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Abstract

In this paper we investigate subtractive varieties of algebras that are congruence quasi-orderable. Though
this concept has its origin in abstract algebraic logic, it seems to be worth investigating in a purely
algebraic fashion. Besides clarifying the algebraic meaning of this notion, we obtain several structure
theorems about such varieties. Also several examples are provided to illustrate the theory.
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1. Introduction

In this paper we continue the investigation, started in [ 1], on the algebraic consequences
of the so called Fregean axiom. Originally this axiom was considered in the context of
a very specific logical system, that was proposed by Suszko for formalizing the logic
underlying Wittgenstein’s Tractatus. Independently, Biichi and Owens considered a
purely algebraic notion [9]. Later Pigozzi recognized the connections between the
two notions and began the investigation of what we call now congruence orderable
varieties; in [19] he showed that every point-regular congruence orderable variety is
equivalent to a variety of Skolem lattices with compatible operations. This was the
first representation theorem of this kind; later Idziak ez al. [15] proved that every
point-regular congruence permutable congruence orderable variety is equivalent to a
variety of equivalential algebras with compatible operations. They also showed that
a point-regular congruence orderable variety is strongly point-regular if and only if
it is arithmetical; in this way they provided an alternative formulation of the results
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in [19]. Our contribution to this series is in [1]; there we have shown that a subtractive
variety with definable principal ideals is equivalent to a variety of Hilbert algebras
with compatible operations.

At the same time closely related results were being obtained in a logic context;
discussing them in details would constitute a detour from the matter at hand, but we
refer the reader to [10, 11, 12, 13].

In this paper we take this investigation in yet another direction, by considering
the more general class of congruence quasi-orderable varieties. This concept arises
naturally if one works in the context of ideal theory, which originated with Ursini
[20] and has been developed in [3, 4, 5]. Combining the techniques already used
in [1, 15, 19] with the methods of ideal theory we obtain a number of analogs of
the representation theorems mentioned above. More specifically Theorem 3.6 is a
(partial) generalization of the results in [15], Theorem 4.2 is a (partial) generalization
for the results in [1] and Theorem 4.13 is a (partial) generalization for the results
in [19].

It is not yet clear if the notion of congruence-orderability has a logical meaning,
nor if the assumption of subtractivity (which we will make throughout the paper) is
absolutely necessary. It is certainly crucial in all our proofs, but we cannot exclude
the possibility of replacing it with a weaker concept.

We follow more or less the standard notation of general algebra; in particular if A is
an algebra, then Con(A) denotes its congruence lattice and 1, and 0, denote the largest
and smallest elements of Con(A). If X € A?, then 94 (X) is the smallest congruence
containing all pairs in X and if X = {a, b} we write #4(a, b). For 6 € Con(A) and
(a, b) € 6, sometimes we use the relational notation ‘a @ b’. If X € A’ and a € A,
then a/X = {(b : (a,b) € X}; hence if 6 € Con(A) and a € A, then a/@ is the
congruence class of a. Finally, if ¥ € A, Sub,(Y) is the smallest subalgebra of A
containing Y.

A variety ¥ is pointed if it has a constant, which will be denoted by 0, in its type.
On each algebra A € ¥ one can consider the quasi-order <,: fora, b € A,

a<a b ifandonlyif 3,(0,a) C 9,(0, b).

If ~, = 0,, then the algebra A is said to be congruence orderable; if this happen
throughout a class ¢ of algebras, then the class is congruence orderable [1, 15].
The reason for the name is that the quasi-ordering <, becomes a partial ordering in
this case. We shall deal with a weaker notion: an algebra A in a pointed variety is
congruence quasi-orderable if ~, € Con(A). Likewise a class ¥ of algebras is
congruence quasi-orderable if each of its members is congruence quasi-orderable.
Let us start with an easy fact about =,

https://doi.org/10.1017/51446788700003025 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003025

[3] Congruence quasi-orderability 423

PROPOSITION 1.1. For any pointed algebra A and any o € Con(A) we have
(%A Vv (x)/a g %A/ua
where the join is evaluated in the lattice of equivalence relations.

PROOF. Choose a,b € A; it is obvious that if a<,b, then a/a <4, b/a for
each @ € Con(A). Suppose now that (a/a, b/a) € (=, V a)/a. The pair (a, b)
lies in the transitive closure of o o &,, that is contained in the transitive closure of
o o %,. Hence there is a chain of elements of A, a = ¢y, ¢y, ..., ¢, = b such that for
every i either (¢;, ¢;41) € @ or ¢; %4 ¢i;1. Factoring by «, either ¢;/a = ¢;4 /@ or
Ci/o Saje Cir1/a. Hence a/a = cp/a Saja €./ = b/a. By symmetry we conclude
that (a/a, b/a) € Xy . O

Unfortunately, in general, the inequality in Proposition 1.1 remains strict even if
A is congruence quasi-orderable. In particular, it might happen that A is congruence
quasi-orderable and =2, ~, > 0a/~,, a characteristic we would like to avoid. For this
(and other) reason we restrict our attention to subtractive varieties, a move that has
already been proven useful when dealing with congruence orderable varieties {1]. We
postpone the definition of subtractive variety to the next section; however we would
like to point out the following facts.

¢ A subtractive congruence orderable~variety is point regular, hence Fregean ({1,
Theorem 2.1]).

e There are congruence orderable varieties that fail to be subtractive ([1, Exam-
ple 2.3]).

e There are subtractive varieties that are congruence quasi-orderable but not con-
gruence orderable (Proposition 4.4).

o There are subtractive varieties that fail to be congruence quasi-orderable (Ex-
ample 2.10).

o If A belongs to a congruence quasi-orderable subtractive variety, then Ry /~, =
04/~,. Hence A /=, is congruence orderable (Corollary 2.2).

o The class of congruence orderable algebras in a congruence quasi-orderable
variety plays a very important role.

2. Characterizing subtractive congruence quasi-orderable varieties

Subtractive varieties have been widely investigated in the past years (see for instance
[5] and the extensive bibliography therein). If ¢ is a class of similar pointed algebras,
aterm p(Xy,...,Xm, Yi,--.,Ya) is a J -ideal term in y (and we write p(X,y) €
IT »(y)) if the identity p(x,0,...,0) = O holds in ¥. A nonempty subset I of
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A € X is a X -ideal of A if for any p(%,5) € ITx (), ford € Aand b € I,
pla, 5) € I. Under inclusion, the set I (A) of all ¥ -ideals of A is an algebraic
lattice. If H C A, the ideal (H)Z generated by H is the set {p(a, b) : px,y) €
ITx(y),a € A, beH }. In contrast with the previous notation we shall denote by
(@)¥ the principal X -ideal generated by {a}. Note that (0);¥ = {0}. When ¥ is {A}
(or, equivalently, the variety V(A) generated by A), then a ¥ -ideal is called an ideal
and we drop all the affixes and suffixes in sight. Using just the definition of ideal term
one sees easily that, for any reflexive subalgebra S of A x A, 0/S = {a : (0, a) € S}
is an ideal of A. Thus 0/6 € I(A) for any 8 € Con(A).
A class of pointed algebras £ is subtractive if for some binary term s(x, y)

s(x,0) =~ x, s(x,x) =0

hold in ¢. In the sequel any term satisfying the above equation will be called
informally a witness term or a term witnessing subtractivity for ¥. Several charac-
terizations of subtractive varieties can be found in [2, 3, 20]. Here we recall that the
following are equivalent:

(1) ¥ is subtractive.

