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the effect of path curvature
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When a cylinder is free to move along a transverse rectilinear path within a current, the
vibrations developing with and without structural restoring force (SRF) noticeably deviate:
if the elastic support is removed, their onset is delayed from a Reynolds number (Re,
based on the body diameter and inflow velocity) value of approximately 20 to 30, and
their peak amplitudes and frequency bandwidths are substantially reduced. The present
study examines the influence of a curved path on this deviation by considering that
the cylinder, mounted on an elastic support or not, is free to translate along a circular
path whose radius is varied. The investigation is carried out numerically at Re = 25 and
100, i.e. subcritical and postcritical values relative to the threshold of 47 that marks the
onset of flow unsteadiness for a fixed body. The principal result of this work is that the
behaviours of the flow–structure systems with and without SRF tend to converge under
the effect of path curvature. Beyond a certain curvature magnitude, both systems explore
the same vibration ranges and the presence or absence of SRF becomes indiscernible. This
convergence is accompanied by an enhancement of the responses appearing without SRF.
It is analysed in light of the evolution of the effective added mass which determines the
subset of responses reached with SRF that remain accessible without SRF. The apparent
continuity of the physical mechanisms between the subcritical- and postcritical-Re values
suggests that the convergence phenomenon uncovered here could persist at higher Re.

Key words: flow–structure interactions, vortex streets, wakes

1. Introduction

In nature and in industrial systems, the flow-induced vibrations (FIV) of bluff bodies are
frequently encountered in physical configurations that involve a structural restoring force
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(SRF) and thus a structural natural frequency (Païdoussis, Price & de Langre 2010). This
is in particular the case of vortex-induced vibrations (VIV), a form of FIV which develops
through synchronization between body motion and flow unsteadiness. As a result, in the
canonical problem employed to study VIV, i.e. a circular cylinder free to translate along
a rectilinear path in the direction normal to the current, the body is usually mounted on
an elastic support (Williamson & Govardhan 2004). Yet, VIV still occur when the elastic
support and associated SRF are removed, including at Reynolds number (Re, based on
the body diameter and inflow velocity) values lower than the critical threshold of 47 that
marks the onset of flow unsteadiness for a fixed cylinder (Shiels, Leonard & Roshko 2001;
Govardhan & Williamson 2002; Ryan, Thompson & Hourigan 2005; Navrose & Mittal
2017; Bourguet 2023a).

The vibrations appearing in the above canonical problem without SRF deviate from
those typically reported with SRF: their onset is delayed from Re ≈ 20 to Re ≈ 30, and
they only exhibit substantial magnitudes over a narrow range of low values of the structure
to displaced fluid mass ratio, with lower peak amplitudes. The deviation between the
responses with and without SRF can be analysed under a harmonic oscillation assumption,
which is often acceptable in this context (Govardhan & Williamson 2002). This analysis
shows that the responses accessible without SRF correspond to the subset of those
occurring with SRF where the effective added mass due to fluid forcing is negative. Along
a rectilinear path, this subset does not include the peak amplitude responses observed
with SRF, which are characterized by positive added mass values (e.g. Hover, Techet &
Triantafyllou 1998), and it may even vanish, depending on Re.

The present work was motivated by two recent studies concerning a cylinder immersed
in a current and free to translate along a circular arc, with and without SRF (Bourguet
2023a,b). Path curvature induces a global enhancement of the responses developing
without SRF. Among other aspects, it causes a reduction of the critical value of Re for
the onset of vibrations/flow unsteadiness, and an amplification of the responses, which
tend to be comparable to those observed with SRF. The increasing trend of the response
frequency with path curvature magnitude, identified with SRF, suggests a reduction of the
effective added mass, which may become negative for most of the vibrations of substantial
amplitudes. These responses could thus be reached without SRF. The possible convergence
of the behaviours of the systems with and without SRF, under the effect of path curvature,
is the object of this work. In order to explore this convergence, the systems with and
without SRF are considered over a range of circular path radii, including the limiting case
where the radius tends to infinity, i.e. the rectilinear path configuration. The investigation
is based on numerical simulations at Re = 25, a subcritical value for which rectilinear
vibrations arise with SRF (Cossu & Morino 2000; Kou et al. 2017; Dolci & Carmo 2019)
but not without SRF (Bourguet 2023a), and Re = 100, the postcritical value selected in
the above-mentioned prior studies on this topic.

