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Abstract. The Hansen-Mullen Primitivity Conjecture (HMPC) (1992) asserts
that, with some (mostly obvious) exceptions, there exists a primitive polynomial of
degree n over any finite field with any coefficient arbitrarily prescribed. This has recently
been proved whenever n ≥ 9. It is also known to be true when n ≤ 3. We show that there
exists a primitive polynomial of any degree n ≥ 4 over any finite field with its second
coefficient (i.e., that of xn−2) arbitrarily prescribed. In particular, this establishes the
HMPC when n = 4. The lone exception is the absence of a primitive polynomial of
the form x4 + a1x3 + x2 + a3x + 1 over the binary field. For n ≥ 6 we prove a stronger
result, namely that the primitive polynomial may also have its constant term prescribed.
This implies further cases of the HMPC. When the field has even cardinality 2-adic
analysis is required for the proofs.

2000 Mathematics Subject Classification. 11T06, 11T30, 11T24, 11L40, 11S85.

1. Introduction. Let �q be the finite field of order q, a power of its (prime)
characteristic p. Its multiplicative group is cyclic of order q − 1: a generator is called a
primitive element of �q. More generally, a primitive element γ of the unique extension
�qn of �q of degree n is the root of a (monic) primitive polynomial f (x) ∈ �q[x] of
degree n (automatically irreducible). All roots of f (conjugates γ, γ q, . . . , γ qn−1

of γ )
are primitive elements of �qn . In 1992, T. Hansen and G. L. Mullen [17] stated a
(natural) conjecture on the existence of a primitive polynomial of degree n over �q with
an arbitrary coefficient prescribed. (See also [24], [25] and [15].)

CONJECTURE 1.1 (HANSEN and MULLEN, 1992). Let a ∈ �q and let n ≥ 2 be a
positive integer. Fix an integer m with 0 < m < n. Then there exists a primitive polynomial
f (x) = xn + ∑n

j=1 ajxn−j of degree n over �q with am = a with (genuine) exceptions
when

(q, n, m, a) = (q, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0) or (2, 4, 2, 1).

In fact, substantial progress has already been made towards a complete proof
of Conjecture 1.1. We outline some of these steps. (For a fuller bibliography consult
Cohen’s survey of the last decade’s activity, [5].) When m = 1, it was demonstrated by
Cohen, [1]. (See [10] for a self-contained exposition.) For n = m − 1, it follows from [2],
[7], [18]. The papers of Han [16] and Cohen and Mills [9] cover most cases with m = 2
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and n ≥ 5 (although the situation when q is even and n = 5 or 6 is not altogether clear).
For m = 3, the conjecture holds provided n ≥ 7 by [13], [14], [23] and [8]. It has to be
said, however, that, when m = 2 or 3, some of these items dealt with the stronger
requirement that the first m coefficients are prescribed and significant computer
verification in a large (though finite) number of cases was necessary to resolve these
questions, particularly when 5 ≤ n ≤ 7. Next, the HMPC follows from [3] whenever
m ≤ n

3 (except that for q = 2 the restriction is to m ≤ n
4 ). For even prime powers q

and odd degrees n it has been shown by Fan and Han [12] provided n ≥ 7. Finally,
the whole conjecture has recently been established by Cohen whenever n ≥ 9, [4].

To resolve the HMPC for particular values of n and m, it is evidently more delicate
when n is small and, less evidently perhaps, when m is around n

2 (see [4]). From the
above summary, the outstanding cases all have 4 ≤ n ≤ 8. In particular, the existence
of a primitive quartic (n = 4) with the coefficient of x2 prescribed (m = 2) has not been
settled. For quintics and sextics (n = 5 or 6) the existence question when m = 2 has
been answered affirmatively (at least when q is odd) but this required some considerable
computer verification. The problem when (n, m) = (5, 3), (6, 3) or (6, 4) has still to be
addressed.

In this paper, we show that there exists a primitive polynomial of any degree
n ≥ 4 over �q with its second coefficient (i.e., that of xn−2) arbitrarily prescribed. More
precisely, we give a self-contained proof of the following theorem with a minimal
amount of computation.

THEOREM 1.2. Suppose n ≥ 4. Let a be an arbitrary member of the finite field
�q. Then, except when q = 2, n = 4 and a = 1, there exists a primitive polynomial
f (x) ∈ �q[x] of degree n with second coefficient prescribed as a.

A (difficult) case of the HMPC is an immediate consequence of Theorem 1.2.

COROLLARY 1.3. Suppose n = 4. Then the HMPC holds.

When the degree n ≥ 6, we prove a stronger version of Theorem 1.2 wherein
additionally the constant term of the primitive polynomial is appropriately prescribed
as (−1)nc ∈ �q. Here, necessarily c must be a primitive element of �q, since this is the
norm of a root of the polynomial.

THEOREM 1.4. Suppose n ≥ 6. Let a be an arbitrary non-zero member of the finite
field �q and c be an arbitrary primitive element of �q. Then, there exists a primitive
polynomial f (x) ∈ �q[x] of degree n with second coefficient a and constant term (−1)nc.

In view of the fact that a monic polynomial f (x) ∈ �q[x] of degree n with constant
term (−1)nc is primitive if and only if the reciprocal polynomial xn

(−1)nc · f
( 1

x

)
is primitive

then Theorem 1.2 (for a = 0) and Theorem 1.4 (for a �= 0) imply further cases of the
HMPC.

COROLLARY 1.5. Suppose n ≥ 6 and a ∈ �q. Then there exists a primitive polynomial
of degree n over �q with its coefficient of x2 equal to a. In particular, the HMPC is
established for (n, m) = (6, 4), (7, 5) or (8, 6).

Granted Theorem 1.4, for a �= 0 we need only consider n = 4 or 5 in Theorem 1.2.
Generally, for the numerical aspects we can suppose 4 ≤ n ≤ 8, though the calculations
could easily be extended to larger values of the degree. (Of course, the working becomes
easier as n increases).
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In the proof of Theorem 1.2, we shall distinguish two cases according to when
a �= 0 (the non-zero problem) or a = 0 (the zero problem). In particular, in the non-zero
problem we also treat the case when the constant term is prescribed. Furthermore,
in each case, we will separately approach fields of odd and even orders. Mainly, this
is because, when q is even, the criterion for prescribing the second coefficient has a
different shape. Here, based on an important method introduced by Fan and Han
(e.g., [11]), 2-adic analysis is employed. Accordingly, we shall refer to the odd non-zero
problem, etc. In every case careful work on expressing the number of desired primitive
polynomials in terms of character sum expressions is required, as well as a sieving
technique. This outcome is that, except for primitive quartics over fields of odd order,
the only primitive polynomials that have to be exhibited explicitly are over �q, where
q ≤ 7. For quartics over odd-order fields, where the prescribed coefficient of x2 is non-
zero, 27 fields have to be checked (the largest is �103). When the prescribed coefficient
is zero, 246 polynomials have to be found: the largest field is �11003.

For Theorem 1.4 (so that n ≥ 6), the main situation where direct checking is
required is that of sextics over ten fields of odd order. The largest is �29.

In a sequel, we intend to treat the (remaining cases of the) existence question for
primitive polynomials with the third or fourth coefficient prescribed.

2. Basic notation with applications. Throughout take Qn = qn−1
q−1 and, for any

integer r, denote by θ (r) the ratio φ(r)
r , φ being Euler’s function.

Observe that a primitive element of �qn is not a d-th power in �qn for any divisor
d of qn − 1 exceeding 1. More generally, for any divisor k of qn − 1, call a (non-zero)
element of �qn k-free if it is not a d-th power in �qn for any divisor d of k exceeding 1.

Given a ∈ �q, for a divisor k of qn − 1 denote by πa(k) the number of k-free
elements of �qn whose characteristic polynomial over �q has second coefficient a. It is
required to show that πa(qn − 1) is positive. In particular, in the zero problem (a = 0),
the number is π0(qn − 1). Evidently, from the definition of k-free, the value of πa(k)
depends only on the square-free part of k, that is, the product of all distinct primes
dividing k. Accordingly, we replace k by its square-free part, whenever appropriate.

LEMMA 2.1. Suppose that an (irreducible) polynomial f (x) ∈ �q[x] of degree n has
second coefficient 0 and a root γ ∈ �qn that is Qn-free. Then there exists b ∈ �∗

q, such
that the minimal polynomial of γ ∗ := bγ is primitive of degree n and also has second
coefficient 0.

Proof. Since γ is Qn-free, for a fixed primitive element ξ ∈ �qn , γ = ξ e, where
gcd(e, Qn) = 1. Set b = ξ jQn (automatically in �q) for some j to be chosen. Then, for
any choice of j, γ ∗ := bγ remains Qn-free. Write q − 1 = q1q2, where q1 and q2 are
co-prime with q1 the largest factor of q − 1 co-prime to Qn. Thus, for any b, bγ = γ ∗

is already q2-free. It is additionally q1-free (and so primitive) if j is chosen so that
e + jQn ≡ 1 (mod q1). This is always possible. The result follows. �

Consequently, from Lemma 2.1, in the zero problem in order to establish that
π0(qn − 1) is positive, it suffices to show that π0(Qn) is positive.

For Theorem 1.4 (wherein the constant term is also prescribed), introduce En,
defined as the product of distinct primes in qn − 1 that are not factors of q − 1. In
particular, En is an odd divisor of Qn. Further, for a ( �= 0) ∈ �q, c primitive in �q

and k|qn − 1, define πa,c(k) to be the number of k-free γ ∈ �qn whose characteristic
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polynomial has second coefficient a and constant term (−1)nc. We want to show that
when n ≥ 6, then πa,c(qn − 1) is positive.

LEMMA 2.2. Suppose that f (x) ∈ �q[x] is an irreducible polynomial of degree n with
constant term (−1)nc, where c is a primitive element of �q. Then f is primitive if and only
if any root γ ∈ �qn is En-free.