(2) The congruences of each algebra in ¥ permute at 0, that is for any A € ¥,
6,9 € Con(A)anda € Aif (0,a) e o pthen (0,a) € ¢ 0 6.

(3) Forall A € ¥, the mapping 0/ is a lattice epimorphism from Con(A) into I(A).
It is a nontrivial fact [20, Proposition 1.4] that in a subtractive variety ¥, Iy (A) = I(A)
for each member A € ¥. Thus if A belongs to a subtractive variety ¥ we shall denote
the lattice of ideals of A simply by I(A), without any reference to ¥

If a subtractive variety ¥ happens to be also (congruence) point regular, then the
mapping 6 + 0/ is an isomorphism from Con(A) to I(A), for each A € ¥. In this
case the variety is said to be ideal-determined (groups, rings, Boolean algebras, vector
spaces etc. form varieties of this kind). Any subtractive congruence orderable variety
is ideal-determined [1, Theorem 2.1].

We say that a pointed algebra is subtractive if it generates a subtractive variety.
The third fact above implies that each ideal of a subtractive algebra A is 0/8 for some
6 € Con(A); in particular we must have, for each a € A, 0/94(0, @) = (a)a. This
allows us to express congruence quasi-orderability solely in terms of principal ideals.
Since for any algebra A and u, v € A,

01\(“’ v) = I’A({u} X u/ﬂA(ua 'U)),
if A is subtractive, taking ¥ = 0 and v = a or v = b we get at once
a=, b ifandonlyif (a)s = (b)a.

The fact that in a subtractive variety ideals can be always described via (ideal) terms
is a powerful tool for investigating the congruence =,.
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PROPOSITION 2.1 ([3]). Let A be a subtractive algebra, let h : A — B be an onto
homomorphism and let X C A. Then for any a € A,

h(a) € (h(X))p ifandonlyif a e (X)a Vv O0/kerh.

COROLLARY 2.2. Let A be a subtractive algebra. For each « € Con(A) and
a,be A

ajo =y, bja ifand only if (a)a vV 0/a = (b)s v 0/a.

Hence if A is congruence quasi-orderable, then =2 ., = Oas~, and A/==, is congru-
ence orderable.

PROOE. By definition a/a <4, b/ if and only if a/a € (b/a)as. If 7 is the
canonical epimorphism from A to A /«, this is equivalent to say that 7 (a) € (7 (b)) /e
and, by Proposition 2.1, this happens if and only if a € (b), V 0/a.

For the second fact, observe that /=, = {0} = (0)a. Then a/~, =y /~, b/~ if
and only if @ &, bifand only if a/~, = b/~,. O

The description &%, /, above seems at first very encouraging. In particular it looks
like we might be able to transfer congruence quasi-orderability from an algebra to
its homomorphic images. This point, however, is not very clear yet and it will be
discussed some at the end of this section. Meanwhile we shall offer two different
characterizations of congruence quasi-orderable subtractive varieties. The first is
based on the investigations in [3, 4] of the relationships between ideals and congruences
in subtractive algebras.

For any pointed algebra A and / € I(A) one may consider the congruence

1F=\/{6:0/6 =1).

This congruence has been studied in detail in [4] where the following lemma is proved
implicitly.

LEMMA 2.3. Let A be subtractive. Then for any I € 1(A)
I° = {(a,b) : forall p € Pol,(A), p(a) € I ifandonlyif p(b) € I}.
LEMMA 2.4. Let A be subtractive with witness term s(x,y). Then
0y S {(a,b):s(a,b) =s(b,a) =0} C ~,.

Moreover, (0)} is the largest congruence contained in X,
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PROOF. To see that (0); € {(a, b) : s(a, b) = s(b, a) = 0} apply Lemma 2.3 with
I = (0)4, p(x) = s(a,x) and g(x) = s(x, b). For the other inclusion we prove a

stronger statement: If A is subtractive and s(x, y) is any subtraction term, then for all
a,beA,

a=, b ifandonlyif s(a,b),s(b,a)e (a)aN(b)a.

If a =4 b, then s(a, b), s(b, a) € (a)a = (a)a N (b)4, since s(x, y) is an ideal term
inx, y.

Conversely assume that s(a, b), s(b,a) € (a)a N (b)a. Let u(x,y,z) = s(x,
s(s(x, y), 2)); it is easily checked that u is an ideal term in y, z, hence

a =u(a, b, s(a, b)) € (b)a, b=u(b,a,s(b,a)) € (a)a

and therefore a =, b.
Finally, if 6 C =,, then 0/0 = 0/~, = {0}. Thus 6 C (0). O

COROLLARY 2.5. Let A be a subtractive algebra. Then A is congruence quasi-
orderable if and only if for any binary term s(x, y) witnessing subtractivity for A one
has

~,

~a = {(a, b) : s(a, b) = s(b, a) =0} = (0).

COROLLARY 2.6. Let A be subtractive and suppose that A /6 is congruence quasi-
orderable for some 8 € Con(A). Then

(0/6)* = {(a, b) : s(a, b), s(b, a) € 0/0).

PROOF. The proof is based on the following fact, whose proof is straightforward.
If h: A — Bis an epimorphism and / € I(B), thenforany a, b € A

(a,b) € (h7'(1))y ifandonlyif (h(a), k(b)) €I’

Let & be the natural epimorphism from A onto A/6. By Corollary 2.5 applied to A/8
we get
(a,b) € (0/6)° = (h~'(0)); ifandonlyif (h(a), k(b)) € )46
if and only if h(s(a, b)), h(s(b,a)) =0
if and only if s(a, b), s(b, a) € h'0)=0/6. O
COROLLARY 2.7. Let A be a subtractive algebra, s(x, y) be any term witnessing
subtractivity for A, a,b € A and I = (s(a, b), s(b,a))s. If AJ/I® is congruence

quasi-orderable, then O/9,(a, b) = 1. In particular, the latter is a compact element
in I(A).
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PROOF. Itis obvious that I C 0/¥,(a, b) in any case. For the converse, (a, b) € I¢
and by Corollary 2.6 we have that s(a, b), s(b, a) € I and thus ¥4 (a, b) € I°. Hence
0/04(a, b) € I and in fact equality holds. O

Let A be a subtractive algebra, s(x, y) a subtraction term for A and let I € I(A).
Consider the term u(x, y, z) defined in the proof of Lemma 2.4; u(x, y, z) is an
ideal term and, for any a,b € A, a = u(a, b, s(a, b). It follows at once that
a € (a)a V (s(a,b)s and b € (a)a V (s(b,a))s. Thus if 0/94(a, b) C I, then
(@QaVvI=(b), VI

PROPOSITION 2.8. Let A be a subtractive algebra and a € Con(A). If for any
a,beA

(@)a VO/a = (b)p vO/a implies 0/05(a,b) € 0/a,

then A/a is congruence quasi-orderable.

