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Computing functions on Jacobians and their quotients

Jean-Marc Couveignes and Tony Ezome

Abstract

We show how to efficiently evaluate functions on Jacobian varieties and their quotients. We
deduce an algorithm to compute (l, l) isogenies between Jacobians of genus two curves in quasi-
linear time in the degree l2.

1. Introduction

We consider the problem of computing the quotient of the Jacobian variety J of a curve C
by a maximal isotropic subgroup V in its l-torsion for l an odd prime integer. The genus one
case has been explored extensively since Vélu [34, 35]. A recent bibliography can be found
in [4]. In this work, we first study this problem in general, and show how to quickly design
and evaluate standard functions (including Theta functions) on the quotient J/V . We then
turn to the specific case when the dimension g of J equals two. Here, the quotient is, at least
generically, the Jacobian of another curve D. The quotient isogeny induces a map from C into
the Jacobian of D that can then be described in a compact form: a few rational fractions of
degree O(l). We explain how to compute D and the map from C into the Jacobian of D in
quasi-linear time in the degree #V = l2.

Plan

In § 2 we bound the complexity of evaluating standard functions on Jacobians, including
Weil functions and algebraic Theta functions. We deduce in § 3 a bound for the complexity
of computing a basis of sections for the bundle associated with a multiple of the natural
polarization of J . We recall the algebraic definition of canonical Theta functions in § 4 and
bound the complexity of evaluating such a function at a given point in J . Section 5 bounds
the complexity of evaluating functions on the quotient of J by a maximal isotropic subgroup
V in J [l] when l is an odd prime different from the characteristic of K. Specific algorithms for
genus two curves are given in § 6. A complete example is treated in § 7.

Context

The algorithmic aspect of isogenies was explored by Vélu [34, 35] in the context of elliptic
curves. He exhibits bases of linear spaces made of Weil functions, then finds invariant functions
using traces. Vélu considers the problem of computing the quotient variety when given some
finite subgroup. The problem of computing (subgroups of) torsion points is independent and
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was solved in a somewhat optimal way by Elkies [13] in the genus one case, using modular
equations. It is unlikely that modular equations will be of any use to accelerate the computation
of torsion points for higher genera, since they all are far too big. Torsion points may be
computed by brute force (torsion polynomials), using the Zeta function when it is known
[8, 9], or because they come naturally as part of the input (modular curves). We shall not
consider this problem and will concentrate on the computation of the isogeny, when given its
kernel. The genus one case has been surveyed by Schoof [30] and Lercier and Morain [22]. The
genus two case was studied by Dolgachev and Lehavi [12], and Smith [32], who provide a very
elegant geometric description. However, the complexity of the resulting algorithm is not given
(and is not quasi-linear in the degree anyway). Lubicz and Robert [23, 24] provide general
methods for quotienting abelian varieties (not necessarily Jacobians) by maximal isotropic
subgroups in the l-torsion. Their method has quasi-linear complexity lg(1+o(1)) when l is a sum
of two squares. Otherwise, it has complexity lg(2+o(1)). The case of dimension two is treated
by Cosset and Robert [7]. They reach complexity l2+o(1) when l is the sum of two squares
and l4+o(1) otherwise. However, the input and mainly the output of these methods is quite
different from ours. In the dimension two case, we can, and must, provide a curve D of which
J/V is the Jacobian, and an explicit map from C into the symmetric square of D. We achieve
this goal in quasi-linear time l2+o(1) for every odd prime l 6= p.

2. Functions on Jacobians

Constructing functions on abelian varieties using zero-cycles and divisors is classical [36, 37].
In this section, we bound the complexity of evaluating such functions in the special case of
Jacobian varieties. Possible references for the theory of Jacobian varieties are [1, 21, 27, 36].

Section 2.1 sets some notation about Jacobian varieties and Weil functions (which we call
Eta functions). Section 2.2 is concerned with a special case of Eta functions: those associated
with function on the curve itself. These functions can be easily evaluated. Section 2.3 recalls
well known, but important, algorithmic results about curves and Jacobians. These algorithmic
considerations are of particular interest when the base field K is finite. Bounds on the number
of points on varieties are useful in this context. We recall in § 2.4 a simple estimate that will
suffice for our purpose. We provide in § 2.5 a formula for the divisor of certain functions on
J defined using determinants. We deduce an expression for Eta functions as combinations of
these determinants. The resulting algorithm for evaluating Eta functions is detailed in § 2.6.

2.1. Notation

We let K be a field. Let K̄ be an algebraic closure of K. If X is a K-scheme and if L is an
extension of K, we denote by XL the base change X⊗KL and by X(L) the set of L-points on
it. Let C be a projective, smooth, absolutely integral curve over K. Let g be the genus of C.
We assume that g > 2 and we denote by Pic(C) the Picard scheme of C. For every integer d we
denote by Picd(C) the component of Pic(C) representing linear classes of divisors of degree d.
In particular, J = Pic0(C) is the Jacobian variety of C. By definition of the Picard scheme,
L-points on Pic(C) parameterize linear equivalence classes of divisors on CL. We shall make
no difference between linear classes of divisors and points on the Picard scheme. The canonical
class on C is denoted ω. It is represented by a K-point on Pic2g−2(C) which we call ω too.
If D is a divisor on CL we denote by ι(D) its linear equivalence class, and the corresponding
L-point on Pic(C). Let u be an L-point on Pic(C). We call

tu : Pic(C)L → Pic(C)L

the translation by u. If now D is a divisor on Pic(C)L we denote by

Du = tu(D)
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the translation of D by u. We call W ⊂ Picg−1(C) the algebraic set representing classes of
effective divisors of degree g − 1. The pullback [−1]∗W ⊂ Pic1−g(C) is equal to the translate
of W by −ω. We write

[−1]∗W = W−ω.

A K-rational point θ in Picg−1(C) such that

2θ = ω,

is called a Theta characteristic, see [1, Appendix B, § 3]. Two such Theta characteristics differ
by a 2-torsion point in J . The translate W−θ is a divisor on J . One has

[−1]∗W−θ = W−θ. (1)

For this reason, the divisor W−θ is said to be symmetric. We assume that we are given a
K-point O on C, and denote by

o = ι(O)

its linear equivalence class. This is a K-point on Pic1(C). The translate W−(g−1)o is a divisor
on J . We set

κ = ω − 2(g − 1)o ∈ J(K).

We have

[−1]∗W−(g−1)o = W−(g−1)o−κ.

We set

ϑ = θ − (g − 1)o ∈ J(K) (2)

and check that

2ϑ = κ.

Given D a divisor on C we write L(D) for the linear space H0(C,OC(D)) and

`(D) = dim(H0(C,OC(D))).

Let u =
∑

16i6I ei[ui] be a zero-cycle on JK̄. So (e1, e2, . . . , eI) ∈ ZI and (u1, . . . , uI) ∈
J(K̄)I . We set

s(u) =
∑

16i6I

eiui ∈ J(K̄) and deg(u) =
∑

16i6I

ei ∈ Z.

Let D be a divisor on JK̄. The divisor
∑

16i6I eiDui
−Ds(u)− (deg(u)− 1)D is principal. Let

y be a point in J(K̄) not in the support of this divisor. Call ηD[u, y] the unique function on
JK̄ having divisor

(ηD[u, y]) =
∑

16i6I

eiDui −Ds(u) − (deg(u)− 1)D

and such that

ηD[u, y](y) = 1.

We say that ηD[u, y] is a Weil function (an Eta function) associated with D and u. This
definition is additive in the sense that

ηD[u + v, y] = ηD[u, y].ηD[v, y].ηD[[s(u)] + [s(v)], y] (3)
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whenever feasible. If D, y, and u are defined over K then ηD ∈ K(J). We write

ηD[u] ∈ K(J)∗/K∗

when we consider an Eta function up to a multiplicative scalar.
Equation (3) allows us to evaluate Eta functions piece by piece: we first treat a few special

cases and then explain how to combine them to efficiently evaluate any Eta function. We shall
see in §§ 4 and 5 that many interesting functions on J can be expressed as combinations of
Eta functions. In this paper, we shall be firstly interested in the special case D = W−(g−1)o.
We omit the subscript in that case, and write η[u, y] rather than ηW−(g−1)o

[u, y].

