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Experimental analysis of particle clustering in
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In collisional gas–solid flows, dense particle clusters are often observed that greatly
affect the transport properties of the mixture. The characterisation and prediction of
this phenomenon are challenging due to limited optical access, the wide range of scales
involved and the interplay of different mechanisms. Here, we consider a laboratory
setup in which particles fall against upward-moving air in a square vertical duct:
a classic configuration in riser reactors. The use of non-cohesive, monodispersed,
spherical particles and the ability to independently vary the solid volume fraction
(ΦV = 0.1 %–0.8 %) and the bulk airflow Reynolds number (Rebulk = 300–1200) allows
us to isolate key elements of the multiphase dynamics, providing the first laboratory
observation of cluster-induced turbulence. Above a threshold ΦV , the system exhibits
intense fluctuations of concentration and velocity, as measured by high-speed imaging via
a backlighting technique which returns optically depth-averaged fields. The space–time
autocorrelations reveal dense and persistent mesoscale structures falling faster than the
surrounding particles and trailing long wakes. These are shown to be the statistical
footprints of visually observed clusters, mostly found in the vicinity of the walls. They
are identified via a percolation analysis, tracked in time, and characterised in terms of
size, shape, location and velocity. Larger clusters are denser, longer-lived and have greater
descent velocity. At the present particle Stokes number, the threshold ΦV ∼ 0.5 % (largely
independent from Rebulk) is consistent with the view that clusters appear when the typical
interval between successive collisions is shorter than the particle response time.
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1. Introduction

Collisional particle-laden flows, in which direct inter-particle contact competes with or
prevails over hydrodynamic forces, are highly common in natural and industrial settings.
A classic example is represented by particle risers, in which a heavy dispersed phase
meets an upward fluid flow. These are ubiquitous in chemical engineering systems, e.g.
as part of circulating fluidised beds, to increase the contact efficiency between both
phases (Berruti et al. 1995; Dudukovic 2009). The relatively high solid concentration
leads to a substantial back-reaction of the dispersed phase onto the carrier fluid, and the
inter-particle collisions enable pathways for energy dissipation beyond the fluid viscous
forces. A phenomenon commonly observed in these regimes is the formation of densely
packed groups of particles, referred to as clusters (Fullmer & Hrenya 2017). These
multiscale objects can greatly alter the mass and heat transfer properties of the system,
exert strong influence on the carrier flow, and hinder mixing between the phases leading
to reduced efficiency of the reactions (Breault & Guenther 2010; Xu & Subramaniam
2010; McMillan et al. 2013; Beetham & Capecelatro 2019; Guo & Capecelatro
2019).

In this paper, we consider an idealised version of a gas–solid riser, in which particles
fall in a vertical duct against upward-moving air flow and continuously form clusters. We
focus on dense gas–solid mixtures, where the word ‘dense’ loosely refers to the central
role of inter-particle collisions. There is no universally agreed definition of what solid
volume fraction separates ‘dense’ and ‘dilute’ regimes. Here, we consider a range of
volume fractions ΦV = O(10−3–10−2), sometimes referred to as moderately dense, for
which inter-particle interaction are expected to play a major role, but in the form of
binary collisions as opposed to sustained particle–particle contact (Crowe et al. 2011).
Indeed, in the case we consider here, the Knudsen number (the ratio of the mean free
path and the length scale over which the spatial gradients are expressed) is Kn = O(1).
We note that the term moderately dense has also been used for more concentrated flows in
which collisions are sufficiently frequent to drive the system to equilibrium (Fox 2014).
Regimes similar to ours, in which ΦV � 1 but the mass fraction ΦM = ΦVρp/ρf =
O(1–10), have also been described as semi-dilute (Kasbaoui, Koch & Desjardins
2019).

In dense gas–solid mixtures within the regimes described previously, clustering is
thought to originate from several concurring mechanisms: cohesive forces, inter-particle
collisions, effect of interstitial fluid and slip between both phases (Fullmer & Hrenya
2017). Cohesive effects due to van der Waals or Coulombic forces can be important for
particles smaller than approximately 125 μm (belonging to Group A in the classification
of Geldart (1972), see McMillan et al. (2013)). The inter-particle collision pathway to
clustering is best understood in homogeneous cooling systems (randomly distributed
particles whose kinetic energy is entirely contained in the fluctuating velocity component).
For such a configuration, Goldhirsch & Zanetti (1993) described a mechanism where
particles dissipate energy through inelastic collisions, eventually reducing inter-particle
distances and relative velocity fluctuations. In systems with interstitial fluids (i.e. gas–solid
flows), Koch (1990) and Koch & Sangani (1999) proposed that as long as ΦV exceeds a
critical value, inter-particle collisions will continue to dominate energy dissipation and
lead to cluster formation, the main reasoning being that in this regime the time between
collision is much smaller than the particle response time to fluid perturbations. If the
system if dilute enough that inter-particle collisions are negligible, damping through
interstitial fluid is still possible: viscous dissipation attenuates the particle fluctuating
motion, increases their residence time and may lead to clustering even if the particles
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experience elastic collisions (Wylie & Koch 2000). The fluid–particle slip is perhaps even
more decisive for cluster formation in particle risers, where both phases have considerable
relative velocity. This mechanism takes the form of a kinematic instability rooted in the
dependence of the effective particle drag on the local concentration (Mehrabadi, Murphy
& Subramaniam 2016; Fullmer & Hrenya 2017): the fluctuations in the number density
and the particle velocity field propagate at different speeds, causing local accumulation of
particles.

In conditions favourable to the formation of clusters, under the action of gravity,
the appearance of clusters surrounded by regions of lower concentration creates a path
of low resistance for the particles to fall (Agrawal et al. 2001). This route to cluster
formation has been also investigated considering settling in a quiescent fluid, for both
gas–solid (Capecelatro, Desjardins & Fox 2015) and solid–liquid systems (Uhlmann &
Doychev 2014; Huisman et al. 2016). If the slip velocity and particle size are large enough
for the particle Reynolds number to be significant, wake-induced clustering may also
occur (Kajishima & Takiguchi 2002; Uhlmann & Doychev 2014). The clusters impart
fluctuations onto the fluid medium, and may cause a flow that is otherwise laminar to
exhibit turbulent-like behaviour (‘cluster-induced turbulence’, Capecelatro & Desjardins
2015). For such systems, the main source of fluctuating kinetic energy is not shear
production, as in classic hydrodynamic turbulence, but rather the relative motion between
phases.

