D(0, T ; V ), the space of infinitely continuously differentiable functions with
compact support (see [10]).

In our case 3= dy/ dt is the derivative in the sense of scalar distributions
D′(0, T ; V ′) and

D(3; V, V ′) := W = {y ∈ V ∩H : y′
∈H+ V ′, y(0)= 0},

G(s)u(t) :=

{
u(t − s) for t ≥ s,

0 for t ≤ s.

The map 3 satisfies conditions (7)–(10) [10, Section 2.9].
Then all the conditions of Theorem 37 are satisfied, so that the problem∫

Q

dy(x, t)

dt
(v(x, t)− y(x, t)) dx dt +

n∑
i=1

∫
Q

∣∣∣∣∂y(x, t)

∂xi

∣∣∣∣p−2
∂y(x, t)

∂xi

×

(
∂v(x, t)

∂xi
−
∂y(x, t)

∂xi

)
dx dt +

∫
Q

|y|
p−2 y(v − y) dx dt

+

∫
Q
ψ(v(x, t)) dx dt −

∫
Q
ψ(y(x, t)) dx dt

≥

∫
Q

f (v − y) dx dt +

∫
0T

g(v − y) dx dt for all v ∈ V, (48)

y(x, 0)= 0 almost everywhere on �, (49)

has a solution y ∈ W , obtained by the method of difference approximations. Note that,
in (48)–(49), f ∈ L2(Q), g ∈ L2(0T ) are fixed elements.

EXAMPLE 2. Let n ≥ 1, k ≥ 1, A ⊂ Rk be a non-empty compact set and �⊂ Rn

be a bounded region with smooth boundary ∂�. Let us also consider a family of maps
Uα : Rn

→ R, where α ∈ A, that satisfies the following conditions:
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(1) the map Rn
× A 3 (ξ, α)→ Uα(ξ) ∈ R is continuous;

(2) Rn
3 ξ → Uα(ξ) ∈ R is convex for all α ∈ A;

(3) there exist a > 0, b > 0 such that ‖∂Uα(ξ)‖+ ≤ a + b‖ξ‖ for all ξ ∈ Rn ,
for all α ∈ A.

Together with {Uα(ξ)}α∈A let us consider the function U (ξ) := maxα∈A Uα(ξ) :

Rn
→ R and the multi-valued map with compact values G(ξ) := {α ∈ A | Uα(ξ)=

U (ξ)}, ξ ∈ Rn . Assume also the following coercitivity condition:

(4) there exist constants M, C > 0 such that

U (ξ)≥ M‖ξ‖2
+ C for all ξ.

Let us consider the following problem:

y′(t, x)−

n∑
i=1

∂

∂xi

(∣∣∣∣∂y(t, x)

∂xi

∣∣∣∣p−2
∂y(t, x)

∂xi

)

−

n∑
i=1

∂

∂xi
co
( ⋃
α∈G(∇ y(t,x))

∂Uα(∇ y(t, x))

)
3 f (t, x), (50)

y(t, x)|∂� = 0, (51)

y(0, x)= 0. (52)

From [16, Theorem II.3.14] and the given conditions it follows that inclusion (50) is
equivalent to

y′(t, x)−

n∑
i=1

∂

∂xi

(∣∣∣∣∂y(t, x)

∂xi

∣∣∣∣p−2
∂y(t, x)

∂xi

)

−

n∑
i=1

∂

∂xi
∂U (∇ y(t, x)) 3 f (t, x). (53)

Then we obtain the following differential-operator inclusion

y′
+A(y)+ L∗∂ϕ(Ly) 3 f, y(0)= 0, (54)

where

A : L p(0, T ; H1
0 (�))→ Lq(0, T ; H−1(�)),

L : H1
0 (�)→ (L2(�))n (Lv = ∇v, for all v ∈ H1

0 (�)),

L∗
: (L2(�))n → H−1(�) (L∗v = −div v, for all v ∈ L2(�)),

ϕ : L2(0, T ; (L2(�))n)→ R,

ϕ(z)=

∫
Q

U (z(t, x)) dt dx for all z ∈ L2(0, T ; (L2(�))n),

f ∈ L2(0, T ; L2(�))+ Lq(0, T ; H−1(�)),

and V1 = L p(0, T ; H1
0 (�)), H= L2(0, T ; L2(�)), V2 = L2(0, T ; H1

0 (�)).
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Hence, inclusion (54) is equivalent to

y′
+A(y)+ ∂(ϕ ◦ L)(y) 3 f, y(0)= 0,

(see [6]). It is easy to see that ϕ ◦ L : V2 → R is convex, lower semicontinuous
and coercive. So, in a similar way as in the previous example, from conditions
(1)–(4) we obtain that problem (50)–(52) has a solution y ∈ L2(0, T ; H1

0 (�))

∩ L p(0, T ; H1
0 (�)).
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