Proof. Since γ (qn−1)/(q−1) = c is a primitive element of �q, then γ is guaranteed to
be (q − 1)-free. To be primitive (in �qn ) it therefore suffices if it is En-free. �

By Lemma 2.2, it suffices to show that πa,c(En) is positive.
The next items of notation relate to the characteristic function of the set of (non-

zero) k-free elements of �qn . For any d| qn − 1, write ηd for a typical multiplicative
(complex-valued) character in �̂∗

qn of order d. Extend ηd to a function on �qn by setting
ηd(0) = 0 (even when d = 1). Thus η1 is the trivial character. We shall however write
η = 1 for the version of the trivial character for which η(0) = 1. As in other papers,
adopt an “integral” notation for weighted sums; namely, for k| qn − 1, set∫

d|k
ηd :=

∑
d|k

µ(d)
φ(d)

∑
(d)

ηd,

where the inner sum runs over all φ(d) characters of order d. (Once again, only square-
free divisors d have any influence.) Then the characteristic function for the subset of
k-free elements of �qn is

θ (k)
∫

d|k
ηd(γ ), γ ∈ �qn , (2.1)

with θ (k) as above.
The next batch of notation relates to the sieving technique. Given k (taken to

be square-free), write k = k0p1 · · · ps, s ≥ 1, for some divisor k0 and distinct primes
p1, . . . , ps. Then (k0, s) is called a decomposition of k. To such a decomposition we
associate a number

δ := 1 −
s∑

i=1

1
pi

(2.2)

which is of special significance. To be useful it is essential that k0 is selected so that δ is
positive: it will always be assumed that this is so.

LEMMA 2.3. For any divisor d of qn − 1, let π (k) denote the number of k-free elements
of �qn satisfying prescribed conditions. Suppose that (k0, s) is a decomposition of k. Then

π (k) ≥
(

s∑
i=1

π (k0pi)

)
− (s − 1)π (k0) (2.3)

= δπ (k0) +
s∑

i=1

(
π (k0pi) −

(
1 − 1

pi

)
π (k0)

)
. (2.4)

Proof. The results are trivial for s = 1. The basic sieving inequality (2.3) holds by
induction on s ≥ 2. When s = 2, S(k0) ⊆S(k0p1) ∪S(k0p2), where S(k) denotes the set
of elements counted by π (k).
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The expression (2.4) is merely an awkward-looking numerical rearrangement of
the right side of (2.3) that will subsequently be efficient in combining estimates for the
various quantities. �

In brief, for a given k (such as qn − 1), one starts out by estimating π (k) directly
(i.e., take s = 1 in the above) for sufficiently large q. For smaller values of q, genuine
applications of the sieve (s > 1) become crucial.

For any positive integer r, denote by W (r) = 2ω(r) the number of square-free
divisors of r, where ω(r) is the number of distinct prime divisors of r. For a given
decomposition (k0, s) define

	s,δ := s − 1
δ

+ 2.

When s = 1, then 	s,δ = 2 and W (k) = 2W (k0).

3. The odd problem. First we recall a standard general fact.

LEMMA 3.1. For a field F, let f (x) ∈ F [x] be a separable monic irreducible polynomial
in F [x] with a root γ ∈ E, say. For t = 1, 2, denote by st the E/F-trace of γ t. Then the
second symmetric function σ2 of the roots of f satisfies

2σ2 = s2
1 − s2. (3.1)

Proof. Let deg f = n and γ = γ1, . . . , γn denote all the roots of f (in a splitting
field). Then

2σ2 = 2
∑

1≤i<j≤n

γiγj =
∑

1≤i, j≤n

γiγj =
∑

1≤i≤n

γi

∑
1≤j≤n

γj −
∑

1≤i≤n

γ 2
i ,

and the result follows. �
As it stands Lemma 3.1 is useful only when the characteristic of F is not 2. Suppose

now that q is odd and that a ∈ �q is given.

COROLLARY 3.2. For any z ∈ �q, suppose that f (x) ∈ �q[x] is irreducible of degree n
and such that s1 = z and s2 = z2 − 2a. Then f has second coefficient a.

From Corollary 3.2 it is useful to have an expression for the characteristic function
of the subset of �qn comprising elements with prescribed �qn/�q trace b: in other
notation Tn(ξ ) = b. This is:

1
q

∑
α∈�q

χ (α(Tn(ξ ) − b)) = 1
q

∑
α∈�q

χ̄(b) χn(α(ξ )), ξ ∈ �qn .

Here χ is the canonical additive character on �q (so that

χ (b) = exp
2π iTu(b)

p
,

where q = pu) and χn is the canonical character on �qn . Also χ̄ is the complex conjugate
character to χ .

Using the characteristic functions defined already we can deduce a basic formula
for πa(k) and, when a �= 0, πa,c(k).
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LEMMA 3.3. Suppose q is odd, a ∈ �q is given and k divides qn − 1. Then

q2πa(k) = θ (k)
∫

d|k

∑
α,β,z∈�q

χ̄ (α(z2 − 2a) + βz) Sn(α, β; ηd), (3.2)

where Sn(α, β; η) denotes the character sum
∑

γ∈�qn χn(αγ 2 + βγ )η(γ ).
More generally, suppose that (k0, s) is a decomposition of k. Then

q2πa(k)
θ (k0)

= δ

∫
d|k0

∑
α,β,z∈�q

χ̄(α(z2 − 2a) + βz) Sn(α, β; ηd)

+
s∑

i=1

(
1 − 1

pi

) ∫
d|k0

∑
α,β,z∈�q

χ̄ (α(z2 − 2a) + βz)Sn(α, β; ηdpi ). (3.3)

In particular, the contribution to the right side of (3.3) attributable to values of α = β = 0
(the “main term”) is δq(qn − 1).

Proof. For (3.3) use the equivalence of the right sides of (2.3) and (2.4).
For the main term, observe that Sn(0, 0; ηd) is zero unless d = 1 when the value is

qn − 1. Then summing over z ∈ �q we obtain the “main term" in (3.3).
Of course, (3.2) is recovered from (3.3) by setting s = 1. �

Recall that, if �̂∗
q

∼= �∗
q denotes the group of multiplicative characters of �∗

q, then
the characteristic function of elements of �qn with �q-norm c (i.e., Nn(γ ) = c) is

1
q−1

∑
ν∈�̂∗

q
ν(Nn(γ )c−1). We obtain the following modification of Lemma 3.3, where

ν̂ denotes the lift of ν to �̂∗
qn (so that ν̂(γ ) = ν(Nn(γ ))).

LEMMA 3.4. Suppose q is odd, a, c ∈ �∗
q are given, with c a primitive element of �q,

and k divides En. Suppose also that (k0, s) is a decomposition of k. Then

(q − 1)q2πa,c(k)
θ (k0)

= δ

∫
d|k0

∑
ν∈�̂∗

q
α,β,z∈�q

ν̄(c)χ̄(α(z2 − 2a) + βz) Sn(α, β; ηd ν̂)

+
s∑

i=1

(
1− 1

pi

) ∫
d|k0

∑
ν∈�̂∗

q
α,β,z∈�q

ν̄(c)χ̄(α(z2 − 2a) + βz)Sn(α, β; ηdpi ν̂).

(3.4)

In particular, the contribution to the right side of (3.4) attributable to values of α = β = 0
(the “main term”) is δq(qn − 1).

Estimates for Sn(α, β; ηd) are standard.

LEMMA 3.5. Suppose α, β ∈ �q, not both 0.
If α = 0, then Sn(0, β; 1) = 0; otherwise

|Sn(α, β; 1)| ≤ q
n
2 .
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Suppose d|qn − 1 with d > 1. Then

|Sn(α, β; ηd)| ≤
{

2q
n
2 , if α �= 0,

q
n
2 , if α = 0.

We shall apply Lemma 3.5 not only to character sums over �qn but also to character
sums over �q itself (with n = 1).

At this point it is convenient to split the discussion into the non-zero or zero
problems.

4. The odd non-zero problem. Suppose now that the prescribed coefficient a is
non zero and, where relevant, c is a primitive element of �q.

PROPOSITION 4.1. Suppose q is odd and a �= 0. Let k|qn − 1 and (k0, s) be a
decomposition of k. Suppose

q
n−2

2 > 4W (k0)	s,δ. (4.1)

Then πa(k) is positive. Specifically, when s = 1 and k = qn − 1, the sufficient condition is

q
n−2

2 > 4W (qn − 1). (4.2)

Proof. Consider the expression (3.3). We aggregate the contributions to the right
side relating to a specific multiplicative character ηd or ηdpi (without the weighting
factor implicit in the integral notation). Denote by η̃d the restriction of ηd to �q, the
significance being that η̃d has order d

gcd(d,Qn) .
So suppose d|k0 and take ηd : similar reasoning applies to each ηdpi . Consider the

contribution of terms with β �= 0. Replace γ ∈ �qn by γ

β
∈ �qn , α ∈ �q by αβ2 ∈ �q, and

z ∈ �q by z
β

∈ �q. We obtain

δ
∑
α∈�q

∑
β∈�∗

q

χ (2aαβ2) ¯̃ηd(β)
∑
z∈�q

χ̄ (αz2 + z) Sn(α, 1; ηd),

which is the same as

δ
∑
α∈�q

S1(2aα, 0; ¯̃ηd) S1(α, 1; 1) Sn(α, 1; ηd). (4.3)

In (4.3), if α = 0, then, by Lemma 3.5, S1(α, 1; 1) = 0. We may therefore suppose
that the sum is over α ∈ �∗

q.
Suppose d � Qn. Then η̃d has order exceeding 1 on �q. It follows from Lemma 3.5,

that (4.3) is bounded in absolute value by 4δ(q − 1)q
n
2 +1.

Now suppose d|Qn so that η̃d has order 1. This time Lemma 3.5 yields that (4.3)
is bounded in absolute value by 2δ(1 + q− 1

2 )(q − 1)q
n
2 +1. Here, the constant 2 can be

reduced to 1 if d = 1. It is therefore valid (and convenient) to use the same bound
4δ(q − 1)q

n
2 +1 for (4.3) when d|Qn as when d � Qn. Moreover, the negative quantity

−(q − 1) from the main term is easily offset by the contribution from η1.
Next, still with regard to a particular character ηd , we consider the contribution

from terms with β = 0 (and α �= 0). First we estimate the contribution from (non-zero)
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squares α = A2, A ∈ �q. Since each such value is counted twice (for A and −A), when
we replace γ ∈ �qn by γ

A and z ∈ �q by z
A ∈ �q, we obtain

1
2

∑
A∈�∗

q

χ (2aA2) ¯̃ηd

∑
z∈�q

χ (z2) Sn(1, 0; ηd) = 1
2

S1(2a, 0; ¯̃ηd) S1(1, 0; 1) Sn(1, 0; ηd).

Similarly, for non-squares α, set α = cA2, A ∈ �∗
q for a fixed non-square c, and we

obtain the expression

1
2

S1(2ac, 0; ¯̃ηd) S1(c, 0; 1) Sn(c, 0; ηd).

Accordingly, we obtain a bound of 4δq
n
2 +1 from the terms with β = 0.