PROOF. Let a/a, b/a € A/a with a/a %2, b/a. By Corollary 2.2 this implies
(a)a vV O/a = (b)s Vv O/a and thus 0/%,(a, b) € 0/a. If p(x) € Pol,(A), then
s(p(a), p(b)), s(p(b). p(a)) € 0/Va(a, b) and hence s(p(a), p(b)), s(p(b), p(a)) €
0/a. If p(a) € 0/, then

pb) =s(p®),00=s(p®),pa) a0

and similarly if p (b) € O/a, then p(a) € 0/a. By Lemma 2.3 (a/a, b/a) € (0/a)y .
and by Lemma 2.4 we conclude that (0/c)j o = Naa and A/« is congruence quasi-
orderable. (]

We are now ready to present the first characterization of congruence quasi-orderable
subtractive varieties.

THEOREM 2.9. For any subtractive variety ¥ the following are equivalent:

(1) ¥ is congruence quasi-orderable.
(2) ForeachAeV,Icl(A)anda,be A

(@aVvI=(®b)svI implies 0/0s(a,b) < I

PROOE. Assume that ¥ is congruence quasi-orderable. If s(x, y) witnesses subtrac-
tivity for %, then 0/94(a, b) = (s(a, b), (s(b, a))a by Corollary 2.7 and congruence
quasi-orderability. Suppose that (a)s VI = ()4 vV I and let I = 0/«a. By Corol-
lary 2.2 (a/a)a/e = (b/)aja, thus s(a, b)/a = O/a by Corollary 2.5. It follows that
s(a, b) € O/a = 1. Similarly, s(b, a) € I and so we conclude that 0/3,(a, b) C I.

For the converse, apply Proposition 2.8 to each A € ¥, taking I = (0), and
a=0,. 4
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The second characterization of congruence quasi-orderable subtractive varieties is
based on the characterization of congruence orderable varieties in [15]. If ¥ is a
subtractive variety, the class

Yi={Ae¥:(0) =04

has been investigated in [4] and it has also very strong connections with Blok and
Pigozzi’s theory of algebraizability [7]. In [4, Section 3] some of these connections
are discussed (but see also [8] for additional information). If ¥ is also congruence
quasi-orderable, then via Corollary 2.2 and Lemma 2.4

Y. ={A/~r A eV}
={Ae¥ :forall a,be A, s(a,b)=s(b,a) =0 implies a = b},

and therefore ¥; is a quasivariety, consisting precisely of the congruence orderable
algebras in ¥. This fact is an effective tool for showing that a subtractive variety is
not congruence quasi-orderable.

EXAMPLE 2.10. Let A = ({0, a, b, 1}, 5) pe the algebra whose s-table is

SO = O
[ R = B i

- R O
- > K OO
© O O OfR

The variety ¥ = V(A) is subtractive (witness s(x, y)) and one easily sees that A
is simple, hence A € ¥,. However, B = ({0, a, 1}, s) is a subalgebra of A and
0/9g(a, 1) = {0}. Hence B ¢ ¥, so ¥, is not closed under subalgebras and it is not a
quasivariety. Thus ¥ cannot be congruence quasi-orderable.

If ¢ is a class of algebras and A € ¢, then a ¢ -congruence of A (a relative
congruence of A) is a 8 € Con(A) such that A/f € ¥. If X is a quasivariety,
then the relative congruences form an algebraic lattice Con (A), in general not a
sublattice of Con(A).

If ¥ is a congruence quasi-orderable subtractive variety and A € ¥, we denote
with Con, (A) the lattice of ¥;-congruences of A. It is easy to check that

Con,(A) = {0 € Con(A) : (0/8)° = 8}.

The following proposition summarizes the facts we are going to use from [4, Theo-
rem 3.13 and Proposition 3.14].
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PROPOSITION 2.11. Let ¥ be a subtractive variety such that ¥, is a quasivari-
ety.
(1) For each A € ¥ and for any upward directed family (I, : y € T') of ideals of

A, we have .
(U 1,) =Jr.

yer yel

(2) Foreach A € ¥, we have Con,(A) = I(A).

In particular, a congruence quasi-orderable subtractive variety satisfies (1) and (2)
above.

We shall now characterize congruence quasi-orderable subtractive varieties. We
start recalling that congruence orderable varieties (subtractive or not) have been char-
acterized in [15] (but see also [1]). We recall that an algebra A is subdirectly irreducible
if Con(A) has exactly one nontrivial minimal element p, called the monolith.

THEOREM 2.12. (1) IfA is subdirectly irreducible and congruence orderable and
W is the monolith of A, then |0/ | = 2 and all the other p-blocks are trivial.
(2) A pointed variety is congruence orderable if and only if each subdirectly irre-
ducible member of ¥ is congruence orderable.

A condition similar to (1) above must hold in any congruence quasi-orderable
algebra.

LEMMA 2.13. Let A be a congruence quasi-orderable algebra. If A is subdirectly
irreducible with monolith , then either 0/u = {0} or |0/u| = 2 and all the other
u-blocks are trivial.

PROOE. Either &, = 0, or &, > 0,. In the first case, |0/u| = 2, by Theorem 2.12.
In the second one, 1 € =,. Since 0/~ = {0} we get 0/u = {0}. O

It is unlikely that the above condition is sufficient for a variety to be congruence
quasi-orderable, not even in the subtractive case. The problem is that the class of
congruence orderable algebras in a congruence quasi-orderable variety must be a
quasivariety and the condition simply does not seem strong enough. We do not have
any example yet, but to amend that we offer a different characterization.

THEOREM 2.14. For a subtractive variety ¥ the following are equivalent.

(1) V¥ is congruence quasi-orderable.

(2) Y. is a quasivariety and in any relative subdirectly irreducible A € ¥, { that is,
Con, (A) has a unique nontrivial minimal element] with relative monolith i, |0/ | = 2
and all the other blocks are trivial.
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PROOF. If ¥ is congruence quasi-orderable, then ¥; is a quasivariety. If A € ¥,
then A is congruence orderable and, by Proposition 2.11(2), Con,(A) = I(A). Hence
if A is relatively subdirectly irreducible, then I(A) has a unique minimal nontrivial
ideal I, that must be principal, say I = (d)a. If a,b € A with a,b # 0, then
(d)a C (a)a N (b)a. Now let o be the relative monolith and suppose that (a, b) € u.
Since ¥ is subtractive, (d) = 0/u and for any s(x, y) witnessing subtractivity for ¥
we have

sa, b),s(b,a) € 0/pu = (d)a S (@)a N (D)a.