The prominence of particle risers in industrial settings, along with the fact that
they embody canonical features of dense gas-particle flows, has motivated numerous
experimental and numerical studies focused on similar configurations, exploiting a
variety of methodologies (Cahyadi et al. 2017; Sundaresan, Ozel & Kolehmainen 2018;
Subramaniam 2020). On the computational side, a widely diffused approach is represented
by two-fluid models, in which both phases are modelled as compenetrating continua,
using the kinetic theory analogy to define effective pressure, viscosity and temperature
for the particle phase (Hrenya & Sinclair 1997; Agrawal et al. 2001; Gidaspow, Jung
& Singh 2004; Parmentier, Simonin & Delsart 2012; Ozel, Fede & Simonin 2013;
Fox 2014). This approach is scalable to full-reactor sizes, but its ability to capture
mesoscale structures is dependent on the grid resolution. Furthermore, the kinetic theory
of fluids requires molecular collisions to be elastic, whereas macroscopic inter-particle
collisions are inelastic (Fullmer & Hrenya 2017). Kinetic theory-based models also resort
to Reynolds-averaging, which typically requires using the gradient-diffusion assumption
to model the particle-phase transport (Dasgupta, Jackson & Sundaresan 1994; Hrenya
& Sinclair 1997; Fox 2014). In fact, there is a lack of data that can verify the linear
relation between turbulent particle fluxes and concentration gradients. Euler–Lagrange
simulations, on the other hand, simulates individual particle trajectories using Newton’s
laws, thus relying on simpler closures and providing insight into the particle–fluid
interaction and particle–particle collisions (Subramaniam 2013; Capecelatro & Desjardins
2015). Finally, particle-resolved direct numerical simulations (PR-DNS) are able to
capture the flow field around each particle, providing data and relations that proved
invaluable to inform statistical theories applicable at the meso- and macroscales (Tenneti
& Subramaniam 2014; Luo et al. 2016; Ozel et al. 2017; Esteghamatian et al. 2018;
Seyed-Ahmadi & Wachs 2020; Tavanashad, Passalacqua & Subramaniam 2021). The
high computational cost, however, limits the number of particles and flow regimes
that can be simulated; thus, despite continuous growth in high-performance computing,
this approach is still not viable to capture mesoscale structures (Sundaresan et al.
2018).
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The experimental characterisation of the particle phase dynamics in dense gas–solid
flows is an arduous task, the main challenge being the opaqueness of the mixture.
Fibre-optics and boroscopic probes can be traversed within the system to document the
dependence of particle velocity and concentration with wall distance (Wei et al. 1995), but
the intrusive nature of the measurements can lead to significant bias (Cocco et al. 2017).
Non-intrusive high-speed imaging through transparent windows has allowed detailed
observation of the particle distribution, including the formation and evolution of clusters
(Shaffer et al. 2013), and quantification of the particle motion by, e.g. particle image
velocimetry (PIV) and particle tracking velocimetry (PTV) (Gopalan & Shaffer 2012;
Hagemeier et al. 2015). Due to the high concentrations, however, the information retrieved
is typically limited to the near-wall region. This issue is avoided in quasi-two-dimensional
passages having thin inter-wall distance in the viewing directions (Mondal, Kallio &
Saxén 2015; Varas, Peters & Kuipers 2017), but the geometric confinement influences
the dynamics, e.g. exaggerating concentration fluctuations (Glicksman & McAndrews
1985; Capecelatro, Pepiot & Desjardins 2014). Advances in volumetric and tomographic
imaging are opening promising avenues to obtain three-dimensional concentration and
velocity measurements, e.g. by magnetic resonance imaging (Müller et al. 2008), magnetic
particle tracking (Buist et al. 2014), electrical capacitance tomography (Weber et al.
2018), digital in-line holography (Li et al. 2021b) and X-rays (Heindel 2011; Drake &
Heindel 2012; Aliseda & Heindel 2021). These techniques, however, require specialised
equipment and/or pose limitations in terms of the usable materials. In addition to the
difficulty of comparing different techniques, the identification of regimes and trends
across experimental studies is also restricted by the limited control on the physical
parameters. For example, in circulating fluidised beds, both the particle concentration and
the gas velocity vary simultaneously as the level of fluidisation changes, and the local
concentration varies greatly with the distance from the gas injection at the bottom of
the bed. It is indeed difficult to perform systematic comparisons across various studies
in setups that mimic industrial reactors (Cahyadi et al. 2017). Moreover, due to the
relatively large volume fraction, measuring the local gas-phase velocity is generally
not feasible: laser-based techniques are impeded by the optical thickness, whereas
probes such as hot wires or Pitot tubes can be easily damaged or clogged by the
particles.

The present experimental study investigates the particle concentration and velocity fields
in a square vertical duct in which glass micro-spheres are suspended by an upward air flow.
We consider a simple configuration with spherical, monodisperse, non-cohesive particles,
using a setup where solid volume fraction and air flow rate can be controlled independently.
Without particles, the considered range of flow rates would be well within the laminar
regime; conversely, the presence of a concentrated dispersed phase induces strong dynamic
fluctuations, as revealed by high-speed imaging. Within the limitations of the measurement
technique, we report on important features of the particle concentration and velocity fields
in terms of single-point and two-point statistics, and we detect, track and characterise the
clusters that appear above a critical volume fraction. The paper is organised as follows.
In § 2 we describe the laboratory facility, imaging setup and methods used to extract
the data; in § 3 we present the particle velocity and concentration statistics including
wall-to-wall profiles and comparisons between clustered and non-clustered cases. We also
use the time-resolved particle velocity and concentration fields to calculate space–time
correlations, as well as evaluate the tenability of the gradient-diffusion assumption. In § 4,
we analyse the emergence of clusters and their features; and in § 5 we draw conclusions
and offer an outlook for further research.
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2. Experimental method

2.1. Setup and parameter space
Experiments are conducted in the riser facility depicted in figure 1. This features a vertical
square duct, 21 mm × 21 mm in cross-section and 1 m long. Air flows upwards driven
by a 1.5 kW centrifugal blower (Atlantic Blowers LLC), with the flow rate monitored by a
digital flowmeter (Kelly Pneumatics). The solid phase consists of size-selected glass beads
(Mo-Sci Corp.) with a density ρp = 2500 kg m−3 and diameter dp = 212 ± 21 μm (mean
± standard deviation), thus the channel width-to-particle diameter ratio is 2h/dp = 100.
The beads are released from a chamber above the duct through a 3D-printed funnel that
smoothly connects to the square cross-section. The funnel has interchangeable throat insets
to control the feeding rate and is kept full by means of a screw-feeder (Vibra Screw Inc.) to
ensure steady particle dispensing. Flow conditioners (three screens and two honeycombs)
are placed at both ends of the apparatus, warranting uniform particle influx at the top and
smooth air inflow at the bottom. The upper conditioning section also features an additional
honeycomb in the funnel which damps fluctuations that would otherwise occur due to flow
separation. The transparent section for imaging is made of electrostatic dissipative acrylic
(SciCron Technologies), which was shown in Fong, Amili & Coletti (2019) to prevent
particle adhesion. The upward air flow retards but does not stop the falling of the particles,
which are collected in a 3-litre chamber at the bottom. Compared with studies specifically
concerned with circulating fluidised beds (e.g. Varas et al. 2017), the present system does
not include a recirculation section where elutriated particles are collected, and therefore
higher flow regimes in which the net particle flux is upward are not accessible. This marks
a difference compared with industrial risers. The system in object, on the other hand,
allows us to independently set both controlling factors: the particle concentration and the
air flow rate.

