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Epistasis is a growing area of research in genome-wide studies, but the differences between alternative
definitions of epistasis remain a source of confusion for many researchers. One problem is that models
for epistasis are presented in a number of formats, some of which have difficult-to-interpret parameters.
In addition, the relation between the different models is rarely explained. Existing software for testing
epistatic interactions between single-nucleotide polymorphisms (SNPs) does not provide the flexibility
to compare the available model parameterizations. For that reason we have developed an R package
for investigating epistatic and penetrance models, Epi2Loc, to aid users who wish to easily compare,
interpret, and utilize models for two-locus epistatic interactions. Epi2Loc facilitates research on SNP–SNP
interactions by allowing the R user to easily convert between common parametric forms for two-locus
interactions, generate data for simulation studies, and perform power analyses for the selected model
with a continuous or dichotomous phenotype. The usefulness of the package for model interpretation and
power analysis is illustrated using data on rheumatoid arthritis.
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Genome-wide association studies (GWAS) have conven-
tionally focused on identifying associations between indi-
vidual single-nucleotide polymorphisms (SNPs) and the
phenotype, but there is growing interest in modeling more
complex effects such as interactions. Genome-wide studies
of pairwise interactions between SNPs have shown promis-
ing results (e.g., Hu et al., 2010; Lippert et al., 2013; Wan
et al., 2010a; Wan et al., 2010b). For instance, Hemani et al.
(2014) recently identified and replicated 30 pairwise in-
teractions associated with gene expression levels. Identi-
fying SNP–SNP interactions could help close the gap of
‘missing heritability’ from GWAS by reducing estimates of
narrow-sense heritability inflated by ‘phantom heritability’
from interactions (Zuk et al., 2012). Epistatic effects could
also contribute large components of broad-sense heritabil-
ity that would not be detected by univariate tests of associa-
tion (Culverhouse et al., 2002). In either case, however, the
abundance of competing models for these interactions can
lead to confusion and slow research efforts.

One primary source of confusion is the distinction be-
tween the biological definition of epistasis as a masking
effect (Bateson, 1909) and the statistical definition involv-
ing deviation from additivity for the effects of genetic fac-
tors on quantitative outcomes (Fisher, 1918). As a further

complication, the statistical definition of epistasis is scale-
dependent. Cordell (2009) provides an excellent review of
these historical issues.

As a result of the diversity of definitions of epistasis in the
literature, there are a multitude of statistical models for epis-
tasis and, more recently, interactions between SNPs. Efforts
to estimate all possible patterns of epistasis have identi-
fied numerous interpretable models (Li & Reich, 2000; Niu
et al., 2009). The different software packages intended to test
SNP–SNP interactions mirror this diversity (e.g., Herold
et al., 2009; Purcell et al., 2007; Ueki & Cordell, 2012).

Although the implemented epistatic models are useful,
the variety of models can make it difficult for researchers
to meaningfully compare the results from different studies
of epistasis. In particular, comparison of effect sizes and
accumulation of studies of epistasis in meta-analysis are
complicated by the use of differing models.
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TABLE 1

Saturated Model of Conditional Phenotypes at Two
Bi-allelic Loci

AA Aa aa

BB f1 f2 f3
Bb f4 f5 f6
bb f7 f8 f9

Therefore, in order to facilitate comparisons between
differing studies of epistasis we have developed Epi2Loc, an
R package for epistatic two-locus models, to easily convert
between common models of pairwise epistasis for both di-
chotomous and continuous outcomes. Additional tools for
power analysis and simulation studies using each available
model are also included in the package.

Methods
Epistasis between two loci can be modeled using pene-
trance models, variance components, or the generalized
linear model (GLM). Although each of these approaches
models the same set of possible two-locus interactions, they
rely on very different frameworks for describing the inter-
action. The models implemented in the Epi2Loc package
are briefly introduced here.