By (the proof of) Lemma 2.4, we get a =, b and hence a = b, since A is congruence
orderable. It follows that (2) holds.

Assume now (2) and suppose that ¥ is not congruence quasi-orderable. Thus there
exists an algebra A € ¥ and a, b € A with a &, b, but (a, b) ¢ (0)}. Since we are
in a subtractive variety in fact (a)a = (b)4 and hence (a/(0)3)as0r = (b/(0)3)a/0y-
Therefore we may assume that there is an algebra A € ¥, anda, b € A witha =, b
but @ # b. Then

Bala, b) € 94(0, a) v (0, b) = 94 (0, a).
Let now =
&F = {6 € Con.(A) : (a, b) ¢ 6).
The set & is nonempty, since 04 € &#. Letnow (6, : y € I') be a chain in #. Then

6 = \/yer 6, € Con(A) and clearly (a, b) ¢ 6. Moreover, by Proposition 2.11 (1)
and subtractivity,

©0/6)° = (0/\/0y) = (\/ 0/9,) =\ /8, =\/6, =9,
yel yel yel yel

hence 8 € &#. By Zorn’s Lemma, # has a maximal element 8 and, by the second
homomorphism theorem, A /B is a relative subdirectly irreducible algebra in Con(A).
Moreover, the pair (a/8, b/B8) must lie in the relative monolith of A/S. By hypothesis

0/8 € {a/B, b/B}, say 0/8 = a/B. But then
ﬁA(a’ b) g 0A(0$ a) g ﬂv
a contradiction. Thus (2) implies (1). O

REMARK 2.15. (1) Itiseasy enough to find a subtractive variety ¥ such that ¥, is
a proper quasivariety. There exists a variety ¥ ([4, Example 4.5]) with the following
properties:
e ¥ has basic operations *, 0, where * is binary and O is constant.
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e V¥ is subtractive and for any A € ¥ the relation {(a, b) : axb = b *a = 0}
is a congruence of A, thus it coincides with (0)%.

e ¥, is termwise equivalent to the class of BCK-algebras, a quasivariety that is
not a variety [21].

It turns out that ¥ is exactly the variety generated by the quasivariety of BCK-algebras.
However ¥ is non congruence quasi-orderable.

(2) In the sequel we shall see that ¥, is a variety when ¥ is subtractive, con-
gruence quasi-orderable and has other properties (Corollary 3.3, Theorem 4.2 and
Corollary 4.12). In fact, all the examples we know of subtractive congruence quasi-
orderable varieties satisfy the hypotheses of the theorem and corollaries above, so we
do not know what happen in the general case.

(3) A question related to the problem in (2) is the following: let 2 be a proper
quasivariety of subtractive congruence orderable algebras. Is V(2) congruence quasi-
orderable? In particular, it seems crucial to determine necessary and sufficient condi-
tions on A to conclude that A/« is congruence quasi-orderable for any o € Con(A).
The condition in Proposition 2.8 is sufficient but certainly not necessary.

3. Quasi-permutability of congruences

An equivalential algebra [16] is an. algebra (A, @, 0) satisfying the following
identities
(E) cx@x)®dy=~y;
(E2) (cDy)®)Bz(x0)D(yd2);
(E3) (xd)B((xD)P))B((xDP)B)=xDYy.
It can be shown that x @& x & y @ y is an identity of equivalential algebras. Hence
0 =~ x @ x is an equationally definable constant satisfying alsox @0~ x ~ 0 ® x.
Moreover x @ y = 0 implies x = y. The variety of equivalential algebras is ideal
determined, it is not congruence distributive (since it contains the variety of Boolean
groups) and it is congruence permutable with the Mal’cev term

mx,y, ) =((x®y)®z2)®{((x D) ) Sx).

Let S = (S, v, 0) be a lower bounded semilattice. It may happen, for some a, b € §,
that the set {c : aV ¢ = bV ¢} has a smallest element. In this case it is denoted by a® b
and is called the dual symmetric relative pseudocomplement of a and b. The lemma
below is well known and it is just a consequence of the definition of equivalential
algebras.
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LEMMA 3.1. If a subset E of a lower bounded join semilattice contains 0 and each
two elements in E have a dual symmetric relative pseudocomplement that belongs to
E, then (E, @, 0) is an equivalential algebra.

For any pointed algebra A the compact ideals of A form a lower bounded join
semilattice, denoted by CI(A). If A is also subtractive and congruence quasi-orderable,
then for any a, b € A the ideal 0/3,(a, b) is compact (Corollary 2.6) and moreover
0/9a(a, b) = (a)a D (b)a, the dual symmetric relative pseudocomplement of (a),
and (), in CI(A) (Theorem 2.9). We will investigate the case in which 0/%a, b), is
also principal; from now on we denote by PI(A) the set of principal ideals of a pointed
algebra A.

Let A be a subtractive algebra. An equivalential term of A is a binary term e(x, y)
such that 0/9,(a, b) = (e(a, b)), foralla, b € A.

THEOREM 3.2. For a congruence quasi-orderable subtractive variety ¥ the follow-
ing are equivalent:
(1) ¥ has an equivalential term.
(2) Forall A € ¥ andanya, b € A, 0/94(a, b) is principal.
(3) There is a binary term e such that (A, e, 0}/, is an equivalential algebra for
allAe. )
(4) There is a binary term e such that for any A € ¥ and a € A, e(a,a) = 0,
(e(a, 0))a = (a)a = (e(0, a))a.
(5) There is a binary term e such that forany A € ¥ and a, b € A,

(@)a = (b)a ifandonlyif e(a,b) =0.

PROOF. (1) implies (2) from the definition of equivalential term. Assume then
(2) and let F be the algebra in ¥ freely generated by {x,y,z,2,...}. Then
0/9Vr(x, y) is principal, hence there isaterm t(x, y, zi, .. ., z,) such that 0/ (x, y) =
tx,y,z,...,2))F Lete(x,y) = t(x,y,x,...,x). We show that e(x, y) is an
equivalential term for ¥ by proving that forany A € ¥ anda,b,c€ A

3.1 c €0/0,(a,b) ifandonlyif c € (e(a,b))a.

Let A be a finitely generated algebra in ¥'. Let ¢ be an onto homomorphism from F
to A such that ¢(x) = ¢(z)) = --- = ¢(z,) = aand f(y) = b. Let ¢ € A and lét
u € F with ¢(u) = c. Using Corollary 2.6 and Proposition 2.1 we get the following
chain of equivalences.

c € 0/0x(a,b) ifandonlyif c € (s(a,b),s(b,a))a
ifand only if @(u) € (s(p(x), p(¥)), s(@(¥), p(x)))a
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ifandonlyif w € (s(x,y), s(y,x))r vV O/ ker(p)
ifand only if u € 0/9g(x,y) v 0/ ker(p)
ifandonlyif we (¢t(x,y,21,...,2.))r V 0/ ker(p)
ifandonly if ¢(u) € (p(t(x,y,21,...,2))A
ifandonlyif ce€ (¢t(a, b,a,...,a))s = (e(a, b))a.