Summarising, we obtain an absolute bound of 4δq
n
2 +2 for the (non-weighted)

contribution of all terms corresponding to a character ηd .
The remaining terms on the right side of (3.3) (involving characters like ηdpi ) are

estimated in the same way: we have used no special properties for d|k0. Taking into
account that there are φ(d) characters of order d for each divisor d we deduce that
numerically the right side of (3.3) exceeds

δ
(
qn+1 − 4q

n
2 +2	s,δ

)
,

with 	s,δ as in Section 2, since
∑s

i=1(1 − 1
pi

) = s − 1 + δ. �

Similarly, taking the q − 1 characters in �̂∗
q into account we obtain an analogous

criterion for the positivity of πa,c(En).

PROPOSITION 4.2. Suppose q is odd, a �= 0 and c is a primitive element of �q. Let
k|En and (k0, s) be a decomposition of k. Suppose

q
n−4

2 > 4
(

1 − 1
q

)
W (k0)	s,δ. (4.4)

Then πa,c(k) is positive. Specifically, when s = 1 and k = En, the sufficient condition is

q
n−4

2 > 4
(

1 − 1
q

)
W (En). (4.5)

4.1. Quartics. Take n = 4. Then (4.1) takes the form

q > 4W (k0)	s,δ. (4.6)

To assist in the application of the criterion (4.1) we employ some auxiliary results.
The first is an easy fact that was also quoted as Lemma 4.2 in [10].

LEMMA 4.3. Suppose n and l are odd primes such that l|Qn = qn−1
q−1 . Then either l = n

or l ∈ L2n (with l � (q − 1)). Here L2n denotes the set of primes congruent to 1 (mod 2n).

Here (and throughout) we use some explicit bounds for the number of square-free
divisors of an integer h (see Section 9).

REMARK. We will use l to denote a prime number throughout.

https://doi.org/10.1017/S0017089506003077 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003077


PRIMITIVE POLYNOMIALS 289

Express the product of distinct primes in q4 − 1 as K1 · K2, where K1 (an even
factor of q2 − 1) is the product of all distinct prime divisors of q2 − 1 and K2 (an
odd divisor of q2 + 1) is the product of distinct prime divisors of q2 + 1 that do not
divide q2 − 1. Easily (or by Lemma 4.3), any prime divisor l of K2 is ≡ 1 (mod 4), i.e.,
l ∈ L4. Denote ω(K1) by ω1 and ω(K2) by ω2. In fact, ω1 = ω( q2−1

4 ): indeed 16|q4 − 1 =
(q − 1)(q + 1)(q2 + 1).

LEMMA 4.4. Suppose that n = 4, q odd and ω1 ≥ 15 or ω2 ≥ 11. Let a ( �= 0) ∈ �q.
Then there exists a primitive polynomial of degree 4 over �q with the coefficient of x2

prescribed as a.

Proof. First suppose ω1 ≥ 15 and ω2 ≥ 11. By Lemma 9.1, the number of square-
free divisors of h, an integer such that ω(h) ≥ 15, is bounded by W (h) < h

13
50 . Therefore

W (K1) < (q2 − 1)
13
50 < q

13
25 . Also, by Lemma 9.2, when an integer h is a product of

primes l ≡ 1 (mod 4) and ω(h) ≥ 11, then W (h) < h
1
5 . That yields W (K2) < ( q2+1

2 )
1
5 <

q
2
5 . It follows that W (q4 − 1) < q

23
25 . Consequently, by (4.2), to show existence it suffices

that q > 4q
23
25 , i.e. q ≥ 4

25
2 = 33554432, which obviously holds as ω1 ≥ 15, ω2 ≥ 11 yield

q > 108.
Next, suppose ω1 ≤ 14 and ω2 ≥ 11. First assume ω1 ≥ 4. Let (k0, s) be the

decomposition where k0 is the product of K2 and the smallest three primes in K1. Thus
s ≤ 11, δ ≥ 1 − 1

7 − . . . − 1
43 > 0.392 and 	s,δ < 27.52. By the above, W (k0) < 8q

2
5

and (4.6) is satisfied whenever q ≥ 80910. This is the case since ω2 ≥ 11, whence
q > 108. Assume, on the other hand, that ω1 ≤ 3. Then W (k0) = W (q4 − 1) < 8q

2
5

(again) and the same conclusion follows by (4.1) (equivalent to (4.6) with s = 1). (We
omit similar obvious modifications in subsequent arguments.)

Finally, suppose ω1 ≥ 15 and ω2 ≤ 10. Take k0 = K1. Then s ≤ 10,
δ ≥ 1 − ∑

l≤89
l≡1(mod 4)

1
l > 0.518 and 	s,δ < 19.38. Now (4.6) is satisfied whenever q ≥

8636, which completes the proof since ω1 ≥ 15 implies q > 108. �

After Lemma 4.4, we assume ω1 ≤ 14, ω2 ≤ 10 and run the full sieving process.
Consider the (k0, s) decomposition with k0 = gcd(q4 − 1, 30). Thus, k0 = 30 unless

the characteristic p is 3 (k0 = 10) or 5 (k0 = 6). When p �= 5, the prime 5 will be a divisor
of one of K1 or K2: observe that in either case δ is bounded below by

δ ≥ min

⎛⎜⎜⎝1 −
ω1−2∑
i=2

li≡3(mod 4)

1
li

−
ω2+1∑
i=2

li≡1(mod 4)

1
li
, 1 −

ω1−1∑
i=2

li≡3(mod 4)

1
li

−
ω2∑
i=2

li≡1(mod 4)

1
li

⎞⎟⎟⎠ ,

where in each sum the prime li indicates the i-th prime in the given congruency class
mod 4. It is an empirical (rather than theoretical) observation that this value of δ yields
the notional minimal for the bounded values of ω1, ω2 in the current application. When
p = 5, for minimal δ it can be supposed that all odd prime divisors of K1 are ≡ 3 (mod 4).
Write qmin for the minimal integral value of q for which (4.6) with the above minimum
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value of δ holds. The sieving steps are shown in the table below.

# q ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ 	s,δ ≤ qmin

1 14 10 30 3 21 0.242 84.65 2709
2 ≤ 2707 7 5 6 2 10 0.240 39.50 633
3 ≤ 631 6 4 6 2 8 0.299 25.24 407
4 ≤ 405 6 3 6 2 7 0.334 19.97 320
5 ≤ 319 5 3 6 2 6 0.377 15.27 245

In the final two lines of the above table we have supposed ω2 ≤ 3: although
numerically ω2 = 4 is possible, there are no integers q2+1

2 , q ≤ 405 odd, with this
value of ω2.

Next, for all odd prime powers q ≤ 243 the computer algebra package Maple is
used to check whether (4.6) (with k0 = gcd(6, q)) holds. This is so, except for those in
{3, 5, . . . , 73, 83, 89, 103}, a set of cardinality 27. For each of these remaining values
primitive quartics with prescribed coefficient of x2 were found directly.

We do not list all of these polynomials here, only those for q = 83, which turns
out to have the most (and very small) different prime divisors of q4 − 1 = 24 · 3 · 5 ·
7 · 13 · 41 · 53. We string the 82 pairs (a, c), one example for each primitive quartic
x4 + ax2 + x + c, a �= 0:
(1, 18), (2, 14), (3, 5), (4, 35), (5, 14), (6, 24), (7, 20), (8, 34), (9, 14), (10, 2), (11, 2),
(12, 8), (13, 15), (14, 6), (15, 14), (16, 80), (17, 6), (18, 32), (19, 19), (20, 43), (21, 15),
(22, 32), (23, 32), (24, 8), (25, 62), (26, 18), (27, 2), (28, 19), (29, 14), (30, 19), (31, 14),
(32, 15), (33, 54), (34, 35), (35, 24), (36, 32), (37, 35), (38, 20), (39, 14), (40, 22), (41, 6),
(42, 34), (43, 2), (44, 6), (45, 8), (46, 5), (47, 8), (48, 8), (49, 6), (50, 8), (51, 39), (52, 15),
(53, 8), (54, 6), (55, 55), (56, 18), (57, 2), (58, 24), (59, 14), (60, 34), (61, 2), (62, 5),
(63, 22), (64, 18), (65, 53), (66, 5), (67, 43), (68, 2), (69, 39), (70, 66), (71, 5), (72, 2),
(73, 19), (74, 8), (75, 15), (76, 15), (77, 14), (78, 8), (79, 50), (80, 18), (81, 60), (82, 67).

In summary, the above examples suffice to complete the proof (for odd q) of
Theorem 1.2 for n = 4, m = 2 and a �= 0.

4.2. Quintics. Take n = 5. Then (4.1) takes form

q
3
2 > 4W (k0)	s,δ. (4.7)

Express the product of distinct primes in q5 − 1 as K1 · K2, where K1 (a factor of
q − 1) is the product of all distinct prime divisors of q − 1 and K2 (a factor of Q5)
is the product of distinct prime divisors of Q5 that do not divide q − 1. Observe that
5|(q − 1) if and only if 5|Q5 and therefore all prime divisors of K2 are ≡ 1 (mod 10).
Denote ω(K1) by ω1 and ω(K2) by ω2.

LEMMA 4.5. Suppose that n = 5, q odd and ω1 ≥ 6 or ω2 ≥ 10. Let a ( �= 0) ∈ �q.
Then there exists a primitive polynomial of degree 5 over �q with the coefficient of x3

prescribed as a.

Proof. First suppose ω1 ≥ 6 and ω2 ≥ 10. Then, by (9.1), W (K1) < q
3
7 , and by

(9.6), W (K2) < (q4 + q3 + q2 + q + 1)
1
6 < (q5)

1
6 = q

5
6 . It follows that W (q5 − 1) < q

53
42 .

Consequently, by (4.2) to show existence it suffices that q
3
2 > 4q

53
42 , so certainly whenever

q ≥ 338. The latter evidently holds since ω1 ≥ 6 implies q ≥ 30030.
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Next, suppose ω1 ≤ 5 and ω2 ≥ 10. Let (k0, s) be the decomposition where k0 is
the product of K2 and the least three primes in K1. Thus s ≤ 2. Hence, in (2.2), δ ≥ 1 −
1
7 − 1

11 > 0.766 and consequently 	s,δ < 3.31. By the above reasoning, W (k0) < 8q
5
6

and (4.7) is satisfied whenever q ≥ 1091. This suffices since q > 45000 as ω2 ≥ 10.
Finally, suppose ω1 ≥ 6 and ω2 ≤ 9. Then s ≤ 9, δ ≥ 1 − ∑

l≤181
l≡1(mod 10)

1
l > 0.792

and 	s,δ < 12.11, when k0 is taken to be k0 = K1. Now (4.7) is satisfied whenever
q ≥ 38, which holds since ω1 ≥ 6 yields q ≥ 30030. �

After Lemma 4.5, we can assume ω1 ≤ 5 and ω2 ≤ 9 and begin the full sieving
process.