2.2. An easy special case

Let f be a non-zero function in K(C). Following [10], one can naturally associate with f a
function α[f ] in K(J) in the following way. We assume that f has degree d and divisor

(f) =
∑

16i6d

Zi −
∑

16i6d

Pi.

We call zi = ι(Zi) (or pi = ι(Pi)) the K̄-points in Pic1(C) representing the linear equivalence
classes of the Zi (or the Pi). Let x be a point in J(K) such that x 6∈Wpi−go for every 1 6 i 6 d.
In particular, `(x+ gO) = 1 (every special divisor class of degree g belongs to Wι(P ) for every
point P on C since the corresponding linear series has positive projective dimension and we
can find a divisor in it containing any given P ). Let Dx be the unique effective divisor of degree
g on C such that Dx − gO belongs to the class x. Write

Dx = D1 +D2 + . . .+Dg

and set
α[f ](x) = f(D1).f(D2). . . . .f(Dg). (4)

The function α[f ] vanishes at x if and only if some point Dj in the support of Dx is a zero Zi
of f . This means that ι(Dx) = x+ go belongs to Wzi ⊂ Picg(C) for some 1 6 i 6 d. Similarly,
α[f ] has a pole at x if and only if x + go belongs to Wpi ⊂ Picg(C) for some 1 6 i 6 d. The
divisor of α[f ] is thus

(α[f ]) =
∑

16i6d

Wzi−go −
∑

16i6d

Wpi−go.

Let y be a point in J(K) such that y 6∈Wpi−go and y 6∈Wzi−go for every 1 6 i 6 d. Then

α[f ](x)/α[f ](y) = η

[ ∑
16i6d

[zi − o]−
∑

16i6d

[pi − o], y
]
(x).

This provides an algorithm to evaluate η[u, y] in the special case when u is a zero-cycle on J
with support contained in t−o(ι(C)) ⊂ J .

2.3. Algorithmic considerations

Having described in § 2.2 a first method to evaluate Eta functions in a special case, we bound
the complexity of this method. We take this opportunity to introduce some notation and
convention.

2.3.1. Convention. In this text, the notation O stands for a positive absolute constant.
Any statement containing this symbol becomes true if the symbol is replaced in every
occurrence by some large enough real number. Similarly, the notation e(x) stands for a real
function of the real parameter x alone, belonging to the class o(1).
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2.3.2. Operations in K. The time needed for one operation in K is a convenient unit of
time. Let L be a monogene finite K-algebra of degree d. We will assume that L is given as a
quotient K[x]/f(x) where f(x) is a polynomial in K[x]. Every operation in L requires d1+e(d)

operations in K. When K is a finite field with cardinality q, every operation in K requires
(log q)1+e(q) elementary operations.

2.3.3. Operations in J(K). We assume that C is given in a reasonable way: for example,
a plane model with degree polynomial in the genus g. Elements in J(K) are classically
represented by divisors on C. We can also use Makdisi’s representation [19] which is more
efficient. For our purpose, it will be enough to know that one operation in J(K) requires
gO operations in K, that is gO.(log q)1+e(q) elementary operations when K is a field with q
elements. Given two effective divisors D and E with degrees d and e, respectively, we are able
to compute a basis of L(D−E) at the expense of (gde)O operations in K. The Brill–Noether
algorithm reduces all these algorithmic problems to the analysis of the singularities of the
given curve. This is classically achieved by blowing up or using series expansions, but none
of these methods is fully satisfactory: the complexity of blowing up is not well understood in
the worst cases, and computing series expansions is only possible when the characteristic of K
is zero or large enough. Work by Hess [17], using general normalization algorithms, provides
a satisfactory algorithm in general. Possible references for these algorithms are Hess [17],
Makdisi [19], Diem [11], or the quick account at the beginning of [9].

2.3.4. Evaluating α[f ]. We are given a function f in K(C). We are given a class x in
J(K), represented by Dx − gO, where Dx is effective with degree g. We may see Dx as a
zero-dimensional scheme over K, and call K[Dx] the associated affine K-algebra. We assume
that Dx does not meet the poles of f . Let P be the generic point on Dx. Then f(P ) belongs to
K[Dx] and its norm over K is α[f ](x) according to the definition given in equation (4). Thus,
we can compute α[f ](x) at the expense of (gd)O operations in K, where g is the genus of C
and d is the degree of f .

2.4. Number of points on Theta divisors

We recall a simple, but very general and convenient, upper bound for the number of points in
algebraic sets over finite fields. This bound was proved in [16, Proposition 12.1] by Lachaud
and Ghorpade. We shall use it to estimate the probability of success of some of the algorithms
presented in this paper.

Lemma 1 (Simple bound for the number of points). Let K be a field with q elements. Let
X be a projective algebraic set over K. Let n be the maximum of the dimensions of the K-
irreducible components of X. Let d be the sum of the degrees of the K-irreducible components
of X. Then

|X(K)| 6 d(qn + qn−1 + . . .+ q + 1).

Let K be a finite field with cardinality q. Let C be a curve over K. Let O be a K-rational
point on C. Let J be the Jacobian of C. We assume that the genus g of C is at least 2. Set
ι(O) = o ∈ Pic1(C). Recall that W−(g−1)o is the algebraic subset of J consisting of all classes
ι(A− (g− 1)O) where A is an effective divisor with degree g− 1. Let D be an algebraic subset
of codimension one in J . We assume that D is algebraically equivalent to kW−(g−1)o. Set
l = max(3, k). The divisor E = D + (l − k)W−(g−1)o is algebraically equivalent to lW−(g−1)o.
After base change to K̄ it becomes linearly equivalent to a translate of lW−(g−1)o. Since every
translate of W−(g−1)o is ample [29, Chapter II, § 6] and l > 3 we deduce [29, Chapter III, § 17]
that E is very ample. We now apply Lemma 1 to the hyperplane section E. Its dimension is
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n = g − 1 and its degree d is

Eg = lg(W−(g−1)o)
g = lg.g!

according to Poincaré’s formula [1, Chapter I, § 5]. So |D(K)| 6 |E(K)| 6 lg.(g!).(qg−1 +
qg−2 + . . . + q + 1) 6 g.(g!).lg.qg−1. On the other hand, according to [20, Théorème 2], the
cardinality of J(K) is at least qg−1(q−1)2(q+1)−1(g+1)−1. So the proportion |D(K)|/|J(K)|
is 6gOglg/q.

Lemma 2 (Number of points on divisors). Let K be a finite field with q elements. Let C be
a curve of genus g > 2 over K. Let J be the Jacobian of C. Let O be a K-point on C. Let o
be the corresponding class in Pic1(C). Let D ⊂ J be an algebraic subset of codimension one,
algebraically equivalent to kW−(g−1)o for k > 1. Set l = max(3, k). The number of K-rational
points on D is bounded from above by g.(g!).lg.qg−1. The ratio |D(K)|/|J(K)| is bounded
from above by gOglg/q.

2.5. Determinants

The evaluation method presented in § 2.3 only applies to Alpha functions introduced in § 2.2.
These Alpha functions form a subfamily of Eta functions. Mascot introduced, in [25], an
efficient evaluation method that applies to another interesting subfamily.

One can also define and evaluate functions on J using determinants, see [2, 14, 31]. We
shall see that every Eta function can be expressed as a combination of Alpha functions, as in
§ 2.2, and determinants. Let D be a divisor on C with degree d > 2g − 1. Set

n = `(D) = d− g + 1.

Let f = (fk)16k6n be a basis of L(D). For P = (Pl)16l6n in Cn disjoint from the positive
part of D we set

β[f ](P ) = det(fk(Pl))k,l

and thus define a function β[f ] on Cn. Call

 : Cn → Picn(C)

the Jacobi integration map. It maps (P1, . . . , Pn) onto the class of P1 + . . .+ Pn. We call

πl : Cn → C

the projection onto the lth factor. For 1 6 i < j 6 n we set

∆i,j = {(P1, . . . , Pn)|Pi = Pj} ⊂ Cn.