Hence (3.1) holds for finitely generated algebras. Suppose that B is not finitely
generated and let a, b, c € A with ¢ € 0/9g(a, b). Since 0/Pg(a, b) is compact,
there exists a finitely generated subalgebra A of B with ¢ € 0/94(a, b). Therefore,
¢ € (e(a,b))a € (ela, b))g. If ¢ € (e(a, b))s, since (e(a, b))g is principal, there
exists a finitely generated subalgebra A of B with ¢ € (e(a, b))a. Therefore, ¢ €
0/94(a, b) € 0/%g(a, b). We have shown that (1) and (2) are equivalent.

If (2) holds, then (PI(A), &, (0),) is an equivalential algebra by Theorem 2.9
and Lemma 3.1. The mapping a +— (a), is a homomorphism from (A, e, 0) to
{PI(A), &, 0) whose kernel is &2,. Therefore, (3) holds. If (3) holds, then (4) holds
since the equations e(x, x) = 0 and e(x, 0) = x = ¢(0, x) hold in the equivalential
algebra (A, e, 0)/~,.

Let us assume (4) First note that e(a, b) 94(a, b) e(a, a) = 0, hence (e(a, b))s <
0/8%4(a, b). Next

e(0, ) 94(0, a) e(a, b) 94 (0, e(a, b)) 0,

hence e(0, b) € (a)a Vv (e(a, b))a. Since the latter is an ideal, from the hypothesis we
have b € (a), V (e(a, b))a. A symmetrical argument yields a € (b), Vv (e(a, b))a, so

(@)a V (e(a, b))a = (b)a V (ela, b)) 4.

By Theorem 2.9, 0/P%4s(a, b) C (e(a, b))a and therefore equality holds. Thus (4)
implies (2).

Clearly (3) implies (5) via the properties of equivalential algebras. Finally assume
(5) and consider the operation on CI(A) defined by (@)s © (b)a = (e(a, b))x. We
claim that e(x, y) is the symmetric dual relative pseudocomplement of a and b in
CI(A), that is, (e(a, b))x = 0/94(a, b). By hypothesis e(a, a) = 0, hence

e(a, b) 9a(a, b) e(a,a) =0

so that (e(a, b)) € 0/P4(a, b). Let now (e(a, b)), = 0/6 for some 6 € Con(A).
Then e(a/6, b/8) = 0/6, which implies that (a/0)as = (b/6)as. An application of
Corollary 2.2 gives

(@)a v (e(a, b))a = (b)a V (e(a, b))a.

By Theorem 2.9, 0/%,(a, b) € (e(a, b))a, therefore equality holds. Thus (5) im-
plies (2). ]
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COROLLARY 3.3. Let ¥ be a subtractive congruence quasi-orderable variety with
an equivalential term. Then the class ¥, is a congruence orderable congruence
permutable variety.

PROOF. It suffices to show that the class ¥; is closed under homomorphic images.
Infact ¥, = (A € ¥ : (A, e, 0) is an equivalential algebra}, thus, if it is a variety then
the Mal’cev term for equivalential algebras works as a Mal’cev term for 7;. If A € ¥,
and B is a homomorphic image of A, then (B, e, 0) is clearly again an equivalential
algebra. Thus B € ¥, and ¥; is a variety. a

In [15] it is basically shown that congruence orderable varieties with an equivalential
term coincide with congruence permutable congruence orderable varieties. We shall
see that similar result holds for congruence quasi-orderable varieties.

Let A be a pointed algebra. A quasi-Mal’cev term for A is a ternary term w(x, y, z)
such that forany a, b € A

(w(a, b, b))a = (a)a (w(a, a, b))a = (b)a.

The following proposition is essentially contained in [3, (1.12)]. We reproduce the
easy proof for the reader.

PROPOSITION 3.4. If ¥ is a pointed variety with a quasi-Mal’cev term w(x, y, 2),
then ¥V is subtractive.

PROOF. Lett(x,y) = w(x, y,0). IfA € ¥, then(¢t(a, 0))s = (a)a and (¢(a, a)) =
(0)4, that is, t(a, a) = 0. Now suppose that for some ¢, 8 € Con(A) (a,0) € 6 0 ¢.
Thenthereisab € A witha 8 b ¢ Oandsot(a,a) = 06 t(a, b) ¢ t(a,0). It follows
that t(a,0) € 0/(6 o ¢) and the latter is an ideal, since 8 o ¢ is clearly a reflexive
subalgebra of A x A. From (¢(a, 0))s = (a)x we deduce that a € 0/(6 o ¢) as well,
and so the congruences of A permute at 0. a

From Lemma 2.13 it follows that the monolith i any congruence orderable subdi-
rectly irreducible A has a unique nontrivial block, that is 0/, and that block contains
only one element different from 0. Following [15] we shall denote this element by .
The following lemma is crucial.

LEMMA 3.5. Suppose that ¥ is a congruence quasi-orderable subtractive variety
and let t(x, y) be a binary term such that for any congruence orderable subdirectly
irreducible A € ¥, t(0,x4) = 5. Ift(x,x) = 0 holds in ¥, then for any algebra
B e ¥ and b € B we have t(0, b) =y b.
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PROOF. It is clear that for any b € B we have (¢£(0, b))z € (b)s, since (b, b) = 0.
Suppose that the inclusion is proper, that is, (0, ) ¢ 95(0, £(0, b)). Pick a maximal
congruence S containing (0, ¢ (0, b)) but not (0, b). Then of course B/ 8 is subdirectly
irreducible; by maximality of 8, the monolith of B/ 8 must contain the pair (0/8, b/8),
which are distinct, since (0, b) ¢ 8. From Lemma 2.13 follows that B/ is congruence
orderable and »g;5 = b/f. Hence

b/B=1(0/B,b/p) =1(0,b)/B=0/B

a contradiction. This yields the conclusion. O

THEOREM 3.6. For a congruence quasi-orderable variety ¥ the following are
equivalent:

(1) ¥ is subtractive and has an equivalential term.
(2) ¥ has a quasi-Mal’cev term.

PROOE. If ¥ is subtractive and has an equivalential term, then by Theorem 3.2 there
is a binary term e(x, y) such that for any A € ¥, (A, e, 0)/=, is an equivalential
algebra. But equivalential algebras are congruence permutable, hence the Mal’cev
term for equivalential algebras works as a quasi-Mal’cev term for ¥.

Conversely, if ¥ has a quasi-Mal’cev term w(x, y, z) then it is subtractive by
Proposition 3.4. Define a binary term

e(x,y) = w(w(, w(0,x, y), w0, y, x)),0, w0, x, y)).

Then, using the trivial fact that w(0, x, x) = 0 we get that e(x, x) = 0 holds in ¥.