2. Physical configuration and numerical method

A sketch of the physical configuration is presented in figure 1(a). The circular cylinder
of diameter D and mass per unit length Mc is parallel to the z axis and placed in
an incompressible uniform current of velocity U, density ρf , viscosity μ, aligned with
the x axis. The Reynolds number, Re = ρf UD/μ, is kept below or equal to 100. The
flow is two-dimensional across the parameter space investigated. This point has been
verified via three-dimensional simulations. The two-dimensional Navier–Stokes equations
are employed to predict the flow dynamics. The cylinder is free to translate along a
circular path of radius R, parallel to the (x, y) plane and centred at the origin of the
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Figure 1. (a) Sketch of the physical configuration. (b) Relative differences of the displacement amplitude
(ζmax) and frequency ( fζ ) with respect to the fifth-order simulation results, as functions of the polynomial
order, without SRF at Re = 100, for κ = 1 and m�

0 = 0.1. (c) Rectilinear displacement amplitude with SRF as
a function of U�, at Re = 100 for m� = 10; the present results are compared with those reported by Singh &
Mittal (2005) and Zhang et al. (2015).

(x, y, z) frame. The stiffness of the elastic support is denoted by K; it is set to zero when
the SRF is removed. The cylinder position is tracked by the angle θ relative to the x axis.
The physical variables are non-dimensionalized by D, U and ρf . The non-dimensional
curvilinear displacement of the body along the circular path is ζ = θ/κ , where κ =
D/R is the non-dimensional curvature magnitude. The limiting case where R tends to
infinity (κ = 0) corresponds to the transverse rectilinear motion configuration, where ζ

is the non-dimensional displacement aligned with the y axis. The in-line, transverse and
tangential force coefficients are defined as {Cx, Cy, C} = 2{Fx, Fy, F}/(ρf DU2), where
Fx, Fy and F are the dimensional fluid forces per unit length, parallel to the x and y axes,
and to the direction of body motion, respectively. The motion of the cylinder is governed
by the following equation:

ζ̈ + (2πfn)2 ζ = 2C
πm�

, with C = −Cx sin (κζ ) + Cy cos (κζ ). (2.1)

The ˙ symbol designates the non-dimensional time derivative. The structure to displaced
fluid mass ratio, the non-dimensional natural frequency and associated reduced velocity
are defined as m� = 4Mc/(πρf D2), fn = D/(2πU)

√
K/Mc and U� = 1/fn, respectively.

In the absence of SRF ( fn = 0), the mass ratio is denoted by m�
0. No structural damping is

included but the analysis presented hereafter also applies to damped systems.
Considering a harmonic response at frequency fζ , the dynamics equation (2.1) indicates

that the same behaviour can be observed with and without SRF, i.e. for fn > 0 and fn = 0,
when

m�
0 = m�

[
1 −

(
fn
fζ

)2 ]
= −Cm, (2.2)

where Cm is the effective added mass coefficient. Without SRF, the condition m�
0 >

0 implies that Cm is negative, as also noted by Govardhan & Williamson (2002).
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Therefore, only a part of the responses reached with SRF can be attained without SRF:
the responses where Cm < 0, or equivalently fζ > fn. The actual vibrations are often close
to sinusoidal and (2.2) will be used to explore the connection between the responses arising
with and without SRF, in particular the evolution of the response range accessible without
SRF as κ is varied.

A quasi-steady model of C and its first-order approximation about ζ = ζ̇ = 0 can be
expressed as follows (Bourguet 2023b):

Cqs = −C̄f
x(ζ̇ + sin(κζ ))

√
ζ̇ 2 + 2ζ̇ sin (κζ ) + 1 ≈ −C̄f

x(ζ̇ + κζ ), (2.3)

where C̄ f
x is the mean in-line force (or drag) coefficient in the fixed body case. The ¯

symbol denotes the time-averaged value. The term relative to ζ in the Cqs approximation
is used to derive a modified natural frequency

f ′
n =

√
f 2
n + C̄ f

x κ

2π3m�
. (2.4)