Penetrance Models

Following the biological approach to epistasis, the first ap-
proach is to present the model as a table of conditional
outcomes relative to the genotypes at two bi-allelic loci
(Table 1). For dichotomous phenotypes, the outcome of
interest is the penetrance. The penetrance is the proba-
bility of being affected (i.e., the probability of being in
the ‘case’ group), conditional on genotype. Each entry in
the table denotes the penetrance conditional on the cor-
responding genotypes; for example, f 5 = P (Y = 1|AaBb).
Alternatively these risk models may be stated using log odds
(log P (Y=1|AaBb)

P (Y=0|AaBb) = u (f 5); see Marchini et al., 2005).
As this model has a separate parameter for each cell it

is saturated and fits any observable pattern of penetrances.
Certain patterns of penetrances are biologically or statisti-
cally meaningful, such as patterns showing dominance of
one locus over another. Such useful patterns can be modeled
by imposing constraints on the cells of the penetrance table
(Hallgrimsdottir & Yuster, 2008; Li & Reich, 2000; Neuman
& Rice, 1992; Niu et al., 2009; Todorov et al., 1997; Vieland
& Huang, 2003).

However, while the pattern of penetrances may be bi-
ologically meaningful, the individual parameters do not
correspond to effects that have an easy conceptual interpre-
tation. In order to get more interpretable parameters, it is
common to define effects within the GLM framework.

Generalized Linear Models

The GLM relates the expected value of the phenotype to a
linear function of the genotypes. Most commonly, this takes
the form of linear regression, for a continuous phenotype,
or logistic regression, for dichotomous phenotypes. For ex-
ample, in the general case, logistic regression defines the
probability of being affected conditional on the genotype as

P (Y = 1|X = x) = eu

1 + eu
, (1)

u = � +
p∑

i=1

�ixi, (2)

where xi are suitably coded variables for the genotypes
of the two loci, and where u is the linear predictor. Lin-
ear regression similarly uses Equation 2 with the link
E (Y|X = x) = u in place of Equation 1.

Using this structure, xi can be coded in a variety of ways
to model the desired effects. The parameterization of xi is
the key feature that distinguishes between many models for
two-locus interactions. For instance, for a single locus let
x1 = (−1, 0, 1) and x2 = (−0.5, 0.5, −0.5) code the geno-
types (AA,Aa,aa) in order to reflect the additive trend and
dominance deviation, respectively, at that locus. Define z1

and z2 similarly for the second locus. Then the linear model
containing these variables and their cross products is

u = � + �1x1 + �2x2 + �3z1 + �4z2 + �5x1z1 + �6x2z1

+ �7x1z2 + �8x2z2, (3)

which is the F 2 model described by Anderson and
Kempthorne (1954). If x2 and z2 are instead coded (0,1,0)
for the three genotypes at each locus, then Equation 3 cor-
responds to the F∞ model (Hayman & Mather, 1955).

In either case, the model contains 9 degrees of freedom,
providing a saturated model for the nine possible haplo-
types for two bi-allelic loci. The resulting regression co-
efficients correspond to the additive effects of each locus
(�1and �3, respectively), the dominance effects of each lo-
cus (�2 and �4, respectively), and their interactions (�5, �6,
�7, and �8).

Other noteworthy parameterizations of the GLM in-
clude the Natural and Orthogonal Interactions (NOIA)
model (Alvarez-Castro & Carlborg, 2007), the General Two-
Allele model (Zeng et al., 2005), and the Unweighted model
(Cheverud & Routman, 1995). Each of these models, as well
as the F 2 and F∞ models, is implemented in the Epi2Loc
package, allowing simple conversion between these formu-
lations. The reasons for this variety of parameterizations
are highlighted by comparing the GLM framework to the
variance components model.

Variance Components

The third common approach is to formulate epistasis in
terms of a decomposition of the phenotypic variance. The
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total genetic effect of two loci Vg is partitioned into compo-
nents for the additive (VA), dominance (VD), and interac-
tion (VI) effects (Falconer & Mackay, 1996).

Vg = VA + VD + VI. (4)

Note that this is equivalent to a decomposition of the (broad
sense) heritability since

H2 = Vg

Vg + V�
(5)

where V� is the remaining phenotypic variance due to
environmental factors. The additive and dominance vari-
ance components can each be decomposed into the uni-
variate effects of each locus (i.e., VA = VAa + VAb and
VD = VDa + VDb ). Optionally, the phenotypic variance due
to the interaction can also be further partitioned into an
additive-by-additive effect, an additive-by-dominant effect,
and a dominant-by-dominant effect.

VI = VAA + VAD + VDD, (6)

with VAD further divisible to VAD + VDA to indicate whether
the first or second locus is dominant in the interaction.