Consider the decomposition (k0, s), where k0|K1. Where applicable, to minimise
δ, the prime 11 is notionally taken to divide K2 rather than K1. The sieving steps are
summarized below:

# q ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ 	s,δ ≤ qmin

1 5 9 30 3 11 0.572 19.49 73
2 ≤ 71 3 4 6 2 5 0.636 8.29 27
3 ≤ 25 2 3 2 1 4 0.519 7.79 16

For q = 13, 11 and 9, consider decompositions with k0 = 2. Here s = 2 in each
case with δ > 0.666, 0.799 and 0.892 respectively. Then (4.7) is satisfied because

13 > (4 · 2 · 3.51)
2
3 = 9.23 . . . ; 11 > (4 · 2 · 3.26)

2
3 = 8.79 . . . ;

9 > (4 · 2 · 3.13)
2
3 = 8.55. . . .

The only values of q left to check are 7, 5 and 3. Because these are small, we list
the relevant primitive polynomials below, one for each pair (q, a).

a q = 7 q = 5 q = 3

1 x5 + x3 + 4x + 4 x5 + x3 + 2x + 2 x5 + x3 + x + 1
2 x5 + 2x3 + x + 2 x5 + 2x3 + x + 2 x5 + 2x3 + x2 + 1
3 x5 + 3x3 + x + 4 x5 + 3x3 + 2 —
4 x5 + 4x3 + x + 2 x5 + 4x3 + x2 + 3 —
5 x5 + 5x3 + 4 — —
6 x5 + 6x3 + 2 — —

4.3. Degrees 6, 7 and 8. In this section we prove a stronger result and show the
existence of primitive polynomials of degrees 6 ≤ n ≤ 8 where, in addition to their
second coefficients, their constant terms are also prescribed as primitive elements of
�q. The main tool here is Proposition 4.2. This yields the sufficient condition

q, q
3
2 , q2 > 4

(
1 − 1

q

)
W (k0)	s,δ when n = 6, 7, 8, respectively.

4.3.1. Sextics. Write the product of distinct primes in E6 as K1 · K2, where K1 is
the product of all distinct prime divisors of q + 1 (that do not divide q − 1) and K2 is
the product of distinct prime divisors of q6−1

q2−1 that do not divide q2 − 1. Notice that 3
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is never a factor of K2 and so (by an analogue of Lemma 4.3) any prime divisor l of
K2 is ≡ 1 (mod 6), i.e., l ∈ L6. Denote ω(K1) by ω1 and ω(K2) by ω2.

LEMMA 4.6. Suppose that n = 6, q odd and ω1 ≥ 10 or ω2 ≥ 24. Let a ( �= 0) ∈ �q

and c be a primitive element of �q. Then there exists a primitive polynomial of degree 6
over �q with the coefficient of x4 prescribed as a and constant term c.

Proof. First suppose ω1 ≥ 10 and ω2 ≥ 24. By (9.2), W (K1) < q
5

18 , and by (9.5),
W (K2) < (q4 + q2 + 1)

10
63 < (2q4)

10
63 . Therefore W (E6) < 2

10
63 q

115
126 and, putting s = 1,

(4.4) guarantees existence when q > 4 · 2
10
63 q

115
126 , so certainly whenever q ≥ 27774792

(as ω1 ≥ 10 implies q > 1011).
Next, suppose ω1 ≤ 9 and ω2 ≥ 24. Let (k0, s) be the decomposition where k0 is

the product of K2 and the smallest three primes in K1. Hence, s ≤ 6, δ ≥ 1 − 1
11 − . . . −

1
29 > 0.642 and consequently 	s,δ < 9.79. Reasoning as above, W (k0) < 2

199
63 q

40
63 and

(4.4) is satisfied whenever q ≥ 4322937. This suffices since q > 1011 as ω2 ≥ 24.
At last, suppose ω1 ≥ 10 and ω2 ≤ 23. Take k0 = K1. Then s ≤ 23,

δ ≥ 1 − ∑
l≤223

l≡1(mod 6)

1
l > 0.499 and 	s,δ < 48.10. Now (4.4) is satisfied whenever q ≥

1455, which holds since ω1 ≥ 10 yields q ≥ 1011. �
Consequently to the above lemma, we may assume ω1 ≤ 9 and ω2 ≤ 23 and run

the sieve, which is represented in the table below.

# q ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ 	s,δ ≤ qmin

1 9 23 105 3 29 0.364 78.93 2526
2 ≤ 2525 4 8 15 2 10 0.436 21.44 344
3 ≤ 343 3 6 3 1 8 0.354 21.78 175
4 ≤ 173 2 6 3 1 7 0.445 15.49 124
5 ≤ 123 2 5 3 1 6 0.468 12.69 102

At this place, qmin is not small enough to lessen the values of ω1, ω2, therefore
we use Maple to search for all the q ≤ 101 with ω1 = 2. Five such values are found:
29, 41, 59, 83, 101. All but 29 satisfy (4.4) with k0 = 1. We will deal with q = 29, but
for all the other values of q ≤ 101 we can now (rightfully) assume ω1 ≤ 1 and continue
the sieve.

# q ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ 	s,δ ≤ qmin

6 ≤ 101 1 5 3 1 5 0.668 7.99 64
7 ≤ 63 1 4 3 1 4 0.695 6.32 51
8 ≤ 49 1 3 3 1 3 0.727 4.76 39

In line 7 of the table, q ≤ 63 implies ω2 ≤ 5, but there are no primes or prime
powers of that size with ω2 = 5. We proceded similarly in the next step, where three
such values with ω2 = 4 exist: 37, 47 and 49. They all fit into (4.4) with k0 = 1. So also
does q = 31, 27 and 25, but for all the smaller values, and for q = 29, we have to search
for polynomials explicitly.

For illustration, we give here two polynomials of degree 6 over �3 with the
coefficient of x4 prescribed as a �= 0 and constant term c (which necessarily equals 2):

a = 1 : x6 + x4 + 2x2 + x + 2, a = 2 : x6 + 2x4 + x2 + x + 2.
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4.3.2. Septics.

LEMMA 4.7. Suppose that n = 7, q odd and ω(E7) ≥ 6. Let a ( �= 0) ∈ �q and c be a
primitive element of �q. Then there exists a primitive polynomial of degree 7 over �q with
the coefficient of x5 prescribed as a and constant term −c.

Proof. Suppose ω(E7) ≥ 6. Lemma 9.5 then provides W (E7) < (E7)
1
6 ≤ (Q7)

1
6 <

(q7)
1
6 = q

7
6 . Criterion (4.4) is then certainly sufficient whenever q

3
2 > 4q

7
6 , i.e. q > 64.

This holds since ω(E7) ≥ 6. �
We may now suppose ω(E7) ≤ 5. Set k0 = 1 and so s ≤ 5. Recall Lemma 4.3, by

which all the prime divisors of E7 are ≡ 1 (mod 14). Therefore δ ≥ 1 − 1
29 − 1

43 − 1
71 −

1
113 − 1

127 > 0.911 and (4.4) is satisfied for q ≥ 9. Among the remaining values, q = 7
and 5 satisfy (4.4) with k0 = 1, whereas when q = 3, the polynomials need to be found
explicitly:

a = 1 : x7 + x5 + x + 1, a = 2 : x7 + 2x5 + 1.

4.3.3. Octics. Express the product of distinct primes in E8 as K1 · K2, where K1 is
the product of all distinct odd prime divisors of (q + 1)(q2 + 1) and K2 is the product of
distinct odd prime divisors of q4 + 1. By an analogue of Lemma 4.3 any prime divisor
l of K2 is ≡ 1 (mod 8), i.e., l ∈ L8. Denote ω(K1) by ω1 and ω(K2) by ω2.

LEMMA 4.8. Suppose that n = 8, q odd, ω1 ≥ 8 or ω2 ≥ 6. Let a ( �= 0) ∈ �q and c
be a primitive element of �q. Then there exists a primitive polynomial of degree 8 over �q

with the coefficient of x6 prescribed as a and constant term c.

The proof of Lemma 4.8 is analogous to that of Lemma 4.6, so we do not lay
it out for the reader. We now assume ω1 ≤ 7 and ω2 ≤ 5 and continue the sieving
process. This stops at q ≤ 9. We check that q = 9, 7, 5 and 3 all satisfy criterion (4.4)
with k0 = 1. For example, (4.1) holds when q = 3, because q2 = 9 > 8.78.

5. The odd zero problem. Suppose that q remains odd but that the prescribed
coefficient a is zero. By Lemma 2.1, it suffices to prove that π0(Qn) is positive.

PROPOSITION 5.1. Let k|Qn and let (k0, s) be a decomposition of k. Suppose q is odd
and

q
n−3

2 > 2
(

1 − 1
q

)
W (k0)	s,δ. (5.1)

Then π0(k) is positive.
Specifically, when s = 1 and k = Qn, the sufficient condition is

q
n−3

2 > 2
(

1 − 1
q

)
W (Qn). (5.2)

Proof. Suppose k|Qn and again consider the expression (3.3). Once more we
aggregate the contributions to the right side relating to a specific multiplicative
character ηd or ηdpi .

For d|k0 again we obtain (4.3) (with a = 0) as the contribution of terms with β �= 0.
As before we can ignore contributions from terms with α = 0. The difference this time
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is that, since a = 0 and η̃d has order 1, then S1(2aα, 0; ¯̃ηd) = q − 1, always. Further
|Sn(α, 1; ηd)| ≤ 2q

n
2 , where the constant 2 can be replaced by 1 if d = 1. We therefore

obtain 2δ(q − 1)2q
n+1

2 as a bound for the sum (4.3) in this situation, where the constant
2 can be replaced by 1 when d = 1. Similarly, we obtain 2δ(q − 1)q

n+1
2 as a bound for

the contribution of terms with β = 0. In total therefore the “non-main terms” on the
right side of (3.3) are bounded by 2δ(q − 1)W (k0)	s,δq

n+3
2 . Since the “main term" is

δqn+1, the result follows. �

In what follows, we focus on quartics and quintics. It is then routine to establish
Theorem 1.2 for 6 ≤ n ≤ 8.