Let
∆ =

⋃
16i<j6n

∆i,j ⊂ Cn

be the full diagonal. The divisor of β[f ] is

(β[f ]) = ∆ + ∗(tι(D)([−1]∗W )) +
∑

16l6n

π∗l (−D) (5)

where tι(D)([−1]∗W ) = Wι(D)−ω ⊂ Picn(C) is the translate of [−1]∗W by the class of D. When
K has characteristic zero, equation (5) results from [14, Proposition 2.16]. For general K, a
Galois theoretic proof is given by Shepherd-Barron in [31, Corollary 4.2]. Roughly speaking,

https://doi.org/10.1112/S1461157015000169 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000169


computing functions on jacobians and their quotients 561

the term ∆ in equation (5) means that the determinant vanishes when Pi = Pj because there
are two equal columns in that case. The

∑
16l6n π

∗
l (−D) says that poles of the determinant

come from poles of the coefficients in it. The term ∗(tι(D)([−1]∗W )) says that if the n points
P1, . . . , Pn, are distinct, the determinant vanishes if and only if there exists a non-zero function
in L(D) vanishing at P1, . . . , Pn. This means that D is linearly equivalent to P1 + . . . + Pn
plus some effective divisor of degree g − 1.

We now assume that we have a collection of divisors D = (D(i))16i6I . We assume that
all D(i) have degree d = 2g − 1. So n = `(D(i)) = g. We are given a vector of integers

e = (ei)16i6I such that
∑

16i6I ei = 0. For every i we choose a basis f (i) = (f
(i)
k )16k6g of

L(D(i)). We assume that
∑

16i6I ei.D
(i) is the (principal) divisor of some function h on C. So

(h) =
∑

16i6I

ei.D
(i).

We call α[h] the function on J associated with h, as constructed in § 2.2. We set f = (f (i))16i6I .
Define the function

β[D, e, f ] =
∏

16i6I

β[f (i)]ei

on Cg. It has divisor

(β[D, e, f ]) =
∑
i

ei.
∗(Wι(D(i))−ω)−

∑
16i6I
16l6g

ei.π
∗
l (D(i)). (6)

There exists a function β′[D, e, f ] on Picg(C) such that β[D, e, f ] = β′[D, e, f ] ◦ . Indeed,
permuting the g points (Pi)16i6g multiplies each factor β[f (i)] by the same sign. And the
sum of the exponents ei is zero. We call γ[D, e, f ] the function on J = Pic0(C) obtained by
composing β′[D, e, f ] with the translation by go. For x a point in J(K) represented by the
divisor X1 +X2 + . . .+Xg − gO we have

γ[D, e, f ](x) =
∏

16i6I

(det(f
(i)
k (Xl))k,l)

ei (7)

provided that (X1, X2, . . . , Xg) does not belong to ∆ nor to the support of (β[D, e, f ]) as given
in equation (6). The product α[h].γ[D, e, f ] has divisor

(α[h]) + (γ[D, e, f ]) =
∑
i

eiW−(g−1)o+ui
,

where
ui = ι(D(i))− ω − o ∈ J(K).

Thus, α[h].γ[D, e, f ] and η[u] have the same divisor. We deduce that

α[h].γ[D, e, f ] = η[u] ∈ K(J)∗/K∗ (8)

where
u =

∑
i

ei[ui].

This is exactly what we need. Every Eta function decomposes (up to a multiplicative scalar)
into a product of a certain number of determinants times some Alpha function, which we know
how to compute. Next, in § 2.6 we deduce an algorithm for evaluating Eta functions. In order
to fix the multiplicative constant in equation (8) we choose (Y1, Y2, . . . , Yg) ∈ C(K̄)g not in
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the support of (β[D, e, f ]). We call y the class of Y1 + Y2 + . . . + Yg − gO and assume that y
belongs to J(K). We deduce from equations (7) and (8) that the quotient

α[h](x).γ[D, e, f ](x)

α[h](y).γ[D, e, f ](y)
=
α[h](x)

α[h](y)
.
∏

16i6I

(det(f
(i)
k (Xl))k,l/det(f

(i)
k (Yl))k,l)

ei

does not depend on f and takes value 1 when x = y. So

η[u, y](x) =
α[h](x).γ[D, e, f ](x)

α[h](y).γ[D, e, f ](y)

=
α[h](x)

α[h](y)
.
∏

16i6I

(det(f
(i)
k (Xl))k,l/det(f

(i)
k (Yl))k,l)

ei . (9)

The only difference between equations (9) and (8) is that we evaluate at two points x and y
to fix the multiplicative constant in K∗.

2.6. Evaluating Eta functions

We explain how to evaluate Eta functions, using the product decomposition given in
equation (9). We are given u =

∑
16i6I ei[ui] a zero-cycle on J . We assume that ui ∈ J(K) for

1 6 i 6 I. We can, and will, assume without loss of generality that deg(u) =
∑
i ei = 0 and

s(u) =
∑
i eiui = 0. We are given two classes x and y in J(K). The class x is represented by

a divisor Dx − gO where Dx is effective with degree g. The class y is represented similarly
by a divisor Dy − gO. We assume that neither of x nor y belongs to the support of the divisor∑

16i6I eiW−(g−1)o+ui
. We want to evaluate η[u, y](x).

The algorithm goes as follows.
(1) For every 1 6 i 6 I, find an effective divisor D(i) of degree 2g − 1 such that D(i) does

neither meet Dx nor Dy, and ι(D(i))− ω − o is the class ui.
(2) Find a non-zero function h in K(C) with divisor

∑
16i6I eiD

(i).

(3) For every 1 6 i 6 I, compute a basis f (i) = (f
(i)
k )16k6g of L(D(i)).

(4) Write Dx = X1 +X2 + . . .+Xg and Dy = Y1 +Y2 + . . .+Yg where Xk and Yk are points
in C(K̄) for 1 6 k 6 g. For every 1 6 i 6 I, compute

δ(i)
x = det(f

(i)
k (Xl))16k,l6g and δ(i)

y = det(f
(i)
k (Yl))16k,l6g.

(5) Compute α[h](x) and α[h](y).
(6) Return

α[h](x)

α[h](y)
.
∏

16i6I

(δ(i)
x /δ(i)

y )ei .

Note that the product above reflects the product in equations (8) and (9). We will now
explain every step more precisely. In step (1) we assume that the class ui is given by a divisor
Ui − gO where Ui is effective with degree g. We proceed as in [9, Lemmata 13.1.7-8-9]. We
choose a canonical divisor K on C and compute L(Ui − (g − 1)O +K). With every non-zero
function f in this linear space is associated a candidate divisor

(f) + Ui − (g − 1)O +K

for D(i). We eliminate the candidates that meet either Dx or Dy. The corresponding functions
f belong to a union of at most 2g strict subspaces of L(Ui − (g − 1)O+K). If the cardinality
of K is bigger than 2g we find a decent divisor D(i) by solving inequalities. If K is too small,
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we can replace K by a small extension of it. In any case, we find some D(i) at the expense of
gO operations in K.

Step (2) is an example of effective Riemann–Roch theorem. It requires (g.|e|)O operations
in the base field, where

|e| =
∑

16i6I

|ei|

is the `1-norm of e = (ei)16i6I . Step (3) is similar to step (2) and requires I.gO operations
in K. Step (4) requires some care. The time complexity of brute force calculation with
the Xk and Yk may not be polynomial in the genus because the degree over K of the
decomposition field of Dx and Dy may be very large. However, if K is finite and if Dx

is irreducible over K, then this decomposition field has degree g, which is fine with us.
In general, we write Dx =

∑
16l6L alRl where the Rl are pairwise distinct irreducible

divisors and the al are positive integers. We compute a new basis (φk)16k6g for L(D(i))
which is adapted to the decomposition of Dx in the following sense: we start with a basis of
L(D(i) −

∑
l>2 alRl); we continue with a basis of L(D(i) −

∑
l>3 alRl)/L(D(i) −

∑
l>2 alRl);

we continue with a basis of L(D(i) −
∑
l>4 alRl)/L(D(i) −

∑
l>3 alRl), and so on. The matrix

(φ
(i)
k (Xl))16k,l6g is block-triangular, so its determinant is a product of L determinants (one for

each Rl). We compute each of these L determinants by brute force and multiply them together.
We multiply the resulting product by the determinant of the transition matrix between the
two bases.