Now let A be a congruence orderable subdirectly irreducible member of ¥. Then
from (w(*a,0,0))a = (*a)a = {0, %2} we get w(x,,0,0) = *, and similarly
w(0, 0, x4) = »4. So

e(O, *A) = w(U)(O, *A w(O’ *A, 0))9 0? *A)v
e(*Av 0) = w(w(os w(ov *A 0)9 *A)v 0, w(09 *A, 0))-

Now w(0, 4, 0) € {0, »,} and considering either one of the possible values we get
e(0, *,) = e(xs, 0) = «, in both cases. Hence by Lemma 3.5, for any B € ¥ and
b € B, (e(b,0))g = (b)g = (e(0, b))g. An application of Theorem 3.2 gives the
desired conclusion. 0

REMARK 3.7. We could add a third equivalent condition to Theorem 3.6. In fact
congruence quasi-orderable varieties with an equivalential term turn out to coincide
with congruence quasi-orderable varieties that are d-subtractive in the sense of [4].
Though this connection seems worth investigating further, it would have led us away
from the path we are following in this paper.
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4. Equationally definable principal ideals

A subtractive variety ¥ has equationally definable principal ideals (EDPI for short)
if there exists a binary term p(x, y) such that forany A € ¥ anda, b € A

a € (b), ifandonlyif p(a,b)=0.

Such varieties have been studied mainly in [3, 5] and congruence orderable varieties
with EDPI have been characterized in [1]. That characterization extends easily to
congruence quasi-orderable subtractive varieties. The fact about subtractive varieties
with EDPI that we shall use are contained in the following.

THEOREM 4.1. (1) ([5, Theorem 3.4]) If a subtractive variety has EDPI, then
there is a binary term x * y witnessing both subtractivity and EDPL
(2) ([3, Proposition 4.2]) ¥ is a subtractive EDPI variety if and only if for any
algebra A € YV the join semilattice CI1(A) of compact ideals is a dual Brouwerian
semilattice.
(3) ([5, Proposition 3.2]) A subtractive variety with EDPI is ideal distributive, that
is, the ideal lattices of its members are distributive.
4) ([5, Theorem 3.1]) An ideal-determined variety has EDPI if and only if it has
equationally definable principal congruences.

We recall that a dual Brouwerian semilattice is a join semilattice with dual relative
pseudocomplementation, that is, an algebra (A, *, Vv, 0) such that

axb<c ifandonlyif b<avec.
A dual Hilbert algebra is a x-subreduct of a dual Brouwerian semilattice.

THEOREM 4.2. Let ¥ be a congruence quasi-orderable subtractive variety with
EDPL. Then ¥, is a congruence orderable subtractive variety with equationally
definable principal congruences.

PROOF. Once we show that ¥, is closed under homomorphic images, the rest
follows from our previous results. Let A € ¥. We can repeat the argument of [1,
Theorem 3.4] to conclude that the mapping a +> (a), is a homomorphism from
(A, *,0) onto PI(A), whose kernel is &,. Hence, (A, %, 0)/~, is a dual Hilbert
algebra (since it is the reduct of a dual Brouwerian semilattice). Now A € ¥; if and
only if &z, = 04, thus if and only if (A, %, 0} is a dual Hilbert aigebra. Let A € ¥ and
let f : A - B aonto homomorphism. Since * is a term of ¥, then f must respect *.
Hence any equation involving * holds in B as well. Therefore, (B, *, 0) is a Hilbert
algebraand B € 7. O

https://doi.org/10.1017/51446788700003025 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003025

{17} Congruence quasi-orderability 437

If A belongs to a congruence quasi-orderable variety ¥, then it is possible to
describe the structure of (A, *, 0) even if A ¢ ¥, and the following easy lemma (that
appears already in [1]) is the key.

LEMMA 4.3. Let ¥ be a subtractive variety with EDPL There exists a binary term
x xy of ¥ such that, foreachA € ¥, e l(A)anda,be A

axbel ifandonlyif be (a)paVI.

PROOF. By Theorem 4.1(1) there is a binary term x * y witnessing both subtractivity
and EDPI and by Theorem 4.1(2) for any A € ¥ the semilattice CI(A) of compact
ideals is a dual Brouwerian semilattice. We denote again by * the dual relative
pseudocomplementation in CI(A). Leta* b € I, I = 0/8 for some 8 € Con(A).
Thus, a/6 x 8/6 = 0/6 and s0 b/6 € (a/0)a;. Hence there is an ideal term 1(x, y)
in y such that b/6 = t(u/0, a/0) for some u € A. This in turn implies

b6 t(i,a) 94(0,a) t(u,0) =0

and so
be0/(@o0,(0,a)) =0/9,0,a) vO/6 = (a), V I,

where we have used the fact that in subtractive varieties congruences permute at 0.
The converse implication is proved similarly. O
Let .# be the variety of pointed binars (A, *, 0) axiomatized by:

M1) x*x0=0.

M2) Oxx = x.

M3) (xx(y*2))*x((x *y)*(x %x2)) =0.
(M4) (x*y)*((y*2)*(x*2z)) =0

Note that (M2), (M3) and (M4) imply x * x = 0, so .# is subtractive. Such algebras
have been introduced in {5, Example 3.7] and they are called MINI algebras. 1t is also
shown that for A € .# anda,be A

be (a)y, ifandonlyif axb=0,
thus .# has EDPIL.
PROPOSITION 4.4. A is congruence quasi-orderable but not congruence orderable.

PROOF. We must show that =, € Con(A) for each A € .#. Since .# has EDPl
with witness term x * y

xp={(a,b):axb=bxa =0}
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Since =&, is always an equivalence, we have to show that, forany a, b,c € A,a =, b
implies both @ * ¢ &, b* c and ¢ xa =, ¢ * b. The first statement follows from (M1),
(M2) and (M4) and the second from (M1), (M2) and (M3).

To show that .# is not congruence orderable we argue by contradiction. If .#
were congruence orderable, then it would be ideal-determined ([1, Theorem 2.11) and
hence it would have equationally definable principal congruences (Theorem 4.1). It
is well-known that any variety with that property must be congruence distributive
[17]. However .# is not even congruence modular. Consider the algebra A =
{{0, 1, 2, 3, 4, §}, %, 0}, where

y ifx=0;
X*y= )
0 otherwise.

It is easy to see that A € .# and that a proper congruence of A is simply a partition
to which {0} belongs. Now it is easily seen that Con(A) is a nonmodular lattice. [J

Let A be a MINI algebra. An n-ary operation f on A is compatible if forany i < n
andanya,be A

@s 6+ (0 (@ ) 0.

where ﬁ(x) = f(21y..-5Zi=1, X, Zit1s - - - » Zn). 1t can be checked that the compatible
operations of A are exactly those that preserve each MINI algebra congruence.

THEOREM 4.5. A pointed variety is congruence quasi-orderable, subtractive and
has EDPI if and only if it is termwise equivalent to a variety of MINI algebras with
compatible operations.