5.1. Quartics. Take n = 4. Then, for a decomposition (k0, s) of Q4 = (q + 1)
(q2 + 1), (5.1) takes the form

q
1
2 > 2

(
1 − 1

q

)
W (k0) 	s,δ. (5.3)

Write the product of distinct primes in Q4 as K1 · K2, where K1 (a factor of q + 1)
is the product of all distinct prime divisors of q + 1 (and so is even) and K2 (an odd
divisor of q2 + 1) is the product of distinct prime divisors of q2 + 1 that do not divide
q + 1. Thus every prime factor l of K2 has l ≡ 1 (mod 4). Denote ω(K1) by ω1 and
ω(K2) by ω2.

LEMMA 5.2. Suppose that n = 4, q odd and ω1 ≥ 28 or ω2 ≥ 40. Then there exists a
primitive polynomial of degree 4 over �q with the coefficient of x2 prescribed as a = 0.

Proof. First suppose ω1 ≥ 28 and ω2 ≥ 40. Then, by (9.1) and (9.3), W (Q4) <

q
1
5 + 7

25 = q
12
25 . Consequently, by (5.2) to show existence it suffices that q

1
2 > 2q

12
25 , i.e.

q > 250. This holds here because ω1 ≥ 28 implies q > 1042.
Next, suppose ω1 ≤ 27 and ω2 ≥ 40. Let (k0, s) be the decomposition where k0 is

the product of K2 and the smallest three primes in K1. Thus s ≤ 24, δ ≥ 1 − 1
7 − . . . −

1
103 > 0.210 and 	s,δ < 111.53. By the above reasoning, W (k0) < 8q

7
25 and criterion

(5.3) is satisfied whenever q ≥ 6.1 · 1014. Since ω2 ≥ 40, however, then q > 1043.
Finally, suppose ω1 ≥ 28 and ω2 ≤ 39. Take k0 = K1. Then s ≤ 39,

δ ≥ 1 − ∑
l≡1(mod 4)

l≤409

1
l > 0.379 and 	s,δ < 102.27. Now (5.3) is satisfied whenever

q ≥ 50418994. This holds since ω1 ≥ 28 yields q ≥ 1042. �

As a consequence of Lemma 5.2, we can assume ω1 ≤ 27 and ω2 ≤ 39 and run the
full sieving process.

We shall consider decompositions (k0, s) of Q4, where k0 (even) is the product of
the least primes in Q4. Suppose, for example, ω(k0) = 4. Then k0 is at least 2 · 3 · 5 · 7.
Here, for example, 5 may be a factor of K1 or K2 or neither (when q ≡ 1 (mod 10)). But
evidently δ is bounded below as

δ ≥ min

⎛⎜⎜⎝1 −
ω1−2∑
i=3

li≡3(mod 4)

1
li

−
ω2+1∑
i=2

li≡1(mod 4)

1
li
, 1 −

ω1−1∑
i=3

li≡3 (mod 4)

1
li

−
ω2∑
i=2

li≡1(mod 4)

1
li

⎞⎟⎟⎠ .
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The sieving steps are shown in the table below. As usual qmin denotes the minimum
integer q satisfying (5.3) numerically.

# q ω1 ≤ ω2 ≤ ω(k0) s ≤ δ ≥ 	s,δ ≤ qmin

1 27 39 4 62 0.159 385.65 152295345
2 ≤ 152295343 8 10 3 15 0.332 44.17 499454
3 ≤ 499453 6 7 2 11 0.229 45.67 133488
4 ≤ 133487 6 6 2 10 0.248 38.30 93881
5 ≤ 93879 5 6 2 9 0.291 29.50 55696
6 ≤ 55695 5 5 2 8 0.316 24.13 37258
7 ≤ 62773 6 4 2 8 0.299 25.35 41101
8 ≤ 55324 4 6 2 8 0.344 22.32 31868
9 ≤ 37257 5 4 2 7 0.343 19.48 24271

10 ≤ 37257 4 5 2 7 0.368 18.27 24343
11 ≤ 41100 6 3 2 7 0.334 19.95 25457
12 ≤ 31867 3 6 2 7 0.435 15.78 15932
13 ≤ 24270 4 4 2 6 0.396 14.62 13692
14 ≤ 24372 5 3 2 6 0.377 15.24 14850
15 ≤ 24372 3 5 2 6 0.459 12.88 10466

The first three lines of figures in the above table were obtained through the method
of maximising ω1 and ω2 for the indicated range of q. For the fourth line, the values
of ω2 for integers q in this range were calculated and shown to not to exceed 7. Then
in the fifth line, the values of ω1 for integers q in the relevant range were calculated
and 30029, 43889, 51862, 53129, 67829, 81509, 84629 and 85469 were found with
ω1 = 6. However, they all satisfy criterion (5.3) with k0 chosen to be 6. As indicated,
this establishes Theorem 1.2 for q ≤ 55696. Moreover, there are no integers q with
ω1 ≥ 5 or ω2 ≥ 5 that lie outside the scope of the next five lines. Hence, we can suppose
q ≤ 41100. Although ω1 = ω2 = 5 when q = 31709, this value of q is not a prime power.
Altogether 8 prime powers q (all actually primes) with q > 15000 lie outside the scope
of the remainder of the table. These are 19469, 19739, 20747, 21419, 21713, 24023 (all
with ω1 = 5, ω2 = 4) and 15287, 23873 (both with ω1 = 4, ω2 = 5). Not surprisingly,
when δ is calculated explicitly for these it is seen that (5.3) is indeed satisfied in these
cases.

More systematically, Maple (with k0 = gcd(6, Q4)) was used to check (5.3) for
prime powers q < 15000. Virtually instantaneously it returns a positive answer for all
but a set of 246 prime powers q comprising 233 primes and 13 composite prime powers.
The largest (prime) failure is 11003. The composite failures are 32 = 9, 52 = 25, 33 =
27, 72 = 49, 34 = 81, 112 = 121, 53 = 125, 132 = 169, 35 = 243, 172 = 289, 73 = 343,
113 = 1331, 173 = 4913. For each failure q = pn, Maple was again used to prove the
existence of a primitive quartic with zero coefficient of x2. For details see the table
below. The field �q4 was defined as �p(α) where fq(x) is the minimal polynomial of α.
Then γ is a primitive element of �q4 (in terms of α) with minimal polynomial of γ over
�q having second coefficient 0. There were no special preferences when chosing α and
γ ; the choice was random. The primitive quartics themselves are not given in the table
below, as they take a long time to compute. More explicitly, an appropriate quartic for
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q = 9 is x4 + x + 2α + 2, where �9 is defined as �3(α) where α satisfies f (x) = 0 with
f (x) = x2 + x + 2 ∈ �3[x].

q = 32 fq(x) = x8 + 2x7 + x6 + x5 + x2 + 2

γ = α7 + 2α6 + α4 + α3 + 2α2 + 1

q = 52 fq(x) = x8 + 4x6 + x5 + 3x4 + 4x3 + 4x2 + 1

γ = 4α7 + 3α6 + 2α4 + 3α3 + 2α2 + 4

q = 33 fq(x) = x12 + 2x11 + x10 + 2x7 + x6 + x5 + 2x4 + 2x3 + x + 1

γ = α11 + 2α9 + 2α8 + 2α6 + 2α4 + 2α3 + 2α2 + 2α + 1

q = 72 fq(x) = x8 + x7 + x6 + 5x5 + 4x3 + 4x2 + 3

γ = α7 + α6 + 5α5 + 6α4 + 5α2 + 6α

q = 34 fq(x) = x16 + 2x15 + 2x14 + 2x11 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2

γ = α15 + α13 + α12 + 2α10 + α8 + α7 + 2α6 + 2α5 + 2α4 + 2α3 + α2 + α + 2

q = 112 fq(x) = x8 + 10x7 + 10x6 + 5x5 + 4x4 + 7x3 + 5x2 + 5x + 2

γ = 8α7 + 6α5 + 8α4 + 5α3 + 7α2 + 3α + 6

q = 53 fq(x) = x12 + 2x11 + 2x10 + 3x9 + x8 + 2x7 + 2x6 + x5 + 3x + 2

γ = 4α10 + 3α9 + α8 + 3α6 + 3α5 + 4α3 + 2α2 + 3α + 3

q = 132 fq(x) = x8 + 10x7 + x6 + 10x5 + 9x3 + 9x2 + 6x + 5

γ = 10α7 + 4α6 + 10α5 + 9α4 + 2α3 + 9α2 + 11α + 11

q = 35 fq(x) = x20 + 2x17 + 2x15 + x14 + x12 + 2x11 + 2x10 + x7 + 2x6 + x5 + x4 + x3 + 2x + 1

γ = 2α19 + 2α18 + α17 + 2α16 + 2α15 + α14 + α13 + α12 + 2α7 + 2α6 + α5 + 2α2 + 2α + 2

q = 172 fq(x) = x8 + 10x7 + 11x6 + 8x5 + 5x4 + 8x3 + 12x2 + 3x + 5

γ = 4α7 + 2α4 + 2α2 + 4

q = 73 fq(x) = x12 + 4x11 + 3x10 + 3x9 + 3x8 + x7 + 3x6 + 4x4 + 4x3 + 5x + 4

γ = 4α11 + 3α10 + 2α9 + 6α8 + α7 + 3α6 + 4α5 + 6α4 + 6α3 + 4α + 5

q = 113 fq(x) = x12 + 5x11 + 4x10 + 10x9 + 10x8 + 8x7 + x6 + 2x5 + 5x4 + 6x2 + 1

γ = 7α11 + 5α10 + α9 + 2α8 + 10α7 + 9α5 + 6α4 + 10α + 4

q = 173 fq(x) = x12 + 16x11 + 9x9 + 5x8 + 14x7 + 13x6 + 8x5 + 3x4 + 3x3 + 11x2 + 12x + 6

γ = 10α11 + 11α10 + 12α9 + 14α8 + 14α7 + α6 + 2α5 + 11α4 + α3 + 11α2 + 13

Except for q = 5, 7, 13, 19 and 31, when q is prime, a primitive quartic of the simple
form x4 + x + c exists. The largest value of c obtained is 103 when q = 1559. Suitable
quartics in the excepted cases are as follows.

q = 5 x4 + x3 + x + 3
q = 7 x4 + x3 + x + 3

q = 13 x4 + x3 + x + 2
q = 19 x4 + x3 + 3x + 13
q = 31 x4 + x3 + x + 21

5.2. Quintics. Take n = 5. Then (5.1) becomes

q > 2
(

1 − 1
q

)
W (k0) 	s,δ. (5.4)

https://doi.org/10.1017/S0017089506003077 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003077


PRIMITIVE POLYNOMIALS 297

Suppose l (prime) divides Q5. Then either l = 5 (which occurs if and only if
q ≡ 1 (mod 10)) or l ≡ 1 (mod 10). In this subsection, denote ω(Q5) by ω.