The air flow and particle parameters are listed in table 1. A range of particle feeding rates
and air bulk velocities Ubulk is considered, for a total of 12 cases leading to the parameter
space in figure 2. This is defined by the flow Reynolds number Rebulk = 2hUbulk/ν (where
ν is the air kinematic viscosity) and the particle volume fraction ΦV . The latter, determined
using the imaging calibration procedure described below, falls in a moderately dense
regime (ΦV = 0.1 %–0.77 %, ΦM = 2–16). For the air flow, the range Rebulk = 300–1200
is well within the laminar regime for a single-phase flow (Pope 2000), but the significant
loading of massive particles leads to fluctuations of the gas–solid mixture, as we shall
discuss. Indeed, the still-air terminal velocity of an isolated particle, Ut = gτp (where g
is the gravitational acceleration and τp is the particle response time calculated with the
formula by Schiller & Naumann 1933), is larger than Ubulk for all cases, suggesting that
the main source of the fluctuating energy of the system is the relative motion between
carrier and dispersed phases. The particle Reynolds number Rep = Utdp/ν and the Galileo
number Ugdp/ν (based on the gravitational velocity Ug = ((ρp/ρf − 1)dpg)1/2) suggest
significance of the particle wakes but no unsteady wake behaviour (Ern et al. 2012). The
Stokes number St = (2 mUt)/(3πνρf d2

p) (where m is the particle mass and Ut is taken as
a measure of the particle–fluid slip velocity) indicates that the particle inertia dominates
over the fluid-phase viscous forces.

2.2. Measurement method
The riser is imaged in the central 200 mm of its length: a tradeoff for the falling
particles to approach their terminal velocity and for the upward airflow to develop. We
image the system using a backlighting method (figure 3a), illuminating with a DC LED
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Figure 1. Schematic representation of the experimental apparatus and its main elements.
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Figure 2. Considered cases represented in the parameter space. The value of the particle volume fraction is
also printed beside each data point for clarity.

source (Lightpanels) and a light diffuser (Westcott Scrim Jim). Images are taken with
a 4-megapixel high-speed camera (Vision Research) mounting a 105 mm lens (Nikkor,
aperture f /2.8) at a standoff distance of 1.5 m. This leads to a field of view of 215 mm
(∼20h) in the vertical direction x and the full span of the duct in the width direction y.
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Channel half-width, h (mm) 10.5
Air kinematic viscosity, ν (m2 s−1) 1.5 × 10−5

Air density, ρf (kg m−3) 1.2
Bulk flow velocity, Ubulk (m s−1) 0.214 0.428 0.642 0.856
Bulk Reynolds number, Rebulk 300 600 900 1200
Particle density, ρp (kg m−3) 2500
Particle diameter, dp (μm) 212
Particle response time, τp (s) 0.155
Particle terminal velocity
in still air, Vt (m s−1)

1.52

Particle Reynolds number
in still air, Rep

21.5

Galileo number, Ga 29.4
Stokes number, St 4980
Volume fraction, ΦV 1 × 10−3–7.7 × 10−3

Mass fraction, ΦM 2–16

Table 1. Main physical parameters characterising the experiments.

LED Camera

Duct
Diffuser

Top view Side view

y

y y

x x

z

(b) (c)(a)

Figure 3. (a) Schematic of the backlighting imaging setup as viewed from the top. (b,c) Sample images
obtained by backlighting at (b) ΦV = 2.6 × 10−3 and (c) ΦV = 7.7 × 10−3. Insets show enlarged views of
the 40 × 40 pixel interrogation window used for the PIV measurements.

The depth-of-field encompasses the entire duct in the depth direction z, as verified by
traversing an optical target between z = 10 mm and z = −10 mm (see the coordinate
system in figure 3).

Examples of instantaneous realisations at different volume fractions are shown in
figure 3(b), with insets showing enlarged views of the particle patterns projected in the
z direction across the depth of the duct. The acquisition frequency ranges from 2500 to
4000 Hz depending on the flow regime, keeping the local displacement of the particle
patterns within approximately 8 pixels. Velocity fields are obtained from cross-correlation
of successive realisations via PIV with 40 × 40 pixel interrogation windows.
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Figure 4. Light attenuation versus volume fraction as obtained from the free-fall calibration experiments.
The continuous line shows a linear fit to the data.

One refinement step and 50 % window overlap yields a vector spacing of 1.05 mm or 1/20
of the channel width.

To determine a relation between local particle concentration and image intensity, we
leverage the fact that the particles are observed to be homogeneously distributed in the
measurement section when in free fall (i.e. in the absence of air flow). In this condition,
the particle volume fraction is calculated from the known mass flow rate through the funnel
ṁp and the free-fall speed of the particles in the channel, Ufree:

ΦV = ṁp/(4h2ρpUfree), (2.1)

where ṁp is measured by a digital scale and Ufree is measured by PIV and verified to
be stationary in time and approximately uniform across the duct width. Figure 4 shows
the spatially averaged brightness of (inverted) images from five free-fall experiments at
different volume fractions. The intensity increases linearly with volume fraction up to
ΦV = 3 × 10−3 (the maximum achievable without air flow). This is consistent with the
results by Bernard & Wallace (2002) who also reported that light intensities scattered by
monodisperse particles increases linearly with particle concentration. In order to mitigate
the effect of uneven illumination and the shadow cast by the channel walls, the procedure is
applied locally: linear relations between intensity (averaged over 20 000 successive images
in free-fall condition) and volume fraction are determined at each pixel location and are
used to obtain instantaneous fields of local volume fraction, which we denote as φV . We
note that the maximum concentration (and, therefore, the maximum light attenuation) in
some of the experiments exceeds the levels achievable during calibration; the linear trend
is extrapolated in those cases. Finally, spatiotemporal averaging of φV returns the global
volume fraction ΦV . To guarantee consistent imaging conditions, the free-fall calibration
images are acquired right before each air-flow experiment.

Statistics are obtained from 40 000 successive realisations, with recording times ranging
from 10 to 16 s. In order to relate the velocity and concentration fields, the latter are
evaluated at the PIV resolution by locally averaging the pixel-wise values over the
corresponding interrogation windows (which, in the following, we refer to as cells). In
first approximation, it is assumed that the particle concentration and velocity measured
with this two-dimensional approach represent spatial averages across the duct in the z
direction. This assumption is consistent with independent measurements carried out for the
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more dilute regimes in a set of enlarged-view images, focusing at the channel centre-plane
(z = 0). There, individual particles are imaged and tracked as described in the Appendix,
returning direct measurements of the concentration and velocity along a thin slice of the
duct. Assuming (by symmetry) that the variation of these quantities in the depth direction
is analogous to the variation measured in the width direction, one obtains depth-averaged
quantities that closely match the result of the backlighting measurements (as shown in
§ 3.1).