For step (5) we use the method described in § 2.3.4. Step (6) seems trivial, but it hides

an ultimate difficulty. If Dx is not simple, then all δ
(i)
x are zero and there appear artificial

indeterminacies in the product
∏
i(δ

(i)
x )ei . We use a deformation to circumvent this difficulty.

We introduce a formal parameter t and consider the field L = K((t)) of formal series in t
with coefficients in K. Consider, for example, the worst case in which Dx is g times a point
A. We fix a local parameter zA ∈ K(C) at A. We fix g pairwise distinct scalars (am)16m6g

in K. In case the cardinality of K is < g, we replace K by a small degree extension of it. We
denote X1(t), X2(t), . . . , Xg(t), the g points in C(L) associated with the values a1t, . . . , agt,
of the local parameter zA. We perfom the calculations described above with Dx replaced by
Dx(t) = X1(t) + . . .+Xg(t), and set t = 0 in the result. Since we use a field of series, we care
about the necessary t-adic accuracy. This is the maximum t-adic valuation of the β[f (i)](Dx(t)).
Assuming that x does not belong to the support of the divisor (η[u]) =

∑
16i6I eiW−(g−1)o+ui

,
these valuations all are equal to g(g−1)/2. So the complexity remains polynomial in the genus g.
When K is a finite field we obtain the theorem below.

Theorem 1 (Evaluating Eta functions on the Jacobian). There exists a deterministic
algorithm that takes as input:
• a finite field K with cardinality q;
• a curve C of genus g > 2 over K;
• a collection of K-points (ui)16i6I on the Jacobian J of C;
• a zero-cycle u =

∑
16i6I ei[ui] on J , such that deg(u) = 0 and s(u) = 0;

• a point O in C(K);
• and two points x, y ∈ J(K), not in

⋃
16i6IW−(g−1)o+ui

.

The algorithm computes η[u, y](x) in time (g.|e|)O.(log q)1+e(q), where |e| =
∑

16i6I |ei| is the

`1-norm of e = (ei)16i6I .

Using fast exponentiation and equation (3) in the algorithm above, we can evaluate Eta
functions in time gO.I.(log |e|).(log q)1+e(q). However, this method may fail when one of the
arguments x or y belongs to the support of the divisor of some intermediate factor. According
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to Lemma 2, the proportion of such x in J(K) is 6 gOg.I.(log |e|)/q. A fast method that works
for a large proportion of the inputs will subsequently be enough for us.

Proposition 1 (Fast evaluation of Eta functions on the Jacobian). There exists a
deterministic algorithm that takes as input:
• a finite field K with cardinality q;
• a curve C of genus g > 2 over K;
• a point O in C(K);
• a collection of K-points (ui)16i6I on the Jacobian J of C;
• a zero-cycle u =

∑
16i6I ei[ui] on J , such that deg(u) = 0 and s(u) = 0;

• and two points x, y ∈ J(K), not in
⋃

16i6IW−(g−1)o+ui
.

The algorithm returns either FAIL or η[u, y](x) in time

gO.I.(log |e|).(log q)1+e(q),

where |e| =
∑

16i6I |ei| is the `1-norm of e = (ei)16i6I .

For given K, C, u, O, there exists a subset FAIL(K, C, u, O) of J(K) with density

6 gOg.I. log(|e|)/q

and such that the algorithm succeeds whenever neither of x nor y belongs to FAIL(K, C, u, O).

Fast exponentiation for evaluating Weil functions on abelian varieties first appears in work
by Miller [26] in the context of pairing computation on elliptic curves.

3. Bases of linear spaces

Being able to evaluate Eta functions η[u, y] we now consider an integer l > 2 and look for a
basis of H0(J,OJ(lW−(g−1)o)). A related problem is to pick random functions in this linear
space with close enough to uniform probability. We assume that the base field is finite, and
use the bounds stated in § 2.4. Fix two positive coprime integers a and b such that a+ b = l.
For every u and y in J(K) such that y 6∈ W−(g−1)o

⋃
W−(g−1)o+au ∪W−(g−1)o−bu call τ [u, y]

the unique function with divisor

(τ [u, y]) = bW−(g−1)o+au + aW−(g−1)o−bu − lW−(g−1)o

such that τ [u, y](y) = 1. So
τ [u, y] = η[b[au] + a[−bu], y].

Let τ [u] be the class of τ [u, y] in K(J)∗/K∗. When u is an l-torsion point, τ [u] = η[l[au]]
is a level l Theta function. It is a classical result of the theory of Theta functions that
the collection of all η[l[u]], when u runs over J [l](K̄), generate H0(JK̄,OJK̄(lW−(g−1)o)),
see [3, Theorem 3.2.7], in case K has characteristic zero, and [28, § 10], in general, or § 4
below. So, the collection of all τ [u], when u runs over the set J [l](K̄), is a generating set for
P(H0(JK̄,OJK̄(lW−(g−1)o))). So the map u 7→ τ [u] from J to P(H0(J,OJ(lW−(g−1)o))) is
non-degenerate. Hyperplane sections for this map are algebraically equivalent to ablW−(g−1)o.

We pick a random element u in J(K), using the Monte Carlo probabilistic algorithm given
in [9, Lemma 13.2.4]. This algorithm returns a random element u with uniform probability
inside a subgroup of J(K) with index ξ 6 OgO. We then consider the function τ [u, y] where y
is any point in J(K) not in W−(g−1)o ∪W−(g−1)o+au ∪W−(g−1)o−bu. According to Lemma 2,

for every hyperplane H in P(H0(J,OJ(lW−(g−1)o))), the proportion of u ∈ J(K) such that

τ [u] belongs to H is 6 (lg)Og/q. We assume that q is large enough to make this proportion
smaller than 6 1/(2ξ). The probability that τ [u] belongs to H is then 6 1/2.
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Proposition 2 (Random functions). There exists a constant O such that the following is
true. There exists a probabilistic Las Vegas algorithm that takes as input:
• three integers l > 2, a > 1, and b > 1, such that a and b are coprime and a+ b = l;
• a curve C of genus g > 2 over a field K with q elements, such that q > (lg)Og;
• a point O in C(K).

The algorithm returns a pair (u, y) in J(K)2 such that η[u, y] ∈ H0(J,OJ(lW−(g−1)o)) is a
random function with probability measure µ such that µ(H) 6 1/2 for every hyperplane H in
H0(J,OJ(lW−(g−1)o)). The algorithm runs in time gO.(log l).(log q)1+e(q).

In order to find a basis of H0(J,OJ(lW−(g−1)o)) we take I > O.lg. log(lg) and pick I random
elements (ui)16i6I in J(K), as explained above. For every i we find a yi in J(K) such that
yi 6∈W−(g−1)o∪W−(g−1)+aui

∪W−(g−1)o−bui
. We pick another I elements (wj)16j6I such that

wj 6∈W−(g−1)o. We compute τ [ui, yi](wj) for every pair (i, j). We put the corresponding I × I
matrix in echelon form. If the rank is lg we deduce a basis for both H0(J,OJ(lW−(g−1)o)) and
its dual at the same time.

Proposition 3 (Basis of H0(J,OJ(lW−(g−1)o))). There exists a constant O such that the
following is true. There exists a probabilistic Las Vegas algorithm that takes as input:
• three integers l > 2, a > 1, and b > 1, such that a and b are coprime and a+ b = l;
• a curve C of genus g > 2 over a field K with q elements, such that q > (lg)Og;
• a point O in C(K).