LEMMA 5.3. Suppose that n = 5, q is odd and that ω ≥ 18 if q ≡ 1 (mod 10) and
ω ≥ 17, otherwise. Then there exists a primitive polynomial of degree 5 over �q with the
coefficient of x3 prescribed as 0.

Proof. Since ω ≥ 18, even when 5|Q5, the number of prime divisors l ≡ 1 (mod 10)
of Q5 is at least 17. By (9.6) it follows that

W (Q5) < 2

(√
Q5

5
− 1

) 23
80

<
2

5
23
160

(q2 + 1 − 1)
23
80 < 1.6 · q

23
40 .

Hence (5.4) holds whenever q > 3.2
40
23 = 7.558 . . . , which is trivially the case. �

To continue with the sieving process, take k0 = 1. Then by Lemma 5.3 we can
suppose s = ω ≤ 18 (or 17). The outcome is summarised in the following table
where the figures focus on the more testing case when 5|Q5 until q < 11. Here qmin

denotes the minimal integral value of q for which (5.4) holds with the displayed value
of δ.

# q ω ≤ δ ≥ 	s,δ ≤ qmin

1 18 0.560 32.32 65
2 ≤ 64 6 0.621 10.04 21
3 ≤ 20 4 0.652 6.599 14
4 ≤ 13 3 0.676 4.96 10
5 ≤ 9 2 0.876 3.15 7

For q = 5, then Q5 = 11 · 71 so that δ = 1 − 1
11 − 1

71 > 0.895, 	s,δ < 3.12. Thus
the right side of (5.4) is less than 4.992 < 5, as required. Finally, for q = 3, Q5 = 112

and (5.4) holds (with s = 1) since 3 > 8
3 . Hence, in this case, Theorem 1.2 holds without

the need for any direct verification.
Similar considerations could be applied to degrees n = 6, 7, 8 but Theorem 1.2 in

these cases when a = 0 follows, for instance, from [9].

6. The even problem. Suppose that p = 2 so that q is even. In this section, 2-adic
analysis will be used. The fields �q and �qn will be identified with subsets (or finite
quotient rings) of an extension of the field �2 (the completion of the rational field with
respect to the 2-adic metric).

Introduce definitions and notation as follows.
� Kn is the splitting field of the polynomial xqn − x over �2.
� �n (⊆ Kn) is the set of roots of the polynomial above (the Teichmüller points of K).

The non-zero elements of �n form a cyclic group of order qn − 1.
� Rn denotes the ring of integers of Kn. Then �n ⊆ Rn = {∑∞

i=0 2iγi, γi ∈ �n}.
Moreover, Rn is a local ring with unique maximal ideal 2Rn and Rn/2Rn ∼= �qn .

� Distinct elements of �n are already distinct modulo 2. For a set isomorphic to
�qn , temporarily denoted by Gn, all qn members of �n can be expressed uniquely
in the form

∑∞
i=0 2iγi, γi ∈ Gn, where γ ∈ �n is already fixed by specifying γ0. For

any integer e ≥ 1, �n,e is the set (of cardinality qn) of elements of �n mod 2e, i.e.,
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�n,e = {∑e−1
i=0 2iγi, γi ∈ Gn}, where we retain the notation γ for the member

associated with γ ∈ �n,e. In particular, γ qn = γ for γ ∈ �n,e. Moreover, Gn = �n,1
∼=

�qn .
� Rn,e = {∑e−1

i=0 2iγi, γi ∈ �n,e} ∼= Rn/2eRn, so that Rn,e has cardinality qne. (Thus Rn,e

is a Galois ring.) Observe that here Rn,e/2Rn,e ∼= �qn also, and Rn,1 = �n,1, which can
be identified with �qn . Conversely, each γ ∈ �n,1 yields a unique lift, also denoted
by γ , to every �n,e and to �n itself. An element of (multiplicative) order r in �n,1 lifts
to an element of the same order in each �n,e and in �n; in particular, a primitive
element lifts to a primitive element.

Next, consider objects relating to the extension �qn/�q. The field K1 is a subfield
of Kn, with �1 ⊆ �n, and R1 a subring of Rn. Similar relationships apply to the Galois
rings. Further, note that the Galois group of Kn/K1 is isomorphic to that of �qn/�q,
being cyclic of order n and generated by the Frobenius automorphism τn, where τn(γ ) =
γ q, γ ∈ �n. More generally, on Rn, τn(

∑∞
i=0 2iγi) = ∑∞

i=0 2iγ
q
i (where each γi ∈ �n).

This induces a ring homomorphism τn on Rn,e such that τn(
∑e−1

i=0 2iγi) = ∑e−1
i=0 2iγ

q
i

(where now each γi ∈ �n,e).
Now we discuss polynomials. The polynomial xqn − x over �q (and so over R1) is

the product of all monic irreducible polynomials of degree a divisor of n. A typical
monic irreducible polynomial f (x) of degree d (a divisor of n) in R1,1[x] has the form

f (x) = (x − γ )(x − γ q) · · · (x − γ qd−1
) = xd − σ1xd−1 + · · · + (−1)dσd, (6.1)

where γ ∈ �n,1 and each σj ∈ �1,1. The polynomial f lifts to a (unique) irreducible
polynomial of degree d over each R1,e, and over R1 having the same form, except
that γ is the corresponding lifted element of �1,e or �1. But note that, in general, the
coefficients σj in (6.1) lie in R1,e (or R1), but may not be in �1,e (or �1). From the
above, the order of the polynomial f (which equals the order of any of its roots) or any
of its lifts has the same value (a divisor of qn − 1). In particular, f is primitive if it is
irreducible of degree n and has order qn − 1: this holds if and only if any of its lifts are
primitive.

For any γ ∈ �n, define its trace (over R1) as Tn(γ ) := γ + τn(γ ) + · · · + τ n−1
n (γ ) =

γ + γ q + · · · + γ qn−1 ∈ R1. Observe that Tn(cγ ) = cTn(γ ), c ∈ �1. A trace function Tn

with similar properties is induced on �n,e.
Next, let γ ∈ �n be a root of a lifted irreducible polynomial f (x) ∈ R1[x].

Eventually, we can suppose γ is primitive: for the moment it suffices that f has degree n.
Thus, (6.1) holds with d = n. Here σi denotes the i-th symmetric function of the roots
γ, γ q, . . . , γ qn−1. Employing the trace, we have that si, the sum of the i-th powers of the
roots of f , is given by si = Tn(γ i) ∈ R1. Of course, each si depends only on f and not on
the specific root γ : moreover, all this translates to the expansion of f as a polynomial
in R1,e[x]. For our purposes, we require an expression for the 2-adic expansion of si.

We proceed to work with a lifted irreducible polynomial f of degree n in R1[x] and
eventually its reduction to R1,2. Henceforth, the letter t is reserved for an odd positive
integer. Note from above that, for any such t, the value of st2i for any i ≥ 0 is already
determined by st, and is given by s(i)

t := τ i(st). For any t, write st = ∑∞
j=0 st,j2j, st,j ∈ �1,

whence s(i)
t = ∑∞

j=0 s2i

t,j2
j. Since each positive integer L can be uniquely expressed as

L = t2j, then any component st,j is uniquely associated with the integer t2j.
In this context Lemma 3.1 assumes the following shape.
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LEMMA 6.1. Let f (x) = xn − σ1xn−1 + · · · + (−1)nσn ∈ R1[x] be a (lifted) irredu-
cible polynomial with σi being a symmetric function of the roots of f , σ1, . . . , σn ∈ �1.

Let si be the sum of the i-th powers of the roots of f . Then

2σ2 = s2
1 − s2. (6.2)

LEMMA 6.2. Let f , σi and si be as in Lemma 6.1. Then σ2 ≡ s2
1,1 (mod 2).

Proof. Over R1,2, equality (6.2) translates to 2σ2 = (s1,0 + 2s1,1)2 − (s2
1,0 + 2s2

1,1)
which, modulo 4, is congruent to −2s2

1,1. Hence σ2 ≡ s2
1,1 (mod 2). �

As a consequence of Lemma 6.2, for σ2 to be prescribed (mod 2), it suffices to
prescribe s1,1 ∈ �1 alone. The value of s1,0 appears to be irrelevant. Nevertheless, in
practice we cannot prescribe s1,1 without assigning a value (say z ∈ �1,1) to s1,0. The
situation is therefore comparable to that in odd characteristic. In view of Lemma 6.2,
given a ∈ �q ∼= �1,1, write a = A2, A ∈ �q. We wish to prescribe s1 = s1,0 + 2s1,1 ∈ R1,2

as z + 2A.
In order to apply Lemma 6.2, we require to work with the multiplicative characters

of �∗
n,2, a cyclic group of order qn − 1, and the additive characters of Rn,2. So now, for

any divisor d of qn − 1, ηd is a character of order d. It is extended to �n,2 by setting
ηd(0) = 0. In particular, η1 is the trivial character: for an alternative version with
η(0) = 1 we write η = 1. For additive characters, write χ(n) for the canonical additive
character of Rn,2: thus

χ(n)(γ ) = exp
(

2πTnu(γ )
4

)
, q = 2u, γ ∈ Rn,2.

Here Tnu(γ ) yields the absolute trace of γ . In particular, set χ(1) = χ . The characteristic
function for the set of elements γ ∈ �n,2 for which s1(= s1,0 + 2s1,1) = z + 2A is

1
q2

∑
ξ∈R1,2

χ (ξ (Tn(γ ) − (z + 2A)))

= 1
q2

∑
α0,α1∈�1,1

χ(n)((α0 + 2α1)(γ )) χ (−(α0 + 2α1)z − 2α0A). (6.3)

For the (eventual) sum over z ∈ �1,1 we require a lemma.

LEMMA 6.3. Let ξ = α0 + 2α1 ∈ R∗
1,2, where α0, α1 ∈ �1,1. Set Uξ = ∑

z∈�1,1
χ (ξz).

Then Uξ = 0 unless ξ = ±α0 ( �= 0), in which case Uξ = 1±i
2 · q, respectively.

Proof. Replacing z by αiz, i = 1, 2, as appropriate, we may assume that either
ξ = 1 + 2x or ξ = 2x, x �= 0, where x ∈ �1,1. Moreover, from the definition, the value
of χ (ξz) depends on the absolute trace Tu(ξz).

First let ξ = 1 + 2x. Then with i = √−1, χ (ξz) = i j · (−1)k, where j = Tu(z), k =
Tu(xz). The map z 
−→ (Tu(z), Tu(xz)) is obviously an additive homomorphism from
�1,1

∼= �q onto �2 × �2. In particular, it attains each value in its image set equally often.
Because Tu(�1,1) = �2, if this map is not an epimorphism, then it must be one of the
subgroups {(0, 0), (1, 0)} or {(0, 0), (1, 1)}.