3. Analysis of the velocity and concentration fields

3.1. Single-point statistics
In the following, U and V denote the particle velocity component in the x direction
(pointing downward) and y direction, respectively, as measured by PIV; u and v indicate
the corresponding fluctuations, and the subscript ‘rms’ denotes the root mean square of
the fluctuations. The statistics change marginally in the x direction: the particle vertical
velocity vary by less than 10 % from top to bottom of the field of view, and it is also verified
that the local profiles at all x locations display the same quantitative trends. Therefore, we
perform averaging both in time and in the vertical direction (denoted by angle brackets).

Figure 5 displays the particle mean velocity profiles across the duct width for the various
cases, grouped by Rebulk. The open circles at y/h = 1 represent the spanwise-averaged
particle velocities obtained from the zoomed-in measurements along the duct centre-plane,
taken at the same volume fraction as the more dilute case in each panel (see the Appendix).
As mentioned previously, these are in close quantitative agreement with the corresponding
backlighting measurements. In all the investigated cases, the particle vertical velocity is
mainly correlated with the upward air flow rate that slows the particle descent: as Rebulk
increases, the particles fall slower, as expected. Indeed, the average fall speed levels are
consistent with the scaling U ∼ Ut − Ubulk (indicated by the horizontal dashed lines); i.e.
the magnitude of the particle slip velocity relative to the upward moving air is O(Ut). This,
however, provides only a rough estimate: the particle descent is more strongly hindered in
the core of the duct, where the upward air velocity is expected to be higher, whereas
the particles fall significantly faster close to the walls, especially at the higher Rebulk. At
the lower air flow rates and volume fractions, the velocity profiles are skewed, indicating
sensitivity to minute asymmetries in the setup. Increasing Rebulk and ΦV , as we shall
see, concur to intense agitation, promoting mixing and yielding increasingly symmetric
profiles. The mean vertical velocity of the particles is also dependent on the volume
fraction, with more concentrated cases displaying larger velocities, in particular at the
higher Rebulk. The profiles of normalised Urms (figure 5b) clearly show that the level
of agitation increases with volume fraction: the velocity fluctuations are approximately
0.05Ut when ΦV < 5 × 10−3, whereas for ΦV > 5 × 10−3 they grow up to exceed 0.2Ut.
For the densest case (ΦV = 7.7 × 10−3, Rebulk = 1200) the magnitude of the fluctuations
is comparable to the mean vertical velocity. Large near-wall peaks of Urms appear for the
two densest cases.

Figures 6(a) and 6(b) show the profiles of the volume fraction and its r.m.s. fluctuations,
respectively. Similar to the mean velocity in figure 5(a), the centre-plane concentration
for the more dilute cases agrees well with the zoomed-in measurements at matching
conditions. Higher concentrations are observed near the walls compared with the core
of the duct, with the difference becoming more marked for larger ΦV . This is reminiscent
of the ‘core-annulus’ concentration profiles reported in other riser studies (e.g. McMillan
et al. 2013 and references therein). The volume fraction fluctuations are also larger near the
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Figure 5. Profiles of mean vertical velocity (a) and r.m.s. of the vertical velocity fluctuations (b) for different
volume fractions, grouped by Rebulk. In (a), the open circles represent measurements obtained from zoomed-in
imaging (see the Appendix) and are to be compared with the most dilute case in each panel.

wall and, similarly to the velocity fluctuations reported previously, they grow significantly
with ΦV .

The strong influence of the global volume fraction is illustrated in figure 7(a), where
the mean Urms/Ut and φV,rms are plotted versus ΦV . The latter appears to be the
controlling parameter determining the inception of large fluctuations in the system: the
variance of both velocity and concentration generally grows with the global volume
fraction, increasing sharply above ΦV = 5 × 10−3. The scatter below ΦV = 5 × 10−3

can be partly due to the small absolute values being measured, and partly to the
depth-averaging procedure. Figure 7(b) illustrates the probability density functions
(p.d.f.s) of the non-dimensional concentration C = φV/ΦV : for the more dilute cases,
these closely approximate the Poisson distribution expected for a random process, whereas
the distributions widen significantly for the denser cases, with long tails stretching to
high local concentrations. From the results, we reason that the observed increase of
the fluctuations coincides with the emergence of clusters, which can be expected at
volume fractions for which the particles have insufficient time to respond to the fluid
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Figure 6. Profiles of (a) 〈φV 〉 and (b) φV,rms for different volume fractions, grouped by Rebulk. In (a), the
open circles represent measurements obtained from enlarged-view imaging (see the Appendix) and are to be
compared with the most dilute case in each panel.

drag before the next collision (Koch 1990). The characteristic time between successive
inter-particle collisions, tcoll is estimated from the fluctuations of the streamwise velocities,
tcoll = λ/Urms, where λ = 1/(σn) is the particle mean free path, σ = πd2

p is the collision
cross-section and n is the number density (see, e.g., Holland et al. 2008). Figure 8 shows
the value of tcoll plotted against ΦV for each case, and a horizontal dashed line indicating
the single-particle response time τp. In our experiment, the crossing point tcoll = τp occurs
at ΦV ∼ 3.5 × 10−3, remarkably close to the observed threshold of 5 × 10−3. As pointed
out by Koch (1990) and Koch & Sangani (1999), tcoll < τp implies St > Φ

−3/2
V , a condition

for which the suspension is unstable to particle density waves, eventually yielding clusters.
Because of the nature of the scaling argument, the precise value of the threshold is less
important than the fact that the observations are consistent with this reasoning. In the
following sections, we proceed to demonstrate the presence of clusters above the threshold
volume fraction.
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Figure 7. (a) Root-mean-square fluctuations of vertical velocity and local volume fraction versus mean volume
fraction. (b) Probability distribution of local volume fraction for all cases, coloured by global volume fraction.
The densest case (ΦV = 7.7 × 10−3, Rebulk = 1200, in maroon) is compared with its corresponding Poisson
distribution (continuous black line).
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Figure 8. Average time tcoll between successive inter-particle collisions, evaluated based on the estimated
mean free path, versus the global volume fraction for each case. The horizontal dashed line indicates the
particle response time τp.