The algorithm returns lg triples (ui, yi, wi) ∈ J(K)3 such that (τ [ui, yi])16i6lg is a basis of
H0(J,OJ(lW−(g−1)o)) and (wi)16i6lg is a basis of its dual. The algorithm runs in time

gO.(lg)ω(1+e(lg)).(log q)1+e(q)

where ω is the exponent in matrix multiplication.

One finds in [6, Chapter 15] an elegant presentation of the complexity of matrix
multiplication, a definition of the exponent ω, and a reasonably simple proof of Coppersmith
and Winograd’s inequality ω < 2.41. It is an open question whether ω = 2. The current best
result in this direction is the proof by Le Gall in [15] that ω < 2.3728639.

If the condition q > (lg)Og in the Proposition above is not met, we work with a small
extension L of K, then make a descent from L to K on the result. The resulting basis will
consist of traces of Tau functions.

4. Canonical Theta functions

Let l > 3 be an odd prime. We assume that l is different from the characteristic p of K.
According to equation (1), the divisor W−θ ⊂ J is symmetric. Let L = OJ(lW−θ) be the sheaf
associated with the divisor lW−θ. The Theta group G(L) fits in the exact sequence

1→ Gm → G(L)→ J [l]→ 0.

In § 4.1 we recall the definition of algebraic Theta functions. Level l Theta functions belong
to H0(JK̄,OJK̄(lW−θ)) and they generate it. They are useful to define descent data. We shall
need them in § 5. In § 4.2 we bound the complexity of evaluating Theta functions.

4.1. Defining canonical Theta functions

We recall the properties of canonical Theta functions as defined, for example, in [3, 3.2] or
[28, § 3]. We shall see that canonical Theta functions can be characterized more easily when
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the level l is odd. For u in J [l](K̄), we let θu be a function on JK̄ with divisor l(W−θ+u−W−θ).
We call

au : H0(JK̄,OJK̄(lW−θ)) −→ H0(JK̄,OJK̄(lW−θ))

the endomorphism that maps every function f onto the product of θu and f ◦ t−u. For the
moment, θu and au are only defined up to a multiplicative scalar. We now normalize both of
them. We want the lth iterate of au to be the identity. So θu.(θu ◦ tu). . . . .(θu ◦ t(l−1)u) should
be one. We therefore divide θu by one of the lth roots of the above product to ensure that
au has order dividing l. Now, θu and au are defined up to an lth root of unity. We compare
[−1] ◦ au ◦ [−1] and a−1

u . They differ by an lth root of unity ζ. Since l is odd, ζ has square
root ζ(l+1)/2. Dividing au and θu by this square root we complete their definition.

Proposition 4 (Canonical Theta functions). For every u in J [l](K̄) there is a unique
function θu with divisor l(W−θ+u −W−θ) such that

θu.(θu ◦ tu).(θu ◦ t2u). . . . .(θu ◦ t(l−1)u) = 1 (10)

and
θu ◦ [−1] = (θu ◦ tu)−1. (11)

Further, θ−u = θu ◦ [−1]. The map u 7→ θu is Galois equivariant: for every σ in the absolute
Galois group of K we have

σθu = θσ(u).

Let au be the endomorphism

au : H0(JK̄,OJK̄(lW−θ)) // H0(JK̄,OJK̄(lW−θ))

f � // θu.(f ◦ t−u).

we have alu = 1 and [−1] ◦ au ◦ [−1] = a−u = a−1
u . The map u 7→ au is Galois equivariant.

Proof. There only remains to prove the equivariance property. It follows from the
equivariance of conditions (10) and (11).

For u and v in J [l](K̄) we write

el(u, v) = auava
−1
u a−1

v ∈ µl (12)

for the commutator pairing and

fl(u, v) =
√
el(u, v) = (el(u, v))(l+1)/2

for the half pairing. The action of the Theta group on canonical Theta functions defines the
so called Schrödinger representation and can be described explicitly. See for example [3, § 6.7],
in case K is the field of complex numbers.

Proposition 5 (The Schrödinger representation).

au+v = fl(u, v).avau = fl(v, u).auav,

and
θu+v = fl(u, v).θv.(θu ◦ t−v) = fl(v, u).θu.(θv ◦ t−u), (13)

and
au(θv) = fl(u, v).θu+v.
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Proof. It suffices to prove that au+v = fl(v, u).auav. The other two identities follow
immediately. Set b = fl(v, u).auav. First, we check that b and au+v agree up to a
multiplicative constant. Indeed, au+v maps a function f onto θu+v.f ◦ t−u−v, and b maps
f on to fl(v, u).θu.(θv ◦ t−u).f ◦ t−u−v. The functions θu+v and fl(v, u).θu.(θv ◦ t−u) have the
same divisor, so they are equal up to a multiplicative constant. So are b and au+v. To finish
the proof, there remains to fix this multiplicative constant. According to Proposition 4, it
suffices to prove that bl = 1 and [−1] ◦b ◦ [−1] = b−1. Using equation (12) repeatedly we first
check that

(auav)
l = el(v, u)l(l−1)/2alua

l
v = 1.

So bl = alu+v = 1. Finally

[−1] ◦ b ◦ [−1] = fl(v, u).[−1] ◦ au ◦ [−1] ◦ [−1] ◦ av ◦ [−1],

= fl(v, u).a−u ◦ a−v,
= fl(v, u).el(u, v).(auav)

−1 = b−1,

as required.

4.2. Evaluating canonical Theta functions

We relate the canonical Theta functions to the Eta functions introduced in § 2 and show how
to evaluate them. We assume that we are given u and x in J(K) with lu = 0, and we want to
evaluate θu(x). We assume that x 6∈W−θ. Since l is odd we set

v =
l + 1

2
.u ∈ J(K).

We deduce from equation (13) that

θu(x) = θv(x).θv(x− v)

provided that x 6∈W−θ+v. On the other hand, we deduce from equation (11) that

θv(x).θv(v − x) = 1

provided that x 6∈W−θ ∪W−θ+v. So

θu(x) = θv(x− v)/θv(v − x) (14)

provided that x 6∈ W−θ ∪ W−θ+v. We recall the definition of ϑ given in equation (2), and
notice that θv and η[l[v]] ◦ tϑ have the same divisor. So we may replace θv by η[l[v], y] ◦ tϑ in
equation (14), for any given y. We deduce that

θu(x) =
η[l[v], y](x− v + ϑ)

η[l[v], y](v − x+ ϑ)
= η[l[v], v − x+ ϑ](x− v + ϑ) (15)

provided that x 6∈W−θ ∪W−θ+v.
Thanks to equation (15), evaluating a canonical Theta function θu(x) reduces to the

evaluation of one Eta function. This can be done as explained in § 2.6. Applying Theorem 1
we find that the computational cost is bounded from above by (gl)O.(log q)1+e(q).

Proposition 6 (Evaluating canonical Theta functions). There exists a deterministic
algorithm that takes as input:
• a finite field K with characteristic p and cardinality q;
• a curve C of genus g > 2 over K;
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• a Theta characteristic θ defined over K;
• an odd prime integer l 6= p;
• and two points u and x in J(K) such that lu = 0, and

x 6∈W−θ ∪W−θ+v,

where

v =
l + 1

2
.u ∈ J(K).

The algorithm computes θu(x) in time (gl)O.(log q)1+e(q).

According to Proposition 1 we can accelerate the computation using fast exponentiation.
The resulting algorithm will fail when the argument x belongs to the support of the divisor of
some intermediate factor.

Proposition 7 (Fast evaluation of canonical Theta functions). There exists a deterministic
algorithm that takes as input:
• a finite field K with cardinality q and characteristic p;
• a curve C of genus g > 2 over K;
• a Theta characteristic θ defined over K;
• an odd prime integer l 6= p;
• and two points u and x in J(K) such that lu = 0.