The system behaviour generally departs from the quasi-steady assumption, i.e. decoupling
of the flow and moving body time scales. Yet, f ′

n was shown to be significant, especially
without SRF ( fn = 0), as it determines the location of the vibration region in the (κ, m�

0)
parameter space (Bourguet 2023a). Assuming that a peak of vibration occurs close to
f ′
n when this frequency coincides with the Strouhal frequency (St, frequency of flow

unsteadiness for a fixed body), (2.4) indicates that the peak encountered with SRF should
(i) shift towards higher U� values, and (ii) involve higher frequencies relative to fn, as
κ is increased. This suggests a decreasing trend of Cm (2.2) and thus an expansion of the
response range accessible without SRF. These conjectures are examined in the next section
on the basis of numerical simulations.

The numerical method is the same as in previous studies concerning comparable
systems (Bourguet 2023a,b). It is briefly summarized and some additional convergence/
validation results are presented. The coupled flow–structure equations are solved by the
parallelized code Nektar, which is based on the spectral/hp element method (Karniadakis
& Sherwin 1999). Body motion is taken into account by adding inertial terms in
the Navier–Stokes equations (Newman & Karniadakis 1997). The large rectangular
computational domain (350D downstream and 250D in front, above and below the
cylinder) is discretized into 3975 spectral elements. A no-slip condition is applied on
the cylinder surface. The free-stream value is assigned for the velocity at the upstream
boundary. At the downstream boundary, a Neumann-type boundary condition is used.
Flow periodicity conditions are employed on the upper and lower boundaries.

Figure 1(b) depicts a convergence study in a typical case of curvilinear vibrations
without SRF, at Re = 100. The evolutions of the relative differences with respect to
the fifth-order simulation results, for the displacement amplitude and frequency ( fζ ), as
functions of the spectral element polynomial order, show that an increase from order 4 to
5 has not impact on the results. Here, and in the following, ζ̄ = 0 and the amplitude is
measured as the maximum value of the displacement signal (ζmax). A polynomial order of
4 was selected. A similar procedure was employed to set the non-dimensional time step
to 0.0025. The rectilinear displacement amplitudes observed with SRF at Re = 100 are
compared in figure 1(c) with those reported by Singh & Mittal (2005) and Zhang et al.
(2015). This comparison confirms the validity of the present numerical method.
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Flow-induced vibrations with and without SRF

Each simulation is initialized with the established flow past a fixed body at the selected
Re. Then, the body is released with an initial velocity ζ̇ = 0.1. The analysis is based on
time series collected after convergence, over 30 oscillation cycles in the unsteady cases.

3. Flow-induced vibrations with and without SRF

As a first step, focus is placed on the behaviour of the flow–structure system with SRF.
The vibrations occurring at Re = 25 and Re = 100, i.e. subcritical and postcritical values
of Re, are depicted in figures 2 and 3, which represent the displacement amplitude and
frequency as functions of U�, for m� = 10. At each Re, the rectilinear path configuration
(κ = 0) is considered first, then κ is progressively increased to visualize its influence on
response properties. In all cases, the displacement amplitude exhibits a bell-shaped trend
as a function of U�, which is typical of VIV. On each side of the bell-shaped curve, the
flow–structure system reaches a steady state at Re = 25, while residual oscillations of
low amplitudes persist at Re = 100. To facilitate the presentation, at Re = 100, the term
‘vibration region’ designates the U� (or −Cm in the following) range where ζmax > 0.1.

Body motion and flow unsteadiness are always synchronized at Re = 25, regardless
of κ . This locked regime, which corresponds to the lock-in condition usually reported
for VIV (Williamson & Govardhan 2004), also dominates at Re = 100. In addition,
a desynchronized regime, called unlocked and enhanced by path curvature (Bourguet
2023b), may develop at this Re, near the edges of the vibration region. Despite the possible
emergence of small higher-harmonic contributions and incommensurable components
(at flow unsteadiness frequency in the unlocked regime), the vibrations remain close to
sinusoidal in most cases. This justifies the application of the analysis introduced in § 2 (2.2)
to link the responses arising with and without SRF. The value of Cm discussed hereafter
is determined via (2.2). It is equal to the partial added mass coefficient associated with
the spectral components of ζ and C at the dominant frequency of body displacement ( fζ ),
and thus to the total added mass coefficient for sinusoidal oscillations. In figures 2 and
3, fζ is normalized by fn and plotted together with the normalized values of f ′

n and St. At
Re = 25, the St value (0.105) is that obtained by Kou et al. (2017) by triggering the flow,
and is St = 0.164 at Re = 100.