3.2. Space–time autocorrelations
We now leverage the spatiotemporal nature of the dataset to construct space–time
autocorrelation maps for both the velocity and concentration fields. This approach has
been used in single-phase turbulent flows to evaluate the length scale, time scale and
convection velocity of coherent structures, for example in boundary layer flows (Romano
1995; Dennis & Nickels 2008) and in the shear layers over wall-mounted ribs (Coletti,
Cresci & Arts 2013; Coletti et al. 2014). At a given wall-normal location y, the normalised
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Figure 9. Space–time autocorrelation maps for (a–c) particle velocities and (d–f ) concentrations for the case
ΦV = 7.7 × 10−3, Rebulk = 1200. The reference wall-normal distance is y/h = 0.2 (a,d), 1 (b,e) and 1.8 (c, f ).
The continuous lines represent the local mean velocity for all particles 〈U〉, whereas the dashed line represents
the convection velocity Uconv , i.e. the slope of the highly correlated regions in the space–time diagram (with
correlation coefficient > 0.5). The values for 〈U〉 and Uconv are also reported in each panel.

space–time autocorrelation of the streamwise velocity fluctuation is defined as

Ruu(Δx, Δt) = 〈u(x, t)u(x + Δx, t + Δt)〉
〈u(x, t)2〉 , (3.1)

where Δx and Δt are the spatial (vertical) and temporal separations of the local and
instantaneous streamwise velocity fluctuation u(x, t). The calculation of the concentration
autocorrelation Rcc is analogous and uses the fluctuation of the local volume fraction.
Figure 9 shows the space–time autocorrelation maps for both velocity (panels a–c) and
concentration (d–f ) for the densest case (ΦV = 7.7 × 10−3, Rebulk = 1200), evaluated
close to the walls (y/h = 0.2 and 1.8) and at the centre-plane (y/h = 1). The slope of
the highly correlated regions in the autocorrelation maps, calculated via linear fit through
the peaks of Ruu (Δx) and Rcc (Δx), defines the convection velocity Uconv (dashed line).
This is the characteristic velocity of patterns (structures) in the velocity and concentration
fields, respectively. For comparison, the equivalent slope for the mean particle velocity at
the corresponding y location, 〈U〉, is also indicated (continuous line).

Several aspects of figure 9 deserve emphasis. First, for both fields, the highly correlated
region (which one may conventionally limit to a level of normalised autocorrelation of
0.5, see, e.g., Coletti et al. 2014) stretches over multiple duct diameters and persists in
time for O(h/Ut). This suggests those are the statistical footprints of mesoscale clusters,
whose spatial and temporal extent is determined by the integral scales of the system.
Second, the velocity fluctuations are more extensively correlated than the concentration
fluctuations, i.e. the former persists longer in space and time compared with the latter. This
is consistent with the notion that falling clusters trail relatively long wakes (Capecelatro &
Desjardins 2015). Third, the convection velocities Uconv associated with both the velocity
and concentration fluctuations are similar, and significantly larger than the local mean
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Figure 10. Convection velocities based on the autocorrelation maps of particle velocity and concentration
fields, compared for the mean particle velocities, at (a) y/h = 0.2, (b) y/h = 1 and (c) y/h = 1.8. The results
are plotted against Rebulk for the four cases with ΦV ≥ 5 × 10−3.
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Figure 11. Space–time autocorrelation maps for (a–c) particle velocities and (d–f ) concentrations for the case
ΦV = 2.6 × 10−3, Rebulk = 1200. The reference wall-normal distance is (a,d) y/h = 0.2, (b,e) y/h = 1 and
(c, f ) y/h = 1.8. Continuous lines correspond to the local mean velocity, with normalised values indicated in
each panel.

particle velocity. Assuming Uconv is associated with the travelling speed of the clusters,
this agrees with the picture that clusters fall faster relative to the surroundings (Agrawal
et al. 2001). Finally, although the average particle velocities 〈U〉 are significantly slower
in the duct centre than near the walls (see figure 5, the convection velocities appear to be
weakly dependent on the wall-normal location.
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Analogous trends are found in all other cases with ΦV ≥ 5 × 10−3, for which the
convection velocities are summarised in figure 10 and compared with 〈U〉. This shows
that Uconv vary marginally with Rebulk and with wall-normal location, suggesting the
fall speed of the particle structures is relatively insensitive to the local velocity of the
upward air flow. For the cases with ΦV < 5 × 10−3, on the other hand, the level of
space–time correlation of the velocity and concentration signal is weak: in the exemplary
case ΦV = 2.6 × 10−3, Rebulk = 1200 in figure 11, a convection velocity can hardly be
discerned, whereas the weak low-frequency pattern in the Ruu map likely reflects the 10 Hz
frequency of the blower.

3.3. Evaluation of gradient diffusion assumption
In Reynolds-averaged Navier–Stokes (RANS) two-fluid models of gas–solid flows,
the transport of momentum and mass is typically evaluated with the aid of the
gradient-diffusion assumption applied to the particle phase (Dasgupta et al. 1994; Hrenya
& Sinclair 1997; Fox 2014). This implies a linear relation between the ‘turbulent fluxes’
and the corresponding mean spatial gradients, through the definition of eddy diffusivity
coefficients for momentum and mass. Restricting to the two spatial components available
in our measurements, this can be written as

〈uv〉 = −νt
d〈U〉

dy
, (3.2)

〈vc〉 = −Dt
d〈C〉
dy

. (3.3)

Here c denotes the fluctuations of the non-dimensional concentration C = φV/ΦV ,
whereas νt and Dt are the turbulent viscosity and turbulent diffusivity for the particle
phase, respectively.

The present data can be used to assess the viability of the gradient-diffusion assumption
over the considered range of regimes. From the streamwise and spanwise velocity
fluctuation fields, the terms 〈uv〉 and d〈U〉/dy in (3.2) are calculated, where 〈uv〉
is the covariance of the fluctuations in the streamwise and spanwise directions, and
d〈U〉/dy is the gradient of the mean velocity in the spanwise direction (evaluated with a
second-order central difference scheme). The resulting values are then plotted in a scatter
plot (figure 12a), for which an approximately linear trend can be observed. A linear fit
is then applied to the data, and the slope corresponds to the turbulent viscosity, νt for
the particle phase. The same procedure is followed for the terms 〈vc〉 and d〈C〉/dy in
(3.3), using the spanwise velocity fluctuation and mean concentration fields to calculate
the turbulent diffusivity, Dt for the particle phase (figure 12b). Using these coefficients,
model profiles for the turbulent fluxes are calculated, which are then compared with the
measured 〈uv〉 and 〈vc〉 for two sample cases, ΦV = 1.7 × 10−3 and ΦV = 6.7 × 10−3

at Rebulk = 900 in figure 13. Both display a fair agreement between the modelled profiles
and the measured ones, with the denser case exhibiting order-of-magnitude larger turbulent
fluxes. The transport coefficients are also much larger in the denser case, νt = 1.592ν and
Dt = 1.327ν, compared with νt = 0.257ν and Dt = 0.050ν in the more dilute case. It is
not straightforward to compare these values with those used in numerical studies, where
closures borrowed from two-equation RANS turbulence models are typically used (e.g.
Dasgupta et al. 1994). The main observation is the sharp increase above ΦV = 5 × 10−3,
similar with the trends for the velocity and concentration variance reported previously.
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Figure 12. Scatter plots of (a) the velocity fluctuation covariance 〈uv〉 against the mean velocity gradient
and (b) the velocity-concentration fluctuation covariance 〈vc〉 against the mean concentration gradient, for the
densest case ΦV = 7.7 × 10−3, Rebulk = 1200. The data points are coloured by wall-normal distance y/h.
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Figure 13. Profiles of normalised (a) velocity fluctuation covariance and (b) velocity-concentration fluctuation
covariance, measured by imaging (symbols) and compared with (3.2) and (3.3), respectively (lines), where
best-fit values of νt and Dt are used. Cases with ΦV = 1.7 × 10−3 (blue circles) and ΦV = 6.5 × 10−3 (red
triangles) are shown, both with the same Rebulk = 900.