In the former case, this means that Tu(xz) = 0 for all z ∈ �1,1 which implies that
x = 0 (i.e., ξ = 1) and Uξ = 1+i

2 · q. In the latter case, it must be that Tu(xz) = Tu(z)
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for all z ∈ �1,1 which implies that x = 1 (i.e., ξ = 3 = −1 ∈ R1,2) and Uξ = 1−i
2 · q.

Otherwise, the map is surjective: χ (ξz) attains the values 1, i − 1,−i with equal
frequency, whence Uξ = 0.

Now take ξ = 2x �= 0. Then the map z 
−→ Tu(xz) from �1,1 to �2 is surjective and
χ (ξz) attains the values ±1 equally often. This completes the proof. �

LEMMA 6.4. Assume q is even and a = A2 ∈ �q ∼= �∗
1,1. Let k|qn − 1 and (k0, s) be a

decomposition of k. Then

qπa(k)
θ (k0)

= δ

⎛⎜⎝qn − 1 + 1
2

∫
d|k0

∑
α∈�∗

1,1

χ̄(2αa) ¯̃ηd(α) {(1−i)Sn(1; ηd) + (1+i)Sn(−1; ηd)}

⎞⎟⎠
+ 1

2

s∑
i=1

(
1 − 1

pi

) ∫
d|k0

∑
α∈�∗

1,1

χ̄ (2αa) ¯̃ηd(α)
{
(1−i)Sn

(
1; ηdpi

)
+ (1+i

)
Sn

( − 1; ηdpi

)}
,

where, for ξ ∈ R1,2, Sn(ξ ; ηd) :=
∑

γ∈�n,2

χ(n)(ξγ )ηd(γ ) and η̃d is the restriction of ηd to �1,1.

Proof. Consider the trivial decomposition of k with s = 1. (The difficulty in
extending to a general decomposition is merely notational.) Write ξ = α0 + 2α1 for
a typical element of R1,2.

From the characteristic functions (in particular (6.3)) one obtains

q2πa(k)
θ (k)

=
∫

d|k

∑
ξ∈R1,2

χ (2α0A) Uξ Sn(ξ ; ηd), (6.4)

with Uξ as in Lemma 6.3. Since Sn(0; ηd) = 0 unless d = 1, the contribution to
(6.4) from ξ = 0 (the “main term") is q(qn − 1). Since Uξ = 0 unless ξ = ±α0 all
contributions from other values of ξ are zero.

Hence consider the contribution from ξ = ±α0 �= 0. Replace γ ∈ �n,2 by γ

α0
∈ �n,2

and z ∈ �1,1 by α0z ∈ �1,1 to obtain∫
d|k

∑
α0∈�∗

1,1

χ (2α0A) ¯̃ηd(α0) U−1 Sn(1; ηd) +
∫

d|k

∑
α0∈�∗

1,1

χ (2α0A) ¯̃ηd(α0) U1 Sn(−1; ηd).

The result follows using Lemma 6.3 for U±1 and dividing the ensuing identity
by q. �

Multiplicatively, �∗
qn

∼= �∗
n,2. Take c to be a primitive element of �∗ ∼= �∗

1,1 as well as
a �= 0 (∈ � ∼= �1,1). Then, with k|En (by Lemma 2.2), there is an analogous expression
for (q−1)qπa,c

θ(k0) to that of Lemma 6.4 comparable to the relationship Lemma 3.4 bears
to Lemma 3.3. In particular, each “integral” on the right side is also over a sum over
characters ν ∈ �̂∗

1,2 and each character such as ηd or ηdpi replaced by a product ηd ν̂

ηdpi ν̂, where ν̂ is the lift of ν to �∗
n,2.

In the expressions for qπa
θ(k0) or (q−1)qπa,c

θ(k0) , the relevant bounds for |Sn(ξ ; ηd)| are as
follows.
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LEMMA 6.5. Suppose ξ ∈ R∗
1,2. Then Sn(ξ ; 1) = 0. Further, if d (> 1) divides qn − 1,

then |Sn(ξ ; ηd)| ≤ 2q
n
2 . Indeed, if α1 ∈ �1,1 then |Sn(2α1; ηd)| ≤ q

n
2 .

Proof. This follows from Corollary 6.1 of [21]. The significant point is that the
polynomial (α0 + 2α1)x ∈ R∗

1,2[x] has weighted degree 2 (if α0 �= 0) or 1 (if α0 = 0). �
Again it is now convenient to split the discussion into the non-zero or zero

problems.

7. The even non-zero problem. Suppose that q is even and that the prescribed
coefficient a ∈ �2

∼= �1,1 is non-zero.

PROPOSITION 7.1. Assume that q is even and a ∈ �2 is non-zero. Assume also that
k|qn − 1 and that (k0, s) is a decomposition of k. Suppose also that

q
n−1

2 > 2
√

2 W (k0)	s,δ. (7.1)

Then πa(k) is positive.
Specifically, when s = 1 and k = qn − 1, the sufficient condition is

q
n−1

2 > 2
√

2 W (qn − 1). (7.2)

Proof. The sums over α ∈ �∗
1,1 in (6.4) can be written as η̃d(a)S1(1; ¯̃ηd). Then use

Lemma 6.5 both for Sn and S1. (The savings when η̃d is trivial easily compensate for
the −1 in the main term.) �

PROPOSITION 7.2. Assume that q is even, a ∈ �2 is non-zero and c is a primitive
element of �2. Assume also that k|En and that (k0, s) is a decomposition of k. Suppose
also that

q
n−3

2 > 2
√

2
(

1 − 1
q

)
W (k0)	s,δ. (7.3)

Then πa,c(k) is positive.
Specifically, when s = 1 and k = qn − 1, the sufficient condition is

q
n−3

2 > 2
√

2
(

1 − 1
q

)
W (En). (7.4)

7.1. Quartics. Take n = 4. Then, for any decomposition of Q4, (7.1) takes the
form

q
3
2 > 2

√
2 W (k0)	s,δ. (7.5)

As in Section 4.1, express the product of distinct primes in the odd coprime integers
q2 − 1 and q2 + 1 as K1, K2, respectively, and ωi = Ki, i = 1, 2. In particular, 3|K1 and
all prime divisors of K2 are ≡ 1 (mod 4).

LEMMA 7.3. Suppose that n = 4, q even and ω1 ≥ 8 or ω2 ≥ 6. Let a ( �= 0) ∈ �q.
Then there exists a primitive quartic over �q with the coefficient of x2 prescribed as a.
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Proof. First suppose ω1 ≥ 8 and ω2 ≥ 6. Then, by (9.2) and (9.4), W (q4 − 1) <

q
2
3 + 2

4 = q
7
6 . Consequently, by (7.2), to show existence it suffices that q

1
3 > 2

√
2. This

holds since, evidently ω1 ≥ 8 and hence q > 104.
Next, suppose ω1 ≤ 7 and ω2 ≥ 6. Take the decomposition with k0 = 3K2. Thus

s ≤ 6, δ ≥ 1 − 1
5 − 1

7 − · · · − 1
19 > 0.377 and 2

√
2	s,δ < 43.17. Moreover W (k0) < 2 ·

q
1
2 and (7.5) is satisfied whenever q ≥ 87. This holds since ω2 ≥ 6, whence q > 6900.

Finally, suppose ω1 ≥ 8 and ω2 ≤ 5. Take k0 = K1. Then s ≤ 5 and δ ≥ 1 − 1
5 −

1
13 − 1

17 − 1
29 − 1

37 > 0.602 and 2
√

2	s,δ < 24.46. Hence (7.5) is satisfied whenever q ≥
24.46

6
5 = 46.36 . . . . Necessarily however q > 104. �

As a consequence of Lemma 7.3 we can assume ω1 ≤ 7 and ω2 ≤ 5.
Take the decomposition with k0 = 3, so that s ≤ 11. Then δ > 1 − 1

5 − 1
7 − · · · −

1
41 ≥ 0.216, so that 2W (k0)

√
2	s,δ < 273.21. Hence (7.5) is satisfied whenever q >

273.21
2
3 = 42.10 . . . .

We can therefore suppose q ≤ 32, whence ω1 ≤ 3, ω2 ≤ 2. Repeating the
previous procedure (now with s ≤ 4) we have δ ≥ 1 − 1

5 − 1
7 − 1

11 − 1
13 ≥ 0.489,

2W (k0)
√

2	s,δ < 46.02. Hence (7.5) is satisfied whenever q > 46.02
2
3 = 12.84 . . . .

For q ≤ 8, criterion (7.5) cannot be satisfied. Yet for q = 8 and 4 the necessary primitive
quartics exist and are listed in the table below. Here �4 is defined by x2 + x + 1 ∈ �2[x]
and �8 by x3 + x2 + 1 ∈ �2[x] and in each case α is a root of the defining polynomial.
On the other hand, when q = 2, no primitive quartic with coefficient of x2 equal to 1
exists!

a q = 8 q = 4

1 x4 + x2 + α2x + α2 + α + 1 x4 + x2 + αx + α2

α x4 + αx2 + x + 6 x4 + αx2 + αx + α

α + 1 x4 + (α + 1)x2 + (α2 + α)x + α2 + 1 x4 + (α + 1)x2 + αx + α

α2 x4 + α2x2 + x + α + 1 —
α2 + 1 x4 + (α2 + 1)x2 + (α + 1)x + α2 + α —

α2 + α + 1 x4 + (α2 + α + 1)x2 + x + α2 + 1 —
α2 + α x4 + (α2 + α)x2 + (α2 + α)x + (α2 + α) —

7.2. Quintics. Take n = 5. Then, for any decomposition (k0, s) of q5 − 1, (7.1)
takes the form

q2 > 2
√

2 W (k0)	s,δ. (7.6)

Write the product of distinct primes in q5 − 1 as K1 · K2, where K1 (a factor of
q − 1) is the product of all distinct prime divisors of q − 1 and K2 (a factor of Q5) is
the product of distinct prime divisors of Q5 that do not divide q − 1. All prime divisors
of K2 are ≡ 1 (mod 10). Denote ω(q − 1) by ω1 and ω(K2) by ω2.

LEMMA 7.4. Suppose q is even and a ∈ �∗
q. Then there exists a primitive quintic over

�q with the coefficient of x3 prescribed as a.