Along a rectilinear path (κ = 0), the structural responses occur below fn for all U�

at Re = 25, and over a large portion of the vibration region, which includes the peak
amplitude, at Re = 100. Equation (2.2) predicts that the responses where fζ > fn (Cm < 0)
can be attained without SRF, while those where fζ < fn (Cm > 0) cannot be reached.
The corresponding U� ranges are indicated by yellow and grey background colours,
respectively. As shown later in this section, these predictions are confirmed by the
simulations carried out without SRF.

Within the vibration region, the ratio fζ /fn tends to increase with κ . The proximity
between fζ and f ′

n suggests that this increasing trend is driven by the evolution of f ′
n,

whose deviation from fn is governed by the combined effects of the mean drag force and
path curvature (2.4). The U� range where fζ > fn expands towards the lower limit of the
vibration region, and crosses this limit, as κ is increased. According to (2.2), this signifies
a progressive widening of the subset of responses accessible without SRF. For κ = 2 at
Re = 25 and κ = 5 at Re = 100, this subset encompasses all the responses encountered in
the vibration region.

Figure 4 represents the vibration region, as well as the areas of responses accessible
and inaccessible without SRF, in the (κ, U�) and (κ, −Cm) domains, for each Re. It
provides a global visualization of the expansion of the accessible response area, and of the
simultaneous reduction of the inaccessible response area, within the vibration region, as κ
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Figure 2. Displacement (a–d) amplitude and (e–h) frequency with SRF, as functions of U� (m� = 10), at Re =
25, for (a,e) κ = 0, (b, f ) κ = 0.1, (c,g) κ = 0.5 and (d,h) κ = 2. The displacement frequency is plotted together
with the natural frequency, the modified natural frequency (2.4) and St; the frequency range is normalized by
the natural frequency. Yellow and grey background colours denote the regions where Cm < 0 ( fζ > fn) and
Cm > 0 ( fζ < fn), i.e. the regions of responses accessible and inaccessible without SRF, respectively.

is increased. This phenomenon corresponds to a regular translation of the vibration region
along the effective added mass axis (figure 4a ii,b ii). The location of the peak amplitude
(red dashed-dotted line) does not precisely coincide with f ′

n = St (figures 2 and 3), but it
shifts towards higher U� when κ is increased, as conjectured on the basis of (2.4). It can
be noted that the peak amplitude enters the accessible response area for κ ≈ 0.7, at both
Re values. The similitude in the distribution of the accessible and inaccessible response
areas relative to the vibration region, at Re = 25 and Re = 100, denotes a continuity of the
physical mechanisms between the subcritical- and postcritical-Re ranges.
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(a) Re = 25 and (b) Re = 100. Black solid and dashed lines delimit the areas where ζmax > 0 in (a) and ζmax >

0.1 in (b). Yellow and grey background colours denote the regions where Cm < 0 ( fζ > fn) and Cm > 0 ( fζ <

fn), i.e. the regions of responses accessible and inaccessible without SRF, respectively. A red dashed-dotted
line locates the value of U� or −Cm where the peak amplitude is reached. Grey dotted lines indicate the cases
visualized in figures 2, 3, 5 and 6.

In order to compare the responses of the systems with and without SRF, the
displacement amplitudes and frequencies measured in both cases are plotted as functions
of −Cm in figures 5 (Re = 25) and 6 (Re = 100). The values of κ are the same as in
figures 2 and 3. It is recalled that Cm is determined via (2.2) and thus −Cm = m�

0 in the
absence of SRF; here, m�

0 ranges from 0.05 to 10 while m� = 10. These plots further
illustrate the translation of the vibration region identified with SRF, from positive to
negative Cm values, as κ is increased.

