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SOME METRIC PROPERTIES OF LUROTH EXPANSIONS OVER THE
FIELD OF LAURENT SERIES

SIMON KRISTENSEN

J. Knopfmacher and A. Knopfmacher have previously produced some metric results
concerning the coefficients of the Liiroth expansions of elements in the field of Laurent
series with coefficients from a finite field. In this paper, we obtain analogous metric
results for subsequences of the coefficients of the expansions.

1. INTRODUCTION

In [5] and [4], the authors produce various metric results on the coefficients of the
Liiroth expansions of Laurent series with coefficients from a finite field. In this paper, we
generalise these to similar subsequence results.

In Section 2, we prove that the coefficients of the Liiroth expansions are independent,
identically distributed random variables. In Section 3, we apply various classical theorems
from probability theory to this setting.

2. MAIN CONSTRUCTION

Let F, be the finite field of order q. Further, we let

(1)
(- oo \

L= < ^ Q . j X - i : n € Z , o . i e F , , o n / 0
li=-n J

be the field of Laurent expansions with coefficients from F,. We equip L with the norm
\\A\\ — q" of A, where an / 0 is the leading coefficient in the expansion. We shall refer
to the n in this definition as the degree of A written as deg(A). It is well-known that if
we let d denote the metric induced by the norm above, (L, d) is a complete metric space
(see [3]). It is also known that the norm satisfies:

\\A + B\\ ^ max(\\A\\, \\B\\) with equality when \\A\\ ? \\B\\.
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346 S. Kristensen [2]

We define the ring of integers J in L to be {A € L : \\A\\ ^ l } . Clearly, this is a
ring, and the set n = {A € L : ||J4|| < l} is a maximal ideal in J. Thus, we define the

oo 0

integral part [A] of an element A = ^ <*-iX~l € L to be J2 <*-iX~' when n ^ 0 and
t = — n i=—n

0 otherwise.
We know (see [6]) that when we define the measure /x on the balls B(c,q~T) in L by

fj.(B(c, q~r)) = q~r+l, we have a characterisation of the Haar measure on L, since the Haar
measure is unique up to scaling. Consequently, since n(l) — 1, \i induces a probability
measure on I. In the following, we shall solely be concerned with this measure.

Let A € L and define the sequences (an) and (An) recursively as follows:

a0 = [A], Ax- A- o0,

and for the following elements,

an = [-^-j, Ai+i = («n - l)(anAn - 1),

unless we reach a point where an = 0 or An = 0, in which case the recursion stops. It
can be shown (see [2]) that this leads to a unique expansion of A,

1 ^ 1
(2) A = a0 + h >

where the a^ € Fgf.X']. This expansion is called the Liiroth expansion of A.

We need a dynamical interpretation of this construction. We shall only consider the
ideal I, since all our results extend to L by translation. On this ideal, we define operators
a : I \ {0} -> Wq[X) and T : I -> I by

(3) o(i)=fil, Tx={° ifX = °
*-x* I (a(x) — l)(xa(x) — 1) otherwise.

It is clear that a does indeed map I into F,pf]. Simple calculations yield

MJ X I ^ ll'^'l I *^l ll^v*^'/

II x II
for a; € I. Hence, T maps I into I.

When x € I, clearly ao in (2) is zero. For r JJ 1, the definitions in (3) gives the
relationship aT = a(Tr~1x). The following is our main theorem:

THEOREM 1 . The coefficients ai, i € N in the Liiroth series expansion of a Laurent
series in I are independent, identically distributed random variables.
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P R O O F : Consider the sets

(4) /„ = In(ku...,kn) = {xe H: a^x) = ku...,an(x) = kn},

together with the set IQ — I. We shall refer to these as the Luroth cylinders.

Let x € /„ for some Luroth cylinder /„. Since i £ l , ao(x) = 0. We now see that
the Luroth expansion of x has the form

(5) x - c + d V l-
(O) x — Cn -t- an }

where

But the sum appearing in (5) is nothing but the tail of the Luroth series of x. Hence,
if we define the function <j>n : I —¥ In by the equation <j>n(y) = Cn + dny, we see that
x = cj>n{Tnx), so <j>n has Tn as an inverse map.

Clearly, <j>n is surjective. Hence,

In = tfn(I) = ^ + dnn = B ^ , - ? " 1 |K | | ) ,

which implies,

(6) X X

\ \ h , ( k , — 1 1 • • • k ( k — A \ \ \ \ \ h k I I 2 'M 1 \ 1 / "'nv n / l l II 1 * ' * n |

It follows directly from the definition of the Luroth cylinders and (6) that the at are
independent and identically distributed. In particular,

(7) I I 2 ' •

3. APPLICATIONS

With Theorem 1 in place, we deduce a number of results about the at. Weaker results
are given in [4] and [5]. The Strong Law of Large Numbers together with Theorem 1
immediately implies several results.