Proof. First suppose ω1 ≥ 3 and ω2 ≥ 2. Then, by (9.2), and (9.6), W (q5 − 1) <

q
3
2 <

q2

2
√

2
provided q > 8. Criterion (7.1) with s = 1 is satisfied since q > 8 when ω1 ≥ 3.

Next, suppose ω1 ≤ 2 and ω2 ≥ 2. Take k0 = K2 so that s ≤ 2, δ ≥ 1 − 1
3 − 1

5 >

0.466 and 2
√

2	s,δ < 11.73 < q whenever q ≥ 12. Thus (7.6) is satisfied unless q ≤ 8.
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Next, suppose ω1 ≥ 3 (whence q > 105) and ω2 ≤ 1. Criterion (7.6) (with s = 1)
holds provided q > 4, which is the case.

Now, suppose ω1 ≤ 2 and ω2 ≤ 1. Take k0 = 1 so that s ≤ 3. Then δ > 0.375 and
2
√

2	s,δ < 20.75. Thus (7.1) holds when q > 4.6. It also holds when q = 2 because of
the factor 1 − 1

q on the right side.
There remain q = 8 and 4. For q = 8, q5 − 1 = 7 · 31 · 151 and (7.6) (with s = 1)

holds since 64 > 16
√

2. Although (7.6) cannot be satisfied, there does exist a primitive
quintic �4[x] with arbitrary coefficient of x2. Over �2, any irreducible quintic is
primitive: it is enough to quote the example x5 + x3 + 1. �

For q = 2m, we again consider degrees 6, 7 and 8, but however, we do not present
that to the reader in detail. The main reason is that, applying methods used with these
degrees in Section 4, in only a couple of steps shows that Proposition 7.2 is satisfied
for any value of q. The only exception is the value q = 4 for sextics, where polynomials
are found explicitly. Let �4 be defined by f (x) = x2 + x + 1 ∈ �2[x] and let α be a root
of f . Then the relevant primitive polynomials are:

a c = α c = α + 1

1 x6 + x5 + x4 + x3 + αx2 + (α + 1)x + α x6 + x5 + x4 + x3 + αx2 + (α + 1)x + (α + 1)
α x6 + x5 + αx4 + x3 + α x6 + x5 + αx4 + x3 + (α + 1)x + (α + 1)

α + 1 x6 + x5 + (α + 1)x4 + x3 + αx + α x6 + x5 + (α + 1)x4 + x3 + (α + 1)

8. The even zero problem. By Lemma 2.1, when the prescribed coefficient a = 0,
it suffices to show that π0(Qn) is positive, where Qn = qn−1

q−1 .

PROPOSITION 8.1. Assume that q is even. Let (k0, s) be a decomposition of Qn.
Suppose that

q
n
2 −1 > 2

√
2

(
1 − 1

q

)
W (k0)	s,δ. (8.1)

Then π0(Qn) is positive.

Proof. This follows from Lemma 6.4 as in the proof of Lemma 7.1. The difference
is that now the sum over α0 is (trivially) q − 1 in every case. �

Degrees 6, 7 and 8 here are routine, therefore we focus on quartics and quintics.

8.1. Quartics. Take n = 4. Then, for a decomposition (k0, s) of Q4, (8.1) has the
form

q > 2
√

2
(

1 − 1
q

)
W (k0)	s,δ. (8.2)

Express the product of distinct primes in Q4 as K1 · K2, where K1 (a factor of q + 1)
is the product of all distinct prime divisors of q + 1 and K2 is the product of distinct
prime divisors of q2 + 1. Observe that K1 and K2 are coprime and all prime divisors of
K2 are ≡ 1 (mod 4). Set ωi = ω(Ki), i = 1, 2.

LEMMA 8.2. Suppose that n = 4, q even and ω1 ≥ 5 or ω2 ≥ 7. Then there exists a
primitive polynomial of degree 4 over �q with the coefficient of x2 prescribed as a = 0.
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Proof. Suppose ω1 ≥ 5 and ω2 ≥ 7. Then, by (9.2) and Lemma (9.4), W (Q4) < q
7
5 .

Consequently, by (5.2) to show existence it suffices that q > 215 = 32768. This holds
since ω2 ≥ 7 and accordingly q > 50000.

Next, suppose ω1 ≤ 4 and ω2 ≥ 7. Let k0 = K2. Thus s ≤ 4, δ ≥ 1 − 1
3 − 1

5 − 1
7 −

1
11 > 0.232 and 2

√
2	s,δ < 42.24. By the above reasoning, (5.3) is satisfied whenever

q ≥ 42.242 = 1784.21 . . . . This is the case since ω2 ≥ 7, whence q > 50000.
Finally, suppose ω1 ≥ 5 and ω2 ≤ 6. Take k0 = K1. Thus s ≤ 6, δ ≥ 1 − 1

5 − 1
13 −

1
17 − 1

29 − 1
37 − 1

41 > 0.578 and 2
√

2	s,δ < 30.13. Now (5.3) is satisfied whenever q ≥
30.13

10
11 = 22.10 . . . , which trivially is the case. �

We may now suppose ω1 ≤ 4 and ω2 ≤ 6. Take ω(k0) = 1; then s ≤ 9, δ ≥ 1 −
1
5 − 1

13 − 1
17 − 1

29 − 1
37 − 1

41 − 1
7 − 1

11 − 1
19 > 0.291 and 2

√
2	s,δ < 83.42. Thus (5.3) is

satisfied when q ≥ 83.42
2
3 = 19.09.

Finally, suppose q ≤ 16. Then ω1 = 1 and ω2 ≤ 2. Take k0; then s ≤ 3, δ > 0.389
and 2

√
2	s,δ < 20.2. Thus (5.3) is satisfied when q > 20.2

2
3 = 7.41 . . . . Hence the

theorem holds for q ≥ 4. In fact, for q = 4, Q4 = 5 · 17 and δ > 0.741 and 	s,δ < 3.35.
Then (5.3) holds since 4 > ( 3

4 · 2
√

2 · 3.35)
2
3 = 3.69 . . . . Over �2, x4 + x + 1 is the

desired primitive quartic.

8.2. Quintics. Take n = 5. For a decomposition (k0, s) of k|Q5, (8.1) now takes
the form

q
3
2 > 2

√
2

(
1 − 1

q

)
W (k0)	s,δ. (8.3)

Define ω = ω(Q5). Suppose ω ≥ 4. Then W (Q5) < 5
5
4 (by (9.7)). To satisfy (8.3)

(with s = 1) we require q
1
4 > 2

√
2 > 64. This certainly holds if ω ≥ 6 (so that Q5 ≥

5 · 11 · 31 · 41 · 61 · 71).
Accordingly, assume ω ≤ 5. Take k0 = 1. Thus s ≤ 5 and δ ≥ 1 − 1

5 − 1
11 − 1

31 −
1

41 − 1
61 > 0.636 and 2

√
2	s,δ < 23.35. Hence (8.3) is satisfied for q ≥ 23.35

2
3 = 8.1 . . . .

For q ≤ 8, necessarily 5 � Q5 and ω ≤ 2. Repeat the last process so that δ ≥ 1 − 1
11 −

1
31 ≥ 0.876 and 2

√
2	s,δ < 8.9. Thus (8.3) is satisfied when q > C := ((1 − 1

q )8.9)
2
3 . In

fact, C < 3.93 so that the result holds for q = 8, 4. When q = 2 then ω = 1 and (8.3)
with s = 1 holds since 2

√
2 >

√
2.

9. Bounds for the number of square-free divisors. Recall W (h) = 2ω(h) denotes the
number of square-free divisors of an integer h. In this section we provide some bounds
for W (h), used throughout the paper.

In this paper, we do not refer to all of the results below, for example the first two
bounds in Lemma 9.3. However, they are stated here as the reader might find them
useful when checking results for which explicit procedures are not given.
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LEMMA 9.1. Let the integer h be such that ω(h) ≥ r. Then the following statements
hold:

W (h) <

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h

3
7 , when r = 6;

h
1
3 , when r = 9;

h
13
50 , when r = 15;

(h − 1)
1
5 , when r = 28.

(9.1)

Furthermore, for an odd integer h with ω(h) ≥ r,

W (h) <

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h

1
2 , when r = 3;

(h − 1)
2
5 , when r = 5;

h
1
3 , when r = 8;

(h − 1)
5
18 , when r = 10.

(9.2)

Proof. We illustrate (9.1) by proving, for the last part, W (h) < (h − 1)
1
5 < h

1
5 . The

28th prime is 107. Let l be a prime number. Then

2ω(h)

(h)
1
5

≤
∏
l|h

2

l
1
5

≤
∏

l≤107

2

l
1
5

<
8
9
.

It follows that W (h) < (h − 1)
1
5 provided h > (1 − ( 8

9 )5)−1 = 2.2468 . . . , which is
trivially true. The rest of the bounds in Lemma 9.1 are proved analogously. �

The following lemmas feature slight refinements. Their proofs, however, are
parallels to the proof of Lemma 9.1.

LEMMA 9.2. Suppose that the integer h is a product of primes l ≡ 1 (mod 4) and
ω(h) ≥ r. Then the following statement holds:

W (h) <

⎧⎪⎪⎨⎪⎪⎩
(
h

1
2 − 1

) 1
2 , when r = 2;

h
1
5 , when r = 11;

h
7
50 , when r = 40.

(9.3)

Furthermore, for an odd integer h with ω(h) ≥ 6,

W (h) < (h − 1)
1
4 . (9.4)

LEMMA 9.3. Suppose that the integer h is a product of primes l ≡ 1 (mod 6) and
ω(h) ≥ r. Then the following is true:

W (h) <

⎧⎪⎨⎪⎩
h

1
5 , when r = 12;

h
9
50 , when r = 15;

h
10
63 , when r = 24.

(9.5)
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LEMMA 9.4. Suppose that the integer h is a product of primes l ≡ 1 (mod 10) and
ω(h) ≥ r. Then the statements below hold:

W (h) <

⎧⎪⎨⎪⎩
(
h

1
2 − 1

) 1
2 , when r = 2;

h
1
6 , when r = 10;(
h

1
2 − 1

) 23
80 , when r = 17.

(9.6)

Furthermore, when h is a product of primes l ≡ 1 (mod 10) or l = 5 and ω(h) ≥ 4, then

W (h) <
(
h

1
2 − 1

) 1
2 . (9.7)

LEMMA 9.5. Suppose that the integer h is a product of primes l ≡ 1 (mod 14) and
ω(h) ≥ 6. Then W (h) < h

1
6 .

LEMMA 9.6. Suppose that the integer h is a product of primes l ≡ 1 (mod 8) and
ω(h) ≥ 6. Then W (h) < (h − 1)

17
100 .
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