This complete decomposition loosely corresponds to
the GLM parameters described for Equation 3, with
VAcorresponding to �1 and �3, VD corresponding to �2and
�4, and the components of VIcorresponding to the remain-
ing four �s. The key distinction, however, is that the variance
components are defined to be orthogonal whereas the GLM
parameters are not necessarily independent. Due to the or-
thogonality of components, each component has a clear
intuitive interpretation. For instance, VAa = VAb = VDa =
VDb = 0 indicates an absence of marginal univariate effects
for the two loci, but depending on the selected parame-
terization �1 = �2 = �3 = �4 = 0in the GLM framework
(Equation 3) may not necessarily imply a lack of univari-
ate effects if the remaining coefficients are non-zero. Fur-
thermore, the variance components provide an intuitively
meaningful scale for the magnitude of the effects, placing
the observed effect on the same scale as broader heritability
estimates.

To obtain independent GLM parameters that correspond
to the classical variance components, it is necessary to con-
sider the genotype frequencies for the two loci. The NOIA
statistical model weights its variables in Equation 3 to en-
sure that the parameters are independent as long as the
loci are uncorrelated (Alvarez-Castro & Carlborg, 2007).
This model allows direct conversion between GLM models
and the variance components model. Other GLM parame-
terizations may similarly maintain orthogonal components
under stronger restrictions. For instance, the G2 A model
corresponds to the variance component decomposition if
the loci are uncorrelated and Hardy–Weinberg equilibrium
holds for both loci (Zeng et al., 2005).

It should be noted, however, that a given set of variance
components does not uniquely define a two-locus GLM
model. The variance components do not indicate the sign
of any of the component effects, nor do they indicate the
population mean. Only the magnitude of the effects is de-
termined, with the resulting GLM parameters conditional
on the allele frequencies. In addition, treating the variance
components as a two-locus model only models the genetic
effects for two loci, so any variance explained by covariates
or other genetic effects must be modeled separately (i.e.,
by defining the components of Vg as only the contribu-
tion of two loci, with any other genetic effects treated as
independent and included in V�).

Package Utilities

The Epi2Loc package provides functions for convert-
ing between the above models, generating data under
a selected model, and performing power analysis. The
methodology for accomplishing these tasks is summa-
rized here. The Epi2Loc package is available from the
Comprehensive R Archive Network (CRAN, http://cran.us.
r-project.org/index.html).

Model conversions. Because the full model for each of
the parameterizations described above is a saturated model
for the nine possible two-locus genotype combinations, it
is possible to equate any pair of models and convert to a
different set of model parameters. In most cases, we rely on
the GLM framework, rewriting Equation 2 in matrix form

u = D�, (7)

where u is the vector (uAABB, uAaBB, uaaBB, uAABb, uAaBb,

uaaBb, uAAbb, uAabb, uaabb) and D is an appropriate design
matrix. As before, the elements of u correspond to the
conditional expected value of the phenotype such that
g−1 (uAABB) = E (y|AABB) for the selected link function
g (·). Then, given a model with design matrix D1, known
parameters �1, and link function g 1 (·), in order to compute
the unknown model parameters for a model with design
matrix D2, and link function g 2 (·), we solve

g−1
2 (D2�2) = g−1

1 (D1�1) , (8)

�2 = D−1
2 g 2

[
g−1

1 (D1�1)
]
. (9)

For GLM models, the parameters and design matrices are
given by the selected model parameterization (see Supple-
mentary Materials, Section S1). Penetrance models can be
specified in this form by setting � = (f 1, . . . , f 9) with D
as a identity matrix and an identity link function g(x) = x.
Log odds models similarly define D and � along with a log
odds link function.

For conversions involving variance components, closed-
form solutions exist relating each variance component to a
parameter in the NOIA statistical model. For instance,

VAa = �2
a

[
p Aa (1 − p Aa) + 4p aa (1 − p Aa) − 4p 2

aa

]
,

(10)
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where p aa and p Aa are frequencies of the indicated genotype
at the first locus. The full set of solutions for the NOIA statis-
tical model is provided in Supplementary Materials (Section
S2). Further conversions beyond the NOIA model can then
be performed as described above. Utilizing the NOIA sta-
tistical model in this way ensures that the defined variance
components will be orthogonal regardless of the minor al-
lele frequency or violations of Hardy–Weinberg equilibrium
at each locus. The only required assumption is that the two
loci are uncorrelated (Alvarez-Castro & Carlborg, 2007).