The algorithm returns either FAIL or θu(x) in time gO.(log q)1+e(q). log l. For given K, C, θ,
u, there exists a subset FAIL(K, C, θ, u) of J(K) with density 6 gOg.(log l)/q and such that
the algorithm succeeds whenever x does not belong to FAIL(K, C, θ, u).

5. Quotients of Jacobians

Let V ⊂ J [l] be a maximal isotropic subgroup for the commutator pairing. Let f : J → J/V
be the quotient map. Let L = OJ(lW−θ). The map v 7→ av is a homomorphism V → G(L)
lifting the inclusion V ⊂ J [l]. This canonical lift provides a descent datum for L onto J/V .
We call M the corresponding sheaf on J/V . This is a symmetric principal polarization. In
particular, h0(M) = 1 and there is a unique effective divisor Y on J/V associated with M.
We set X = f∗Y . This is an effective divisor linearly equivalent to lW−θ and invariant by V .
Let u =

∑
16i6I ei[ui] be a zero-cycle in J . Let y be a point on J . We assume that y does

not belong to the support of the divisor
∑

16i6I eiXui
−Xs(u) − (deg(u) − 1)X. Recall that

ηX [u, y] is the unique function on J having divisor

(ηX [u, y]) =
∑

16i6I

eiXui
−Xs(u) − (deg(u)− 1)X

and such that
ηX [u, y](y) = 1.

Set vi = f(ui) ∈ J/V for every 1 6 i 6 I and let v = f(u) =
∑

16i6I ei[vi] be the image of
u in the group of zero-cycles on J/V . There is a function with divisor

∑
16i6I eiYvi − Ys(v) −

(deg(v)− 1)Y on J/V . Composing this function with f we obtain a function on J having the
same divisor as ηX [u, y]. So, ηX [u, y] is invariant by V and can be identified with the unique
function on J/V with divisor

∑
16i6I eiYvi − Ys(v) − (deg(v) − 1)Y , and taking value 1 at

f(y). When dealing with the quotient J/V , it will be useful to represent a point z on J/V by
a point x on J such that f(x) = z. Such an x is in turn represented by a divisor Dx − gO
on C. It is then natural to evaluate functions like ηX [u, y] at such an x. For example, taking
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u = m[u] for u an m-torsion point, the function ηX [u, y] is essentially a Theta function of level
m for the quotient J/V . Evaluating such functions at a few points, we find projective equations
for J/V . This will prove very useful in § 6. Section 5.1 provides an expression of ηX [u, y] as a
product involving a function ΦV defined as an eigenvalue for the canonical lift of V in G(L).
The complexity of evaluating ΦV is bounded in § 5.2.

5.1. Explicit descent

We look for a function ΦV with divisor X − lW−θ on J . Let V D = Hom(V,Gm) be the
dual of V . For every character χ in V D, we denote Hχ, the one-dimensional subspace of
H0(J,OJ(lW−θ)), where V acts through multiplication by χ. Then

aV =
∑
v∈V

av

is a surjection fromH0(J,OJ(lW−θ)) on toH1. We pick a random function inH0(J,OJ(lW−θ))
as explained in Proposition 2, and apply aV to it. With probability >1/2 the resulting function
is a non-zero function in H1. We call this function ΦV . We will explain in § 5.2 how to evaluate
ΦV at a given point on J . We now explain how to express any ηX [u] as a multiplicative
combination of ΦV and its translates. Without loss of generality, we can assume that s(u) = 0
and deg(u) = 0. We assume that y 6∈ (

⋃
iW−θ+ui

)∪ (
⋃
iXui

). The composition ΦV ◦ t−ui
has

divisor Xui
− lW−θ+ui

. The composition η[u, y + ϑ] ◦ tϑ has divisor
∑
i eiW−θ+ui

. So

ηX [u, y](x) = (η[u, y + ϑ](x+ ϑ))l.
∏

16i6I

(ΦV (x− ui))ei .
∏

16i6I

(ΦV (y − ui))−ei .

5.2. Evaluating functions on J/V

We now bound the cost of evaluating ΦV at a given point x ∈ J(K). We assume that l is odd
and prime to the characteristic p of K. We are given two positive coprime integers a and b
such that a+b = l, and two elements u and y in J(K) such that y 6∈W−θ∪W−θ+au∪W−θ−bu.
The function ΦV is the image by aV of some function τ in H0(J,OJ(lW−θ)). We choose τ to
be the function

τ = τ [u, y + ϑ] ◦ tϑ = η[b[au] + a[−bu], y + ϑ] ◦ tϑ.

The K-scheme V is given by a collection of field extensions (Li/K)16i6I and a point wi ∈ V (Li)
for every i such that V is the disjoint union of the K-Zariski closures of all wi. In particular,∑
i di = lg where di is the degree of Li/K and the Li are the minimum fields of definition for

the wi. Equivalently, we may be given a separable algebra L = K[V ] of degree lg over K and
a point

w ∈ V (L) ⊂ J(L).

We are given an element x in J(K) such that x 6∈
⋃
w∈V W−θ+w. The value

aw(τ)(x) = θw(x).τ(x−w) = θw(x).η[b[au] + a[−bu], y + ϑ](x−w + ϑ)

of aw(τ) at x is an element of the affine algebra K[V ]. Its trace over K is equal to ΦV (x).

Theorem 2 (Evaluating functions on quotients J/V ). There exists a deterministic
algorithm that takes as input:
• a finite field K with characteristic p and cardinality q;
• a curve C of genus g > 2 over K;
• a zero-cycle u =

∑
16i6I ei[ui] on the Jacobian J of C such that ui ∈ J(K) for every

1 6 i 6 I, deg(u) = 0, and s(u) = 0;
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• a Theta characteristic θ defined over K;
• an odd prime integer l 6= p;
• a maximal isotropic K-subgroup scheme V ⊂ J [l];
• two classes x and y in J(K) such that y 6∈ (

⋃
iW−θ+ui

)∪ (
⋃
iXui

).
The algorithm returns either FAIL or ηX [u, y](x) in time I.(log |e|).gO.(log q)1+e(q).lg(1+e(lg)),
where |e| =

∑
16i6I |ei| is the `1-norm of e = (ei)16i6I . For given K, C, u, θ, V there exists

a subset FAIL(K, C, u, θ, V ) of J(K) with density 6 I.(log |e|).gOg.lg2

.(log l)/q and such that
the algorithm succeeds whenever none of x and y belongs to FAIL(K, C, u, θ, V ).

6. Curves of genus two

In this section, we assume that the characteristic p of K is odd. We bound the complexity
of computing an isogeny JC → JD between two Jacobians of dimension two. We give in § 6.1
the expected form of such an isogeny. In § 6.2 we characterize the isogeny as the solution of
some system of differential equations. As a consequence of these differential equations, we can
compute such an isogeny in two steps: we first compute the image of a (K[t]/t3)-point on C
by the isogeny, then lift to K[[t]]. We explain in § 6.3 how to compute images of points. The
main result in this section is Theorem 3 below.

6.1. Algebraic form of the isogeny

Let C be a projective, smooth, absolutely integral curve of genus two over K. We assume that
C is given by the affine singular model

v2 = hC(u) (16)

where hC is a polynomial of degree five. Let OC be the unique place at infinity. Let JC be the
Jacobian of C. Let jC : C → JC be the Jacobi map with origin OC . The image of a point P
on C by jC is the class of P −OC . Let D be another projective, smooth, absolutely irreducible
curve of genus two over K. We assume that D is given by the affine singular model y2 = hD(x),
where hD is a polynomial of degree five or six. Let KD be a canonical divisor on D. Call D(2)

the symmetric square of D and let j
(2)
D : D(2) → JD be the map sending the pair {Q1, Q2} on

to the class z = j
(2)
D ({Q1, Q2}) of Q1 + Q2 − KD. This is a birational morphism. We define

the Mumford coordinates

s(z) = x(Q1) + x(Q2),

p(z) = x(Q1). x(Q2),

q(z) = y(Q1). y(Q2),

r(z) = (y(Q2)− y(Q1))/(x(Q2)− x(Q1)).