4. Identification and characterisation of particle clusters

The above analysis indicates that, above a certain concentration, the sharp increase in
fluctuations is associated with the appearance of mesoscale structures of relatively large
density and fall speed. The appearance of such clusters with increasing ΦV is evident from
visual inspection, as illustrated in the instantaneous snapshots in figure 14. In this section,
we describe a methodology to detect and track clusters, and characterise their properties.
The analysis is carried out only for cases with ΦV ≥ 5 × 10−3; more dilute cases (in which
clusters are not visually identified) return noise-dominated results.
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Figure 14. Sample instantaneous backlighting images from all considered cases, with volume fraction
increasing from left to right.

4.1. Cluster detection and tracking
Several methodologies have been used in the past to detect clusters in gas–solid flows.
Although the differences between setups and the various measurement and simulation
techniques have prevented the definition of a universal criterion, many studies have applied
definitions similar to those proposed by Soong, Tuzla & Chen (1993): (i) the cluster
concentration must be significantly higher than the mean concentration; (ii) the cluster
must be at least one or two orders of magnitude larger than an individual particle; and
(iii) the cluster must exist for a time duration much longer than the minimum sampling
time. Concerning criterion (i), in the literature the choice of the concentration threshold
has varied widely, often being based on its mean and standard deviation (see Cahyadi et al.
2017 and references therein); however, the meaning of the latter is questionable when the
distribution is far from Gaussian, as in most gas–solid flows (Guenther & Breault 2007).

Here we utilise the percolation method, which has been widely used to identify coherent
structures in single-phase turbulent flows (Moisy & Jiménez 2004; Del Alamo et al. 2006;
Lozano-Durán, Flores & Jiménez 2012; Carter & Coletti 2018) and recently to characterise
clusters of falling snowflakes in the atmosphere (Li et al. 2021a). The concentration field
C is binarised based on a threshold C∗, and the number of connected cells with C > C∗ are
identified and counted for different values of the threshold. As C∗ increases the number
of detected clusters grows, until these regions start to merge into a few large objects. The
process is illustrated in figure 15(a), which highlights the chosen threshold corresponding
to the maximum number of identified clusters (Lozano-Durán et al. 2012; Carter &
Coletti 2018; Li et al. 2021a). For a sample realisation, figure 15(b,c) show instantaneous
concentration and velocity fields, respectively. The boundaries of the identified clusters
are overlaid, with crosses indicating their centroids. A minimum size threshold of 2 × 2
contiguous cells is applied, which effectively imposes a minimum length scale for the
cluster of ∼ 10dp (according to criterion (ii)).
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Figure 15. (a) Number of detected clusters as function of concentration threshold in the percolation analysis,
with the vertical dashed line indicating the selected threshold. (b) Sample concentration field for the case
ΦV = 7.7 × 10−3, Rebulk = 1200, with contour lines indicating cluster boundaries and crosses indicating their
centroids. (c) Vertical velocity field for the realisation in (b), with the cluster boundaries again shown.

In addition, we leverage the time-resolved nature of the data to estimate the cluster
lifetimes. The procedure is adapted from that developed by Liu et al. (2020) for
characterising the temporal evolution of inertial particle clusters in turbulence. The
tracking is performed via a nearest-neighbour algorithm applied to the cluster centroids,
the result of which is found to be relatively insensitive to the search radius (as long as
the latter is of the order of the expected displacement based on the local mean velocity).
When the tracking algorithm fails to find the successive centroid location within the
search radius, three scenarios are contemplated: the cluster has either disintegrated into
components below the concentration/size thresholds, merged with another cluster, or split
into smaller clusters. To account for the second and third scenarios (which effectively
extend the cluster lifetime), adjacent clusters are considered: if one of them overlaps with
the former cluster over more than 50 % of its area, it is recognised as the same cluster
and the tracking continues. A minimum lifetime threshold is then applied based on the
expected time scale of random (Brownian) fluctuations in the concentration field, which
is taken as the characteristic time between successive inter-particle collisions as described
earlier in § 3.1. In the denser cases for which clusters are detected, n ∼ 1.5 mm−3 and
tcoll ∼ 10 ms. This is much longer than the interval between successive images, according
to criterion (iii).

4.2. Cluster characteristics for the denser case
In this section, we address the properties, position and velocity of clusters for the case
at highest volume fraction (ΦV = 7.7 × 10−3, Rebulk = 1200), based on the 1512 clusters
detected and tracked during the recording time. The other dense cases display qualitatively
similar trends.

The cluster area Acluster (as captured by the two-dimensional projection) has a broad
distribution shown in figure 16(a): the typical length scale is of the order of the duct
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Figure 16. Probability distributions of (a) projected cluster area and (b) in-cluster concentration for the case
ΦV = 7.7 × 10−3, Rebulk = 1200.
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Figure 17. Joint p.d.f.s of (a) cluster area and centroid wall-normal location and (b) in-cluster concentration
and centroid wall-normal location, for the case ΦV = 7.7 × 10−3, Rebulk = 1200.

half-width h, but approximately 20 % of the clusters have areas larger than the channel
cross-section. The p.d.f. of the concentration Ccluster, obtained by averaging C over
all cells belonging to each cluster, exhibits a bimodal shape with a peak at relatively
low concentrations (figure 16b). This corresponds to clusters of relatively small size
found adjacent to the walls. This is illustrated in figure 17, which shows joint p.d.f.s
of wall-normal centroid locations with Acluster and Ccluster, respectively. The clusters
are commonly located near the walls, in line with visual observations and previous
experiments (Cahyadi et al. 2017). Their concentration and size increases with the
wall-normal distance up to approximately 0.3h. As the cluster location is defined by its
centroid, the increase in size with wall distance may be simply the result of larger clusters
having larger wall-normal extension.

The correlation between Acluster and Ccluster, which can be deduced from figure 17,
is demonstrated in the scatter plot of both variables in figure 18(a): a linear regression
indicates that the concentration in a cluster grows approximately as the square root of
its area. The values are averaged over each cluster lifetime, which is also indicated by
the colour-coding of the data points; this indicates that larger and denser clusters also
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Figure 18. (a) Scatter plot of the in-cluster concentration versus cluster area. Both variables are averaged
over a cluster lifetime, which is normalised by τp and used to colour-code each data point. (b) Joint p.d.f. of the
cluster descent velocity against the cluster concentration , displaying a weak positive correlation (slope = 0.34,
r2 = 0.06) between both variables. Both panels are for the case ΦV = 7.7 × 10−3, Rebulk = 1200.

have longer lifetimes. Figure 18(b) presents the joint p.d.f. of cluster concentration Ccluster
and vertical velocity Ucluster. The latter is defined as the velocity of the cluster centroid;
other definitions (e.g. averaging U over all cluster cells) yield similar results. Despite large
scatter (which can be attributed to the broad range of the object sizes and shapes, as well as
to the variance of the observables within each cluster), it is clear that denser clusters tend
to fall faster. This is consistent with observations from two-fluid (Agrawal et al. 2001) and
Euler–Lagrange (Capecelatro et al. 2014; Capecelatro & Desjardins 2015) simulations in
confined and periodic geometries. Taken together, these results indicate that larger clusters
are denser and longer-lived, and also have a larger descent velocity.