PROPOSITION 2 . Let (n j C N be a strictly increasing sequence and let k €
¥,[X\.

(8) lim -\{r ^ i : anr(x) = k}\ = <T2deg( t )

t -KX> % I l ' \

for almost every x € I.
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PROOF: Apply the Strong Law of Large Numbers [1, Theorem 3.30] to the indepen-
dent and identically distributed random variables Xt = X{i€i:oni=Jt}, where \A denotes
the indicator function of A. D

PROPOSITION 3 . Let (rii) C N be a strictly increasing sequence. For almost
every i £ l ,

(9) .lim T
°° r=l

PROOF: Apply the Strong Law of Large Numbers to the independent and identically
distributed random variables Y{ = deg(oni). D

Noting that deg(aj) = log, \\a.i\\, we obtain the following corollary:

COROLLARY 4 . Let (n*) C N be a strictly increasing sequence. For almost every

xel,

By using stronger probabilistic theorems, we can obtain stronger results on the
coefficients. First, we obtain generalisations of Propositions 2 and 3.

PROPOSITION 5 . Let (rij) C N be a strictly increasing sequence. Define the
random variables ZT,k = \ {i < r : ani = k} |.

for almost all x € I. Furthermore, for any s S R:

Um Ai{* € I : ZrJt{x) - r p | | - 2 < ^ ^ ( 1 - \\k\\~2) J = - -L £ e'

P R O O F : We consider the independent and identically distributed random variables
Xi = X{xei:onj=fc}- We calculate the first and second moments of these. The random
variables are indicator functions, so X{2 = X{. Since

EXt = Jxi(ifi = JX{x&Ki=k)dfi = \\k\r2,

we have

Now, the proposition follows directly from the Law of the Iterated Logarithm [1, Theorem
13.25] and the Central Limit Theorem [1, Corollary 8.23]. D
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PROPOSITION 6 . Let (n<) C N be a strictly increasing sequence.

lirncup ^
r-»oo \Jr log log r q - 1

for almost every i £ l .

PROOF: Once again, we define random variables.

{H P C T ( / 7 ( T* 1 1 TOT" /7 I T* \ I ^ 7

0 otherwise.

A simple calculation yields

Similarly,

Hence, we can calculate the variance of the random variables

~2 •

van

Letting

Bi = X > r ( l 7 ) = ^va r (deg (o B i ( - ) ) ) + 0 ( 1 ) = 7T3T

and noting that

we see that the Law of the Iterated Logarithm gives

(10)

for almost every x € I, since asymptotically 5 ; log log Bi x , ^ ^ i log log i.

We define the sets Ut = ix 6 I : deg(ani(x)) ^ K/(x)}.
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By the Borel-Cantelli Lemma, for almost every x € I, there exists an io(x) € N such
that Y{'(x) = deg(ani(a;)) for i ^ ioix). Inserting this in (10) and applying our previous
estimates yields the proposition. D

As we obtained Corollary 4 from Proposition 3, we get:

COROLLARY 7 . Let (n,i) C N b e a strictly increasing sequence. For almost every

x el,

Our final result tells us something about the series of the norms of the partial
coefficients in the Liiroth expansion of a given Laurent series.

PROPOSITION 8 . Let (rii) C N be a strictly increasing series. For any e > 0

= 0.

P R O O F : We split the interesting random variable up into two for any given i. Hence,
we define random variables for r ^ i:

\r< \ - \ H""'!! for M""- II
VT\X) — \

I 0 otherwise.

wt \ - J° for llan'H
I llanrll otherwise.

With these definitions, we see that

fi<x 6 I : -
1

i log, i > e

x e I : |Vi + • • • + Vi - {q - l)tlog,i| > eilog?i|

We consider each summand separately. By Theorem 1, E(Vi + • • • + VJ) = iE(Vi) and
var(Vi H VV{)=i\ax{Vx), so

= E n*ir1= E 9-r(9-i)«r = (9-

E(Vi) = /V,d/i = Y, I
Jl ||fc||^ilog, i •/{=€l|Q«1=fc}
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and

var(V\) < E(VX
2) = £ 1 = E (« ~ W < qiXo^L

p||$tlog,i <7r^ilog, i

Using Chebychev's Inequality [1, Proposition 1.7],

V. -

i var(Vi) »2 log , i

(efo-l)»[log,(tlog,*)])
which tends to zero as i tends to infinity. Since E(Vi) approximates (q — l)loggi for
i —> oo, the first summand tends to zero.

For the second summand, simply observe that

e l : \\ani{x)\\

2 '

- E
which also tends to zero as i tends to infinity. This completes the proof.
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