The function field of JD is K(s,p,q, r). The function field of the Kummer variety of D is
K(s,p,q). We assume that there exists an isogeny

f : JC → JD (17)

with kernel V , a maximal isotropic group in JC [l], where l is an odd prime different from the
characteristic p of K. We define F : C → JD to be the composite map f ◦ jC . There exists a
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unique morphism G : C → D(2) such that the following diagram commutes.

D(2)

j
(2)
D

��

C

G

==

F !!
JD

For every point P = (u, v) on C we have F ((u,−v)) = −F (P ). We deduce the following
algebraic description of the map F

s(F (P )) = S(u),

p(F (P )) = P(u),

q(F (P )) = Q(u),

r(F (P )) = vR(u),

(18)

where S, P, Q, R are rational fractions in one variable. Let OD be a point on D. Let Z be
the algebraic subset of D(2) consisting of pairs {OD, Q} for some Q in D. Let T ⊂ JD be the

image of Z by j
(2)
D . This is a divisor with self intersection

T.T = 2.

The image F (C) of C by F is algebraically equivalent to lT . The divisors of poles of the
functions s, p, q, and r, are algebraically equivalent to 2T , 2T , 6T , and 4T , respectively. Thus,
seen as functions on C, the functions S(u), P(u), Q(u), and vR(u) have degrees bounded by
4l, 4l, 12l, and 8l, respectively. So the rational fractions S, P, Q, and R, have degrees bounded
by 2l, 2l, 6l, and 4l+3, respectively. The four rational fractions S, P, Q, R provide a compact
description of the isogeny f from which we can deduce any desirable information about it.

6.2. Associated differential system

The morphism F : C → JD induces a map

F ∗ : H0(JD,Ω
1
JD/K

) −→ H0(C,Ω1
C/K).

So, the vector (S,P,Q,R) satisfies a first-order differential system. This system can be given
a convenient form using local coordinates. A basis for H0(C,Ω1

C/K) is made of du/v and

u du/v. We identify H0(JD,Ω
1
JD/K

) with the invariant subspace of H0(D×D,Ω1
D×D/K) by the

permutation of the two factors. We deduce that a basis for this space is made of dx1/y1+dx2/y2

and x1 dx1/y1 + x2 dx2/y2. Let M = (mi,j)16i,j62 be the matrix of F ∗ with respect to these
two bases. So

F ∗(dx1/y1 + dx2/y2) = (m1,1 +m2,1.u).du/v,

F ∗(x1 dx1/y1 + x2 dx2/y2) = (m1,2 +m2,2.u).du/v.
(19)

Let P = (uP , vP ) be a point on C. We assume that vP 6= 0. Let Q1 and Q2 be two points on
D such that F (P ) is the class of Q1 + Q2 − KD. We assume that F (P ) 6= 0, so the divisor
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Q1 +Q2 is non-special. We also assume that Q1 6= Q2 and either of the points are defined over
K. Let t be a formal parameter. Set L = K((t)). We call

P (t) = (u(t), v(t))

the point on C(L) corresponding to the value t of the local parameter u−uP at P . The image
of P (t) by F is the class of Q1(t) +Q2(t)−KD where Q1(t) and Q2(t) are two L-points on D.

SpecK[[t]]
t 7→(Q1(t),Q2(t)) //

t7→P (t)

��

D ×D

��
C

F // JD

(20)

From equations (19) and the commutativity of diagram (20), we deduce that the coordinates
(x1(t), y1(t)) and (x2(t), y2(t)) of Q1(t) and Q2(t) satisfy the following non-singular first-order
system of differential equations.

ẋ1(t)

y1(t)
+
ẋ2(t)

y2(t)
=

(m1,1 +m2,1.u(t)). u̇(t)

v(t)
,

x1(t). ẋ1(t)

y1(t)
+
x2(t). ẋ2(t)

y2(t)
=

(m1,2 +m2,2.u(t)). u̇(t)

v(t)
,

y1(t)2 = hD(x1(t)),

y2(t)2 = hD(x2(t)).

(21)

Indeed, if we pull back dx1/y1 + dx2/y2 along the bottom horizontal arrow, then along the
left vertical arrow in diagram (20), we obtain (m1,1 +m2,1.u(t)). u̇(t) dt/v(t). If we now pull
back dx1/y1 + dx2/y2 along the right vertical arrow, then along the top horizontal arrow, we
obtain ẋ1(t) dt/y1(t) + ẋ2(t) dt/y2(t). Equating and dividing by dt, we obtain the differential
equation.

Using the system given in (21) we can recover the complete description of the isogeny,
namely the rational fractions S, P, Q, R, from the knowledge of the image by F of a single
formal point on C. More concretely, we compute the image {Q1(t), Q2(t)} of P (t) by G with
low accuracy, then deduce from equation (21) the values of the four scalars m1,1, m1,2, m2,1,
m2,2. Then, we use equation (21) again to increase the accuracy of the formal expansions up
to O(tOl) and recover the rational fractions from their expansions using continued fractions.
Coefficients of x1(t) and x2(t) can be computed one by one using equation (21). Reaching
accuracy Ol then requires Ol2 operations in K. We can also use more advanced methods
[4, 5] with quasi-linear complexity in the expected accuracy of the result. Both methods may
produce zero denominators if the characteristic is small. In that case we use a trick introduced
by Joux and Lercier [18] in the context of elliptic curves. We lift to a p-adic field having K as
residue field. The denominators introduced by (21) do not exceed pO log(l). The required p-adic
accuracy, and the impact on the complexity, are thus negligible.

6.3. Computing isogenies

We are given a curve C of genus two, a Weierstrass point OC and a maximal isotropic subspace
V in JC [l]. We set

A = JC/V.

Since 2OC is a canonical divisor we set θ = OC . Using this Theta characteristic, we define
a principal polarization Y on A as in § 5. We use the methods given in §§ 3 and 5 to find
nine functions η0 = 1, η1, . . . , η8, such that (η0, η1, η2, η3) is a basis of H0(A,OA(2Y )) and
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(η0, . . . , η8) is a basis of H0(A,OA(3Y )). We thus define two maps e2 : A→ P3 and e3 : A→
P8. Denoting π : P8 P3 the projection

π(Z0 : Z1 : . . . : Z8) = (Z0 : Z1 : Z2 : Z3)

we have π◦e3 = e2. Evaluating the (ηi)06i68 at enough points, we find equations for e3(A) and
e2(A). The intersection of e3(A) with the hyperplane H0 with equation Z0 = 0 in P8 is e3(Y )
counted with multiplicity 3. We now assume that Y is a smooth and absolutely integral curve
of genus two. This is the generic case, and it is true, in particular, whenever the Jacobian
JC of C is absolutely simple. The intersection of e2(A) with the hyperplane with equation
Z0 = 0 in P3 is e2(Y ) counted with multiplicity 2. The map Y → e2(Y ) is the hyperelliptic
quotient. It has degree two. Its image e2(Y ) is a plane curve of degree two. We deduce explicit
equations for a hyperelliptic curve D and an isomorphism D → Y .

We now define a rational map ϕ from JC into the symmetric square of D ' Y by setting,
for z, a generic point on JC

ϕ(z) = Yf(z) ∩ Y, (22)

where f : JC → JD is the isogeny introduced in equation (17), and Yf(z) is the translate of
Y by f(z). Recall that OC is a Weierstrass point on C. We define a map ψ from C into the
symmetric square of D ' Y by setting, for P ∈ C, a generic point, ψ(P ) = ϕ(P − OC). We
check that ψ(OC) is a canonical divisor KY on Y . The difference ψ(P )− ψ(OC) is a degree 0
divisor on Y and belongs to the class f(P − OC). So, ψ : C → Y (2) is the map G introduced
in § 6.1.