Without SRF, no vibration appears at Re = 25 for κ = 0. At Re = 100, the rectilinear
responses present substantial magnitudes only for low m�

0, and their frequencies are
restrained to a narrow range lower than St. An increase of κ results in the emergence of
vibrations at Re = 25 and in an amplification of the responses, which exhibit substantial
magnitudes over wider m�

0 intervals, and explore extended frequency ranges, roughly
following the trend of f ′

n. As for the system with SRF, the locked regime dominates the
flow-body dynamics and the responses are overall close to sinusoidal. Occurrences of the
unlocked regime at Re = 100 may, however, cause some slight deviations from harmonic
evolutions (Bourguet 2023a).

The vibrations developing with and without SRF for Cm < 0 are almost identical at
Re = 25 (figure 5). At Re = 100, some differences are expected due to possible deviations
from sinusoidal oscillations, but the collapse of the responses appearing with and without
SRF globally persists (figure 6). This indicates that the responses encountered with SRF
can provide a reasonable a priori estimate of those arising without SRF. When the
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Figure 5. Displacement (a–d) amplitudes and (e–h) frequencies with and without SRF, as functions of −Cm,
at Re = 25, for (a,e) κ = 0, (b, f ) κ = 0.1, (c,g) κ = 0.5 and (d,h) κ = 2; without SRF, −Cm = m�

0. The
displacement frequencies are plotted together with the modified natural frequency ((2.4) with fn = 0) and St.
Yellow and grey background colours denote the regions of negative and positive Cm, respectively.

vibration region observed with SRF moves towards negative Cm values, as κ is increased,
all the responses with substantial amplitudes reached with SRF are progressively attained
without SRF. Beyond a certain κ value, the presence or absence of SRF becomes
nearly indiscernible. In other words, the behaviours of the systems with and without SRF,
which clearly differ for κ = 0, tend to converge under the effect of path curvature.
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Figure 6. Same as figure 5 at Re = 100 for (a, f ) κ = 0, (b,g) κ = 0.1, (c,h) κ = 1, (d,i) κ = 5 and
(e, j) κ = 11.
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4. Conclusions

The FIV of a cylinder with and without SRF have been examined with special attention
paid to the influence of path curvature on their evolutions and possible connections.
The study was conducted numerically for a cylinder, mounted on an elastic support or not,
and free to translate along a circular path of variable radius, within a current at subcritical
and postcritical Reynolds numbers, Re = 25 and Re = 100.

Under a harmonic oscillation assumption, the responses accessible without SRF
correspond to those observed with SRF for which the effective added mass is negative. The
actual vibrations issued from the simulations with and without SRF, and associated with
negative Cm, globally collapse. Such a collapse is expected as the vibrations, which mainly
develop through flow-body synchronization, and less frequently through a desynchronized
regime, are generally close to sinusoidal. Along a transverse rectilinear path, i.e. the
limiting case where path radius tends to infinity, most of the significant vibrations arising
with SRF are characterized by positive Cm and thus a priori inaccessible without SRF. The
simulated behaviours of the systems with and without SRF do indeed differ: vibrations
occur with SRF but not without SRF at Re = 25, and the peak amplitudes reached with
SRF at Re = 100 are not attained without SRF.

The principal result of this work is that the response ranges explored with and without
SRF progressively converge as path curvature magnitude is increased. The simulations
with SRF show that an increase of curvature magnitude causes a reduction of Cm, which
indicates an expansion of the response range accessible without SRF. This expansion is
confirmed by the simulations without SRF. It can be linked to the combined effects of the
mean drag and path curvature, which tend to increase the ratio between the displacement
and natural frequencies, or, equivalently, reduce Cm. The convergence of the system
behaviours is accompanied by an enhancement of the responses appearing without SRF, as
illustrated by the emergence of vibrations at Re = 25 and the widening of the mass-ratio
intervals where significant responses develop. Beyond a certain curvature magnitude, all
the significant vibrations encountered with SRF are also attained without SRF, and the
presence or absence of SRF is virtually undetectable.

The similitude of the observations made at Re = 25 and Re = 100 reflects a continuity
of the physical mechanisms at play between the subcritical- and postcritical-Re ranges.
This suggests that the phenomena described here, in particular the convergence of the
responses occurring with and without SRF, could persist at higher Re.
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