These conversions between models are useful to aid the
interpretation of results from studying epistatic effects. Al-
though the saturated model and the 4-df test of all interac-
tion parameters are equivalent for all models, the individual
parameters in each parameterization correspond to differ-
ent effects under different assumptions. For example, the
parameters for univariate effects estimate average marginal
effects in the NOIA statistical model, average marginal
effects under Hardy–Weinberg equilibrium in the G2 A
model, marginal effects of allele substitution in the NOIA
functional model, and marginal effects of genotype sub-
stitution in the genotype model (for further discussion of
interpretation for these models, see Alvarez-Castro & Carl-
borg, 2007; Zeng et al., 2005). In addition, the effects are
estimated conditional on the remaining effects in the model;
therefore, if the parameters are not orthogonal the estimates
may vary depending on which other effects are included. In
sum, it is important to select a model that estimates the
genetic effects that are the focus of the investigation.

Data generation. Data generation from a selected two-
locus model proceeds by constructing the appropriate N
× 9 design matrix D as described above with rows corre-
sponding to simulated or observed genotypes at two loci
(Supplementary Materials, Section S1). The design matrix
and model parameters are then used to compute the condi-
tional expected value of the phenotype for each individual
as E

(
y|D) = g−1 (D�). For dichotomous phenotypes, the

phenotype is then generated from a Bernoulli distribution
with the defined probability. For continuous phenotypes,
normally distributed random error is added to the expected
value for each individual to obtain the desired phenotype.

Power analysis. The Epi2Loc package provides a power
analysis tool for tests of parameters in a two-locus GLM
model. Unsurprisingly, the power for a given hypothesis test
in the two-locus model will depend on the effect to be tested
based on the selected model. For linear regression with
continuous phenotypes, power may be computed based on
Cohen’s f 2 effect size (Cohen, 1988). Specifically,

f 2 = R2
F − R2

R

1 − R2
F

, (11)

where R2
F and R2

R are the multiple R2 for the full model (i.e.,
most often the saturated model) and the restricted model,
respectively. The restricted model is defined by constrain-

TABLE 2

Interaction of rs1290754 and rs1800797 Associated with
Rheumatoid Arthritis

rs1290754

rs1800797 GG TG TT

AA 75a(0.016b) 22(0.059) 30(0.042)
AG 60(0.053) 37(0.182) 51(0.117)
GG 19(0.065) 44(0.225) 35(0.109)

Note: aConditional penetrances of rheumatoid arthritis reported by Julia
et al. (2007). bReported genotype frequencies. Total N = 439.

ing one or more parameters � to zero. This effect size is
then used to estimate the non-centrality parameter for the
distribution of the F-test corresponding to this hypothesis
test, providing an estimate of power at a given sample size
as described by Cohen (1988).

For dichotomous outcomes, power may instead be com-
puted based on the asymptotic power of the likelihood ratio
test comparing the full and restricted models. Briefly, the
saturated model and the genotype frequencies of the two
loci are used to compute the expected value of the informa-
tion matrix for logistic or probit regression. The Epi2Loc
package then estimates the power for the test by comput-
ing the non-centrality parameter for the likelihood ratio
test of the full and reduced models based on the expected
information matrix (Cox & Hinkley, 1974), using an im-
plementation of this approach in the R package asypow
(Halvorsen et al., 2013).

Results and Discussion
Sample Analysis

To demonstrate the use of the Epi2Loc package, we con-
sider data on two SNPs associated with rheumatoid arthri-
tis. In analysis of the transcriptional regulatory network of
NF-�B using multifactor dimensionality reduction (MDR;
Hahn et al., 2003), Julia et al. (2007) identified an inter-
action between rs1290754 and rs1800797 associated with
risk for rheumatoid arthritis. The reported penetrance and
genotype frequencies for these two loci are summarized in
Table 2. The genotype frequencies suggest the two loci are
uncorrelated (r = -0.06, p = .19).