4.3. Comparison among the denser cases
In order to evaluate the effect of varying parameters, the size, shape, position and velocity
of the clusters are evaluated for the four denser cases. For these cases, an increase in
Rebulk is associated with an increase in ΦV , thus the effect of both parameters cannot be
disentangled. Although ΦV has been shown to be the controlling parameter across the
parameter space, the four-fold change in air flow rate across these four cases is likely to be
at least as consequential as the ∼ 50 % change in volume fraction.

Figure 19(a) displays p.d.f.s of Acluster, indicating that the size distribution becomes
wider, and its mean becomes smaller with increasing Rebulk. The broader size distribution
is expected as the system displays larger fluctuations, whereas the smaller size is likely
associated with more frequent breakup events, consistent with the fact that smaller clusters
have shorter lifetimes. The clusters are observed to be vertically elongated, which can
be quantified in terms of geometric aspect ratio. To this end, we use a singular value
decomposition approach similar to Baker et al. (2017), calculating the cluster spread along
its larger (s1) and smaller (s2) principal axes. The aspect ratio s2/s1 has limit values of
0 for an infinitely thin elongated object and 1 for a square or circular one. The p.d.f. of
aspect ratios indicate highly elongated clusters, especially for lower Rebulk (figure 19b).
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Figure 19. Comparison between the four cases where clusters are observed. (a) Probability distributions of
projected cluster area. (b) Probability distributions of cluster aspect ratio. (c) Profiles of the number of detected
clusters at each wall-normal location (Nclusters) normalised by the total number of detected clusters (Nall). (d)
Profiles of the mean cluster descent velocity. (e) Probability distributions of the cluster descent velocity. ( f )
Probability distribution of the cluster descent velocity relative to the bulk velocity of the upward moving air
Ubulk.

Considering that most clusters are vertically oriented, typical values of the aspect ratio
(s2/s1 ∼ 0.1) and area (Acluster ∼ h2) indicate that their vertical extent is ∼3–4h. This is
roughly consistent with the size of the correlation length in figure 9.

For all cases, the cluster centroids are found in the vicinity of the wall, a tendency more
marked for lower Rebulk (figure 19c). In previous studies of dense riser configurations, it
is often assumed that the proximity to the wall puts the clusters in the boundary layer
of the rising fluid, allowing their relatively fast descent (Noymer & Glicksman 2000).
Figure 19(d), however, indicates that Ucluster near the walls is not systematically larger
than in the core of the duct. For Rebulk = 300 and 600, the main trend is the asymmetry
of the profiles (also seen in the mean particle velocity 〈U〉, see figure 5), while for the
denser cases the descent velocity is approximately homogeneous. In contrast, 〈U〉 for
Rebulk = 900 and 1200 near the wall is approximately twice as high as at the centre-plane
(see figure 5). One should consider, however, that the cluster statistics away from the wall
are affected by larger uncertainties due to the much fewer samples. The distribution of
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Ucluster becomes broader with increasing Rebulk and its mean is consistently larger than
〈U〉 (figure 19e). Overall, the cluster velocity display qualitatively similar features as the
convection velocity from the autocorrelation maps: it is larger than the mean vertical
velocity and does not strongly depend on the wall-normal location. The mean cluster fall
speed is smaller than the convection velocity deduced from the Rcc map (figure 9d–f ),
which is the characteristic velocity of coherent structures in the concentration field. This
is likely because the denser clusters, which fall faster than the mean of Ucluster, leave a
stronger footprint on the concentration autocorrelation.

Finally, we note that the cluster descent velocity relative to the bulk velocity of the
upward moving fluid, Ucluster − Ubulk, is of the order of the particle terminal velocity
Ut for all cases (figure 19f ). The latter is quantitatively close to the semi-empirical
expression of the descent velocity proposed by Noymer & Glicksman (2000) for near-wall
clusters in circulating fluidised beds, UNG = 0.75

√
gdp(ρp/ρf ) (UNG = 1.56 m s−1 in this

experiment, which is close to Ut). This assumes no influence of the fluid velocity and was
found to agree reasonably well with laboratory observations and numerical simulations
(Capecelatro et al. 2014). In our case, on the other hand, this prediction is only tenable
if UNG is interpreted as a descent velocity relative to the fluid. Importantly, compared
with the cases considered by Noymer & Glicksman (2000), the present experiments
are conducted at significantly lower volume fraction, and a strong influence of the fluid
velocity is expected.

5. Conclusions

We have reported on a series of experiments conducted in a riser-type apparatus where
spherical particles fall in a duct against upward moving air: a typical configuration in
industrial gas–solid flows. Unlike previous studies, we vary independently the particle
volume fraction ΦV and the air flow Reynolds number Rebulk. Using a backlighting
approach, we evaluate the spatiotemporal evolution of the particle concentration and
velocity fields. The upward air flow slows the particle descent by a magnitude comparable
to Ubulk, implying that the particle slip with respect to the flow is of the order of the
still-air terminal velocity of an isolated particle Ut = gτp. The dynamics, however, is far
more complex than what suggested by such a simple scaling. For the most dilute cases,
the system is approximately homogeneous and displays small uncorrelated fluctuations.
Above a critical threshold ΦV ∼ 5 × 10−3 (which appears largely independent of Rebulk)
the fluctuations of velocity and concentration increase sharply as mesoscale clusters are
formed. This is consistent with recent observations by Weit et al. (2018), who reported the
formation of clusters of fluidised particles in a vertical pipe above a critical volume fraction
of ΦV ∼ 0.01. Although the origin of the fluctuating energy is in the particle–fluid slip
rather than in the mean shear, the fluctuation covariances do vary approximately linearly
with the spatial gradients, supporting the use of the gradient-diffusion assumption. The
space–time autocorrelations indicate the presence of dense and persistent structures with
typical vertical lengths of the order of the channel width, falling faster than the average
particles and trailing long wakes. These are shown to be the statistical footprints of the
visually observed clusters, which are identified via a percolation analysis, tracked in time,
and characterised in terms of size, shape, location and descent velocity. The clusters are
highly elongated in the vertical direction, often longer than the channel width, are found
mostly in the vicinity of the wall, and fall faster than the surrounding dilute particles.
Larger clusters are denser and longer-lived and have larger descent velocity. The latter is
weakly dependent on the distance from the wall.
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The parameter space deserves emphasis. The volume fraction lies in a range (ΦV =
10−3–10−2) which is rarely investigated in systematic gas–solid flow experiments, despite
its relevance not only to industrial applications such as pneumatic transport (Louge,
Mastorakos & Jenkins 1991) but also to geophysical phenomena such as snow avalanches
(Sovilla, McElwaine & Louge 2015) and pyroclastic currents (Dufek 2016). This is, in fact,
a regime for which data are sorely needed, as it challenges existing numerical models: the
concentration is too dense for approaches where collisions are neglected (Kasbaoui et al.
2019), but too dilute for the collisional state to reach statistical equilibrium (Fox 2014).
Even for the denser cases we considered, the expected mean free path λ ranges between
5 and 7 mm, and thus the Knudsen number (the ratio between the mean free path and the
length scale over which the spatial gradients are expressed) Kn = λ/h = O(1), violating
the low-Kn assumption in kinetic-theory-based models (Garzó et al. 2012).