We explain how to evaluate the map ϕ at a given z in JC . The main point is to compute the
intersection in equation (22). This is a matter of linear algebra. We pick two auxiliary classes z1

and z2 in JC . We set z′1 = −z−z1 and z′2 = −z−z2. We assume that ϕ(z1), ϕ(z2), ϕ(z′1), ϕ(z′2)
are pairwise disjoint. Seen as a function on A = JC/V , the function ηX [[z1]+[z′1]+[z]] belongs
to H0(A,OA(3Y )). Evaluating it at a few points we can express it as a linear combination of
the elements (ηi)06i68 of our basis

ηX [[z1] + [z′1] + [z]] =
∑

06i68

ci.ηi.

The hyperplane section H1 with equation
∑
i ciZi = 0 intersects e3(A) at Yf(z1)∪Yf(z′1)∪Yf(z).

We similarly find an hyperplane section H2 with equation
∑
i diZi = 0 intersecting e3(A) at

Yf(z2) ∪ Yf(z′2) ∪ Yf(z). So

ϕ(z) = Yf(z) ∩ Y = H1 ∩H2 ∩H0 ∩ e3(A),

is computed by linear substitutions. Altogether, we have proven the theorem below.

Theorem 3 (Computing isogenies for genus two curves). There exists a probabilistic
(Las Vegas) algorithm that takes as input:
• a finite field K of odd characteristic p, and cardinality q;
• an odd prime l different from p;
• a projective, smooth, absolutely irreducible curve of genus two, C, given by a plane affine

singular model as in equation (16);
• a maximal isotropic subgroup V in JC [l] as in § 5.2, such that the curve Y introduced in
§ 5 is smooth and absolutely integral.

The algorithm returns a genus two curve D and a map F : C → JD as in equation (18). The
running time is l2+e(l).(log q)1+e(q).

When Y is not smooth and absolutely integral, it is a stable curve of genus two. The
calculation above will work just as well and produce one map from C on to either of
the components of Y . We do not formalize this degenerate case.
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7. An example

Let K be the field with 1009 elements. Let

hC(u) = u(u− 1)(u− 2)(u− 3)(u− 85) ∈ K[u].

Let C be the projective, smooth, absolutely irreducible curve of genus two given by the
singular plane model with equation v2 = hC(u). Let OC be the place at infinity. Let oC
be the corresponding class in Pic1(C). Let T1 be the effective divisor of degree two defined by
the ideal

(u2 + 247u+ 67, v − 599− 261u) ⊂ K[u, v]/(v2 − hC(u)).

Let T2 be the effective divisor of degree two defined by the ideal

(u2 + 903u+ 350, v − 692− 98u) ⊂ K[u, v]/(v2 − hC(u)).

The classes of T1 − 2OC and T2 − 2OC generate a totally isotropic subspace V of dimension
two inside JC [3]. Let A = JC/V . Let W−oC ⊂ JC be the set of classes of divisors P −OC for P
a point on C. Since OC is a Weierstrass point, we have [−1]∗W−oC = W−oC . Let X ⊂ JC and
Y ⊂ A be the two divisors introduced at the beginning of § 5. Let B ⊂ C be the effective divisor
of degree two defined by the ideal (u2 +862u+49, v−294−602u). Let b ∈ JC(K) be the class of
B − 2OC . For i in {0, 1, 2, 3, 85} let Pi be the point on C with coordinates u = i and v = 0.
The class of Pi in Pic1(C) is denoted pi. We set p∞ = oC and p+ = p0 + p1 − oC ∈ Pic1(C).

For i in {∞, 0, 1,+, 2, 3, 85} let ηi be the unique function on JC with divisor 2(Xpi−oC −X)
and taking value 1 at b. These functions are invariant by V and may be seen as level two Theta
functions on A. Evaluating these functions at a few points we check that (η∞, η0, η1, η+) form
a basis of H0(A,OA(2Y )) and

η2 = 437η∞ + 241η0 + 332η1,

η3 = 294η∞ + 246η0 + 470η1,

η85 = 639η∞ + 827η0 + 553η1.

Call Z∞, Z0, Z1, Z+ the projective coordinates associated with (η∞, η0, η1, η+). The Kummer
surface of A is defined by the vanishing of the following homogeneous form of degree four

597Z2
∞Z

2
0 + 14Z2

∞Z0Z1 + 781Z2
∞Z0Z+ + 819Z2

∞Z1Z+ + 835Z2
∞Z

2
1 + 615Z2

∞Z
2
+

+ 401Z∞Z
2
0Z1 + 833Z∞Z

2
0Z+ + 553Z∞Z0Z1Z+ + 843Z∞Z0Z

2
1

+ 206Z∞Z0Z
2
+ + 418Z∞Z

2
1Z+ + 321Z∞Z1Z

2
+ + 796Z2

0Z1Z+

+Z2
0Z

2
1 + 1000Z2

0Z
2
+ + 856Z0Z

2
1Z+ + 655Z0Z1Z

2
+ + 555Z2

1Z
2
+.

This equation is found by evaluating all four functions at forty points. We set Z∞ = 0 in this
form and find the square of the following quadratic form

611Z0Z+ + 581Z1Z+ − Z0Z1 (23)

which is an equation for e2(Y ) in the projective plane Z∞ = 0. Recall e2 : A→ P3 is the map
introduced in § 6.3. Set

Z2 = 437Z∞ + 241Z0 + 332Z1

Z3 = 294Z∞ + 246Z0 + 470Z1

Z85 = 639Z∞ + 827Z0 + 553Z1.
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We find an affine parameterization of the conic e2(Y ) in equation (23) by setting

Z+ = 1 and Z1 = xZ0.

For i in {0, 1,+, 2, 3, 85} call Di the line with equations {Z∞ = 0, Zi = 0}. There are six
intersection points between e2(Y ) and one of the Di. These are the six branched points of the
hyperelliptic cover Y → e2(Y ). They correspond to the values

{0,∞, 513, 51, 243, 987}

of the x parameter. We set

hD(x) = x(x− 513)(x− 51)(x− 243)(x− 987) ∈ K[x]

and let D be the genus two curve given by the singular plane model with equation y2 = hD(x).
Let OD be the unique place at infinity on D. Let P = (u, v) be a point on C. Using notation
introduced in § 6.1, we call F (P ) the image of P − OC in JD and G(P ) an effective divisor
such that F (P ) = G(P )− 2OD. This divisor is defined by the ideal

(x2 − S(u))x+ P(u), y − v(T(u) + xR(u)) ⊂ K(u, v)[x, y]/(y2 − hD(x))

where

S(u) = 354
u5 + 647u4 + 931u3 + 597u2 + 73u+ 361

u5 + 832u4 + 811u3 + 215u2 + 420u
,

P(u) = 50
u5 + 262u4 + 812u3 + 770u2 + 868u+ 314

u5 + 832u4 + 811u3 + 215u2 + 420u
,

R(u) = 304
u6 + 437u5 + 623u4 + 64u3 + 194u2 + 3u+ 511

u8 + 239u7 + 983u6 + 800u5 + 214u4 + 489u3 + 191u2
,

T(u) = 678
u6 + 697u5 + 263u4 + 895u3 + 859u2 + 204u+ 130

u8 + 239u7 + 983u6 + 800u5 + 214u4 + 489u3 + 191u2
.

We note that the fraction Q(u) introduced in § 6.1 is

Q = hC .(T
2 + R2.P + S.R.T).

We now explain how these rational fractions were computed. We consider the formal point

P (t) = (u(t), v(t)) = (832 + t, 361 + 10t+ 14t2 +O(t3))

on C. We compute G(P (t)) = {Q1(t), Q2(t)} and find

Q1(t) = (x1(t), y1(t)) = (973 + 889t+ 57t2 +O(t3), 45 + 209t+ 39t2 +O(t3)),

Q2(t) = (x2(t), y2(t)) = (946 + 897t+ 252t2 +O(t3), 911 + 973t+ 734t2 +O(t3)).

Using equation (21) we deduce the values

m1,1 = 186, m1,2 = 864, m2,1 = 853, m2,2 = 640.

Using equation (21), again we increase the accuracy in the expansions for x1(t), x2(t), y1(t),
and y2(t) then deduce the rational fractions S, P, R, and T.
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