PrROOF. In a MINI algebra with compatible operations the congruences (and hence
the ideals) depend only on the MINI algebra operation. Therefore any such variety is
congruence quasi-orderable, subtractive and has EDPI.

Let ¥ be congruence quasi-orderable, subtractive and with EDPI. By Theo-
rem 4.1 (1) there is a binary term x * y of ¥ such that (M1) and (M2) hold in ¥ and
moreover (A, *, 0)/~, is a dual Hilbert algebra for any A € ¥. Now (M3) is an
equation in the language {*, O} that holds in dual Hilbert algebras. So for any A € ¥
anda,b,ce A

(a/zp x (b/=p * c/=4)) * ((a/=p x b/Ry) * (a/~a * c/Xa)) = 0/R,.
Clearly, 0/~, = {0} and therefore

(axbxc))*x((axb)yx(axc)) =0

https://doi.org/10.1017/51446788700003025 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003025

[19] Congruence quasi-orderability 439

in A. It follows that (M3) holds in #. The proof that (M4) holds in ¥ is similar,
hence (A, %, 0) is a MINI algebra for each A € 7.

To conclude the proof we must show that any basic operation of A is compatible
in the above sense. Let f (x) be a basic operation, which can be taken to be unary
without loss of generality. Let a, b € A and let

(a*xb)aVv (bxa)y =0/0

for some 8 € Con(A). Then of course a/6 x b/6 = b/0 x a/6 = 0/6 and so
(a/6)ase = (b/O)ase, implying a/8 =,,s b/0. Therefore, f (a)/0 =a, f(b)/6 and
hence (f (a) * f (b))/6 = 0/6 implying

f@*f(b)€0/6 =(a*xb)aV (bxa),.
Now we apply twice Lemma 4.3 to get
(axb)x ((bxa)x(f(a)xf(§)) =0

and hence f is compatible. 0

REMARK 4.6. At this point the reader might wonder why we did not give a charac-
terization similar to the one in Theorem 4.5 for subtractive congruence quasi-orderable
varieties with an equivalential term. The reason is that such characterization, if any,
must be very difficult to formulate. We “can show easily enough that if ¥ is a sub-
tractive congruence quasi-orderable variety with an equivalential term e(x, y) and
A € V¥, then the operations of A do satisfy a weak form of compatibility; in fact if f
is a (unary) operation of A, then for each a, b € A

e(f (a), f (b)) € (e(a, b))a.

However it seems difficult to describe this property in terms of equations. The
main difference between subtractive congruence quasi-orderable varieties with an
equivalential term and subtractive congruence quasi-orderable varieties with EDPI
seems to be the following. In the first case (Theorem 3.2) the relation =2, is term-
definable: forany A € ¥ anda,be A

a=, b ifandonlyif e(a,b)=0.

In the second case however (Lemma 4.3), the relation <, is term-definable: forA € ¥
anda,be A

a<ab ifandonlyif bx*xa=0.

This is certainly a stronger property and, naturally, it yields a stronger characterization.
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The above remark shows that an investigations of subtractive varieties that have
EDPI and also an equivalential term is worthwhile. If a variety " has an equivalential
term, then the principal ideals of A are closed under dual relative pseudocomplemen-
tation (evaluated in the join-semilattice of compact congruences). If ¥ has EDPI,
then the principal ideals of A are closed under * (that is, the dual relative pseudocom-
plementation). We shall investigate the conjunction of these two situations, that is,
the case in which principal and compact ideals coincide.

A dual Skolem semilattice is an algebra (A, @, Vv, 0) such that (A, Vv, 0) is a lower
bounded join semilattice and for any a, b, ¢ € A,

El a®a=0;
E2 a®b=>bDa;
E3 a®d0=aq;

E4 cva®db)=cVv ((cVva)®b).

Dual Skolem semilattices are equivalent to dual Brouwerian semilattices via the equa-
tions

a®b=(axb)V (bxa), axb=a® (avb).

Hence the variety of dual Skolem semilattices is an ideal determined variety with
EDPI. If A is a Skolem semilattice and a, b € A, then

be(a)y ifandonlyif a®(avb)=0.

It is well known [16] that the class of {@, 0}-subreducts of dual Skolem semilattices
is the variety of equivalential algebras and a @ b is the dual symmetric relative
pseudocomplement of a and b. Likewise we have:

LEMMA 4.7. If each two elements a, b of a lower bounded join semilattice have
a dual symmetric relative pseudocomplement, then (A, ®, V,0) is a dual Skolem
semilattice.

Now let A be a subtractive algebra. A join generator [5] for A is a binary operation
Jj(x,y)suchthatforanya,be A

(@)a Vv (b)a = (j (a, D)a.

In general such operation may not be a term and might not even be compatible with the
congruences of A (see the discussion above Theorem 4.3 in [19]). It is also obvious
from the definition that if A has a join generator, then the join of two principal ideals
is principal, thus any compact ideal is principal. For a subtractive variety the latter is
equivalent to having a join generator term.
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THEOREM 4.8 ([5, Proposition 4.3]). For a subtractive variety ¥ the following are
equivalent:

(1) The join of two principal ideals in any algebra in ¥ is principal.
(2) Any compact ideal of any algebra in ¥ is principal.
(3) There is a binary term that is a join generator on any algebra in V.

Let ¥ a congruence quasi-orderable subtractive variety and suppose that each
compact ideal of any algebra in ¥ is principal. Let j be a join generator term for ¥
and s(x, y) a subtraction term for . Define a binary term e on A € ¥ by

4.1) e(a, b) = j (s(a, b), s(b, a)).
Then we can define an operation @ on CI(A),

(a)a ® (b)a = (e(a, b))a
and clearly (A, e, v, 0) /=, = (CI(A), &, V, (0)4).

THEOREM 4.9. For a subtractive congruence quasi-orderable variety ¥ the follow-
ing are equivalent:

(1) Forany A € V¥ the join of two principal ideals of A is principal.
(2) There are binary terms e and j such that, forany A € ¥, (A,e,j,0) /=, isa
dual Skolem semilattice.

PROOF. By Lemma 4.7, to show that (1) implies (2) we have only to prove that
e(x, y), as defined in (4.1), is the dual symmetric relative pseudocomplementation on
(CI(A), Vv, (0)4). Since PI(A) = CI(A) this amounts to showing that e(x, y) is an
equivalential term for . By definition of e,

e(a,0) = j(a, s, a)) = (0, a).
Thus,
(e(a,0))a = (e(0,a))a = (j(a,5(0,a)))a = (a)a V (5(0, @))a = (@)a,
since 5(0, a) € (a)s. By Theorem 3.2 (4), @ is an equivalential term for ¥'.