The range of Rebulk ≤ 1200 would imply a fully laminar single-phase flow, whereas
a sufficient number of particles induces a highly unsteady-state characterised by large
multiscale fluctuations of concentration and velocity. Although the air velocity fields
cannot be explored here, this regime bears the hallmarks of cluster-induced turbulence
(Capecelatro & Desjardins 2015): when gravity acts on particle-laden flows with ΦV � 1
and ΦM > 1, clusters form and entrain fluid, falling at relatively large speed and generating
strong velocity gradients, which, in turn, feed high fluctuating energy that exhibits large
correlation lengths. The latter scales with gτ 2

p in homogeneous systems, but in internal
flows the cluster size is limited by the duct diameter (Capecelatro, Desjardins & Fox 2016).
Although visual evidence of clusters in these regimes has been reported previously (Weit
et al. 2018), this is the first documentation of their footprint on the spatiotemporal velocity
of the particle fields, and thus represents a first experimental observation of cluster-induced
turbulence.

These results can be interpreted in light of the clustering mechanisms proposed
in previous theoretical and numerical studies. First, the fact that the fluctuations of
particle velocity and concentration are convected at different speeds supports classic
arguments on the system instability (Fullmer & Hrenya 2017). Moreover, the relation
between velocity and concentration agrees with the notion that clusters experience
a concentration-dependent drag: larger clusters fall faster and grow by incorporating
particles they meet in their descent (Capecelatro & Desjardins 2015). Finally, the threshold
beyond which clustering ensues may be interpreted as the condition for which particles
have insufficient time to respond to the fluid drag before the next collision, i.e. tcoll < τp.
Estimates of tcoll and theoretical arguments derived for homogeneous systems suggest a
critical volume fraction remarkably close to the observed one, ΦV = 5 × 10−3. However,
the presence of the walls is expected to affect the inception of clustering due to both
local shear and inelastic particle-wall collisions. To verify that clustering for this class of
gas–solid flows occurs beyond a critical volume fraction, and to ascertain the role of the
particle response time in setting this value, further studies comparing different particle
sizes and materials are warranted.

The present imaging approach relies on the optical depth-averaging of the fields in the
z direction. Although the assumed averaging is consistent with zoomed-in measurements
at the channel centre-plane (see the Appendix), it is likely that the quantitative values of
local volume fraction are affected by inaccuracies in the intensity/concentration relation,
especially within the clusters where the light attenuation is stronger than in the free-fall
calibration experiments. However, this is not expected to overshadow the important trends
which rely on relative concentration. The depth-averaging itself will blur the fine-scale
features of the fields, especially when multiple small structures are in the line of sight.
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Figure 20. (a) Imaging setup for the enlarged-view measurements. (b) Sample image obtained with this
approach for the case ΦV = 1.0 × 10−3, Rebulk = 300.

The fact that the denser clusters (which leave the stronger signature on the statistics) have
sizes of the order of the channel width suggests that the macroscopic features of the system
are captured. Still, future measurements are needed to address two main outstanding
aspects which are outside the scope of the present study. First, the particle-scale dynamics
shall be characterised by tracking individual particles. This will be challenging over the
present range of concentrations unless intrusive probes are used, but would be essential
to disentangle open questions; among others, whether the observed behaviour is mainly
driven by collisions or by concentration-dependent drag. Second, volumetric imaging has
greatly progressed in recent years, as mentioned in the introduction, and can be used to
address the three-dimensional structure of the fields. Finally, we remark that the present
configuration and regime lends itself well to numerical validation: in a 20h long section
of the duct at the highest considered concentration, the total number of particles is ∼ 105,
which is within reach of the most advanced massively parallel PR-DNS approaches (Horne
& Mahesh 2019).
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Appendix. Enlarged-view imaging along the centre-plane

These measurements are only conducted for the more dilute regimes, ΦV < 3 × 10−3,
as denser concentrations would impede the identification of individual particles. The
backlighting imaging system described in § 2.2 is used with a different optical setting:
a 200 mm Nikkor lens is mounted with aperture f /4, yielding a thin depth of focus in
the z direction and a field of view of 30.6 mm (or approximately 3h) in the x direction.
This allows imaging around the z/h =1 plane (figure 20), with the focal plane position
determined by traversing a calibration target on a micro-metric stand inserted in the duct.
The resolution of 31.3 pixels per millimetre allows individual particles to be resolved and
tracked. The internal diffraction from the glass spheres result in a ring-shaped pattern
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(b) (c) (d)(a)

Figure 21. A sequence of images illustrating the particle identification procedure: (a) inverted particle
image; (b) corresponding gradient image sharpening the in-focus particles; (c) correlation map obtained by
cross-correlating (b) with the gradient image of an in-focus particle, with local maxima marked by blue crosses;
(d) close-up view showing the peak-locked centroid (blue cross) and the sub-pixel accurate centroid (red dot)
for the particle shown in the red box in (c).
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Figure 22. Plot of number of particles detected on the microscopic glass slide against the slide position.

which requires a specialised procedure to locate the particle centroid, as illustrated in
figure 21.

(i) The images are inverted and background subtraction is performed using the
minimum intensity over the 20 000 image set.

(ii) The gradient of the background-subtracted image is computed, further sharpening
the pattern of the in-focus particles.

(iii) The gradient image of an in-focus particle is cross-correlated across the gradient
image to obtain a correlation map, and peak-finder algorithm is applied to find local
maxima. The procedure is virtually insensitive to the choice of the in-focus particle.

(iv) To obtain sub-pixel accuracy on the particle centroid location, a 3-point Gaussian fit
is applied to the correlation map around the local maxima.

The acquisition frequency is at 4300 Hz, resulting in inter-frame particle displacement
between 2 and 9 pixels (or approximately 0.3–1.4 particle image diameters). Particle
motion is reconstructed using an in-house PTV algorithm described in Petersen, Baker
& Coletti (2019) and Baker & Coletti (2021), returning Lagrangian trajectories and
the associated velocities and accelerations. To produce Eulerian fields comparable to
the zoomed-out measurements, the Lagrangian PTV data is binned spatially on a grid
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congruent to the PIV interrogation windows). In order to quantify the mean concentration,
the in-focus particles are counted within the imaging volume. The depth of the latter is
determined by traversing on the micrometric stand a pair of transparent slides sandwiching
sparse glass particles. Figure 22 shows the number of in-focus particle detected as the slide
is moved in the z direction, from which depth-of-focus is determined to be 2 mm.
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