Because this interaction was identified using MDR, para-
metric effect sizes were not computed. To aid in under-
standing the magnitude of the effect for these two loci,
the Epi2Loc package may be used to convert the reported
penetrances to a variance components model. The result-
ing variance components indicate that the two loci jointly
explain 7.3% of the phenotypic variance, with the largest
effects attributable to an additive by dominance interaction
explaining 3.5% of the phenotypic variance and followed
by a dominance effect of rs1290754 explaining 1.8% of the
variance.
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FIGURE 1

Power analysis for effects of rs1290754 and rs1800797.
Note: Post-hoc power analysis for the additive-by-dominant inter-
action of rs1290754 and rs1800797 and the dominance deviation
of rs1800797 estimated from data reported by Julia et al. (2007).
Vertical reference line indicates observed sample size N = 439.

The Epi2Loc package may also be used to construct
a design matrix to test the significance of specific GLM
model parameters for this data. Using the NOIA statisti-
cal model, the Wald test for the additive (rs1290754) by
dominant (rs1800797) interaction is significant (p = .001).
There is also strong evidence of dominance deviation for
rs1290754, but the effect is not significant after correct-
ing for multiple testing of eight coefficients (uncorrected
p = .015).

Lastly, treating the observed penetrances as the popu-
lation values, we can investigate the power to detect the
additive by dominance interaction and the dominance ef-
fect of rs1290754. As shown by Figure 1, the sample of N =
439 provides sufficient power to detect the interaction ex-
plaining 3.5% of the phenotypic variance at the � = 0.05
level, but a larger sample would be required to reliably detect
the dominance effect.

These power estimates are likely to be optimistic, how-
ever, compared to many genome-wide studies. Notably,
the effect sizes observed by Julia et al. (2007) are quite
large; in comparison, the epistatic interactions among 238
SNPs identified by Hemani et al. (2014) jointly explained
only 0.22% of the phenotypic variance in the discovery
sample. In addition, considering power at � = 0.05 does
not account for the multiple testing burdens in the likely
scenario of testing pairwise interactions for large sets of
genome-wide SNPs. For example, achieving power of 0.8
to detect an additive-by-additive interaction explaining
0.25% of the variance with � = 10−8 requires over 17,000
individuals.

Existing Software

Existing software offers some support for studying epistatic
effects, but does not offer the same flexibility of the Epi2Loc
package for working with a wide range of model parame-
terizations. For instance, the epistatic model implemented
in PLINK (Purcell et al., 2007) by default only considers
additive-by-additive interactions (VAA) with limited pa-
rameterizations of the single locus effects. CASSI (Ueki &
Cordell, 2012) similarly limits testing of epistasis to the 1-
df test of the additive-by-additive interaction. As epistatic
variance components may be evenly split among VAA, VAD,
VDA, and VDD (Hemani et al., 2014), this testing approach
may not identify a large proportion of existing epistatic
effects. More options for considering these additional in-
teraction components are available in INTERSNP (Herold
et al., 2009), but GLM model parameterization in INTER-
SNP is restricted to the F 2 model (Anderson & Kempthorne,
1954). In comparison, the Epi2Loc package offers support
for seven GLM model parameterizations, as well as pene-
trance and variance component models.

Additional software packages have pursued a model-free
heuristic approach to identifying epistasis (e.g., GWIS —
Goudey et al., 2013; MDR — Hahn et al., 2003). Although
these methods are useful, the lack of effect sizes for these
models can make the interpretation of results and compar-
isons across studies challenging. In contrast, the Epi2Loc
package supports computation of variance components
from any included model to simplify interpretation and
comparison.

As a result, the Epi2Loc package offers a useful sup-
plement to the existing software in order to interpret the
results of genome-wide interaction studies. For instance, a
genome-wide scan using saturated two-locus models may
be performed using INTERSNP, and the Epi2Loc package
may then be used to compute variance components for the
resulting F 2 model parameters. Alternatively, the Epi2Loc
package could be used to perform the complete analysis,
but computing all pairwise interactions genome-wide is
computationally expensive and likely to benefit from op-
timization in stand-alone software. Therefore, use of the
Epi2Loc package is recommended for interpreting results,
as well as preparing for genome-wide interaction analyses
through simulations and power analysis.

Conclusion
The Epi2Loc package provides a convenient utility for con-
verting, comparing, and interpreting epistatic models with
more flexibility than existing software. The included util-
ities are useful for performing simulation studies of two-
locus interactions and planning future analyses of epistasis
in genome-wide SNP data. This tool should facilitate future
efforts to uncover the contribution of SNP–SNP interac-
tions to the genetics of complex phenotypes.
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