Conversely assume (2) and note that j (0, 0)/x, = j(0/~4,0/=,) = 0/,
implying that e(0, 0) = 0 holds in A. Next

j(a,b) 95s(a,0) v ,(5,0) j0,00)=0

s0 j(a, b) € (a)a V (b)s. Finally from j (a, b)/~, = j(a/~a, b/~,) we get that
a/=, € ((j (a, b))/~a)a/~,- Thus Corollary 2.2 yields

a € (j(a,b))a Vv O/, = (j(a, b))a.

https://doi.org/10.1017/51446788700003025 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700003025

442 Paolo Agliano [22)

Symmetrically b € (j (a, b)) and in conclusion (a)s Vv (P)a = (f (a, b))a. Soj (x, y)
is a join generator term for A and the join of any two principal ideals is principal. O

We separate the consequences of Theorem 4.9 into distinct corollaries. The first
one generalizes [6, Theorem 3.9].

COROLLARY 4.10. A subtractive congruence quasi-orderable variety in which the
Jjoin of two principal ideals is principal has a quasi-Mal’cev term.

COROLLARY 4.11. A subtractive congruence quasi-orderable variety in which the
Jjoin of two principal ideals is principal has EDPL

COROLLARY 4.12. If ¥ is a subtractive congruence quasi-orderable variety in
which the join of two principal ideals is principal, then ¥, is a congruence orderable
variety.

We can apply Theorem 4.5 to conclude any subtractive congruence quasi-orderable
variety in which the join of two principal ideals is principal is termwise equivalent to
a variety of MINI algebras with compatible operations. The reader can easily check
that, if 7 is such a variety and A € ¥, thenfora, b € A

b e (a)p, ifandonlyif e(a,j(a,b)) =0,

hence the term x x y = e(x, j (x, y)) is the MINI algebra operation. Determining the
structure of (A, ¢, j, O) for any algebra A € ¥ can be done in a similar way to the one
used for going from dual Hilbert algebras to MINI algebras.

Let % be the variety of algebras A = (A, *, j, 0) where (A, %, 0) is a MINI algebra
and moreover for any a, b, c € A,
(B1) j(0,0) =0;
(B2) (cxa)x((cxb)*(cx*j(a,b)))=0;
(B3) ja,b)yxb=j(a,byxa=0.
It is an easy but tedious exercise to check that (B2) and (B3) ensure that j (x, y) is a
compatible operation with the MINI algebra structure so that Con(A)= Con({A, *, 0}).
This implies that =, € Con(A). Moreover, (B3) and (B1) imply that j (x, y) is a join
generator term for A. Hence 4 is a subtractive congruence quasi-orderable variety in
which the join of two principal ideals is principal.

THEOREM 4.13. A pointed variety is congruence quasi-orderable, subtractive and
the join of two principal ideals is principal if and only if it is termwise equivalent to a
variety of 9-algebras with compatible operations (as usual compatible with the MINI
algebra structure).
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PROOF. One half of the theorem has been already proved. Conversely if ¥ is
such a variety, then by Theorem 4.5, has EDPI and hence there is a binary term *
such that for any A € ¥, (A, *,0) is a MINI algebra. Next by Theorem 4.8, ¥
has a join generator j (x, y). Again by Theorem 4.5 (and from the fact that dual
Skolem semilattices and dual Brouwerian semilattices are definitionally equivalent)
(A, *,j,0)/=, is a dual Brouwerian semilattice. It follows that if t(x;,...,x,) is a
term in the language {x, j, 0} and if #(x,, ..., x,) & 0 holds in any dual Brouwerian
semilattice, then ¢(x, ..., x,) = 0 holds in ¥. But (B1), (B2) and (B3) all hold in
Brouwerian semilattices, hence (A, *, j,0) € 8. That any basic operation of A is
compatible is obvious. O

Since Brouwerian semilattices are simply congruence orderable %-algebras we get
as a corollary the result in [15] that any congruence orderable arithmetical variety is
termwise equivalent to a variety of Brouwerian semilattices with compatible opera-
tions. Let us go further in our investigation. While compact ideals are always closed
under joins they are not in general closed under meets. We take a closer look at this
case.

If A is a subtractive algebra, a meet generator [S] for A is a binary operation m(x, y)
such that forany a, b € A

(@)a N (b)a = (m(a, b))a.

If a subtractive variety has a meet generator term then clearly the principal ideals
are closed under meets. The vice versa, however, is not true unless we assume ideal
distributivity.

THEOREM 4.14 ([5, Theorem 4.2]). For a subtractive variety ¥ the following are
equivalent:

(1) ¥ has a meet generator term.
(2) V¥ is ideal distributive and the meet of two principal ideals of any algebra in ¥V
is principal.

Hence if in a congruence quasi-orderable subtractive variety ¥ the principal ideals
are closed under joins and meets, then ¥ has EDPI (and hence it is ideal distribu-
tive). So ¥ has both a meet generator term m and a join generator term j and
(PI(A), *, v, N, (0),) is a (dual) relatively pseudocomplemented lattice, isomorphic
with (A, *, j, m, 0)/=,.

A representation result for such kind of varieties can be obtained now very easily.
Let &£ be the variety of algebras such that A =(A, *, j, m, 0) where (A, *,j, m,0) €
% and moreover for any a, b, c € A

(L1) m(0,0) =0;
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(L2) (@axc)*((bxc)*(m(a,b)*c)) =0,

(L3) a*m(a,b) =bxm(a,b) =0.

By the same argument we have used over and over in this paper, one sees that the
variety of .#-algebras is a congruence quasi-orderable subtractive variety in which
principal ideals are closed under joins and meets. Likewise we have:

THEOREM 4.15. A pointed variety is congruence quasi-orderable subtractive and
the principal ideals are closed under joins and meets if and only if it is termwise
equivalent to a variety of £ -algebras with compatible operations.

Since relatively pseudocomplemented lattices are simply congruence orderable
#-algebras we get:

COROLLARY 4.16. A pointed variety is congruence orderable, subtractive and the
principal ideals are closed under joins and meets if and only if it is termwise equivalent
to a variety of relatively pseudocomplemented lattices with compatible operations.

The lattice of subvarieties of the variety & of relative Stone lattices is completely
known [14, 18]. It is a countable chain with a top element and the n-th level variety %,
is just the subvariety of & generates by a chain of n elements. %, can be axiomatized,
relative to £, by the single equation

(R,) Xy *x3) A *X3) Ao A(X, *xX,41) = 0.

Hence the variety %, is just the variety of generalized Boolean algebras.

The form of the above equation allows us to conclude the following. A congruence
quasi-orderable subtractive variety ¥ in which principal ideals are closed under joins
and meets is such thatforany A € ¥, (A, V, A, %, 0}/, € %, if and only if R, holds
in¥. In[5, Example 5.9] it is basically shown that the variety of pseudocomplemented
semilattices is of this kind. It fact it satisfies R, and hence the (principal) ideals
form a Boolean algebra. Since the variety of pseudocomplemented semilattices is
not congruence distributive, it is a further example of a congruence quasi-orderable
variety that is not congruence orderable.
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