
ON THE COMPOSITION OF BALANCED INCOMPLETE 
BLOCK DESIGNS 
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Introduction. The object of this paper is to develop a method of con­
structing balanced incomplete block designs. It consists in utilizing the 
existence of two balanced incomplete block designs to obtain another such 
design by what may be called the method of composition. 

1. Preliminary results on orthogonal arrays and balanced incomplete 
block designs. Consider a matrix A = (ay) of k rows and N columns, where 
each ai} represents one of the integers 1, 2, . . . , s. Consider all /-rowed sub-
matrices of N columns, which can be formed from this array, t < k. Each 
column of any Crowed submatrix can be regarded as an ordered t-plet. The 
matrix will be called an orthogonal array [N, k, s, t] of size N, k constraints, 
5 levels, strength t, and index X if each of the (*) /-rowed submatrices that 
can be formed from the array contains every one of the s* possible ordered 
/-plets exactly X times. Obviously N = \sl and each row contains the integers 
1, 2 , . . . , s exactlyX sl~l times. The idea of an orthogonal array is originally due 
to Rao (16) who utilized it in the construction of factorial arrangements in 
the design of experiments. 

Denote by/(As') the maximum number of constraints which are possible 
in an orthogonal array of size \s\ s levels, strength /, and index X. Then from 
Plackett and Burman (15) we have 

THEOREM A. For any s and X, 

/<»•> < [~ f r ] 
where [x] is the largest integer not exceeding x. 

This inequality has been improved by Bose and Bush in (2), where they 
also give methods of constructing orthogonal arrays of strength two and three 
when the number of levels s is a prime power. 

Let a set of 5 distinct symbols be arranged in ans X ^ square in such a way 
that every symbol occurs exactly once in every row and once in every column. 
Such a square is called a Latin square of order s. Two Latin squares of order 
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^ are called orthogonal, if when one of the squares is superposed on the other, 
every symbol of the first square occurs with every symbol of the second 
square once and only once. A set of Lat in squares of order s is said to be 
a set of mutual ly orthogonal Lat in squares (m.o.l.s.) if any two of them are 
orthogonal. I t is known (2) t h a t the existence of k-2 m.o.l.s. of order s is equiva­
lent to the existence of an orthogonal a r ray [s2, k, s, 2]. Hence for any s, 
f(s2) < s + 1 implies t h a t N(s) < 5 — 1, where by N(s) we denote the 
maximum number of m.o.l.s. of order s. If s is a prime power, then it is known 
(10; 11) t h a t N(s) = s - 1. If v = pinip2

n2 . . . puu is the prime power decom­
position of an integer v, and we define n(v) = min(piWl , p2

n2, . . . , puu) — L 
then MacNeish (10) and M a n n , (11) showed t ha t there exists a set of a t 
least n(v) m.o.l.s. of order vf t h a t is, N(v) > n(v). Recently Parker (13) 
showed how in certain cases one could construct more than n(v) m.o.l.s. of 
order v. Parker ' s method has been generalized by the present au thors who 
showed (3; 4 ) in part icular t h a t Euler ' s conjecture abou t the non-existence 
of two orthogonal Lat in squares of order 2 (mod 4) is false for an infinity of 
values of v > 22. By using the method of differences Parker (14) later on 
showed t h a t N (v) > 2 for v = i(3q — 1), where q is a prime power = 3 (mod 4). 
In a joint paper with Parker (5) the present au thors have shown t h a t Euler ' s 
conjecture is false for all values of v > 10. 

We call an ar ray [Xs\ k, s, t] «-resolvable if the \sl columns can be separated 
into As ' _ 1 /a sets of as each, such t ha t in each set every row contains each 
of the s integers 1, 2, . . . , s exactly a t imes. A 1-resolvable a r ray is called 
resolvable. Suppose there exists a set 22 of k — 1 m.o.l.s. of order s, then we 
can take XI m the s tandard form in which the first row of each Lat in square 
contains the integers 1, 2, . . . , 5 in t h a t order. We now prefix to the set 
^ a ^ X ^ square containing the integer i in each position in the 2-th column. 
If we then write down the elements of each square in a single row such t h a t 
the integer in the ith row and the jth column occupies the nth position, 
where n = s(i — 1) + j',i,j = 1, 2, . . . , s; then we get an orthogonal a r ray 
[s2, k, s, 2] which is resolvable. We thus have the following theorem which is 
essentially contained in (6). 

T H E O R E M B. Existence of k — 1 m.o.l.s. of order s implies the existence of a 
resolvable array [s2, k, s, 2]. 

A balanced incomplete block design (BIB) (18) with parameters v, b, r, k, A 
is an a r rangement of v objects or t r ea tmen t s in b sets or blocks such t h a t (i) 
every block contains k< v different objects and (ii) every pair of t r ea tmen t s 
occurs in A blocks. Then it is easy to see t h a t each t r e a t m e n t occurs in exactly 
r blocks and the parameters satisfy the relations 

(1.1) X(i; - 1) = r{k - 1), bk = vr, b > v. 

T h e last inequali ty is due to Fisher (7). A B I B design is called symmetrical 
if b = v and hence k = r. I t will be called /3-resolvable if the blocks can be 
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separated into sets such that each set contains every treatment exactly fi 
times. A 1-resolvable BIB design is called resolvable. A BIB design with 
parameters v, k, X will be denoted by BIB (v,k;\) and if X = 1 by BIB 
(v; k). If the design is resolvable we denote it by RBIB (v; k\ X) and RBIB 
(v; k) respectively. 

A BIB design is called separable if its blocks can be divided into sets of 
type I or II (4). 

From Theorem 2 in (4) we have: 

THEOREM C. If there exists a BIB {v; k) then 

N(v) > N(k) - 1. 

Further, if the design is separable then 

N(v) > N(k). 

From Theorem 2 of (5) and corollary of Theorem 12 of (4) we have 

THEOREM D. Existence of BIB (v; k) implies that 

N(v - 1) > mm(N(k), 1 + N(k - 1)) - 1. 

Further, if the design is resolvable, then 

N(v - 1) > mm(N(k)), N(k - 1)). 

2. Pairwise balanced designs of index X. An arrangement of v treat­
ments in b blocks will be called a pairwise balanced design (D) of index X, if 
each block contains either ki, k2f . . . , or km treatments which are all distinct 
(ki ^ kj < v), and every pair of treatments occurs in exactly X blocks. Such 
a design will be said to be of type (v; ki, . . . , km; X). If the number of blocks 
containing k{ treatments is biy then 

m m 

b = XI bu \v{v — 1) = X) biki(ki — 1). 
i i 

The subdesign (Dt) formed by the blocks of size ku will be called the ith. 
equiblock component of (D), i = 1, 2, . . . , m. 

A subset of blocks of (Z><) will be said to be of general type I, if every 
treatment occurs in the subset akt times, where a is a divisor of X. The number 
of blocks in the subset is clearly av. As proved in (8; 17), we can arrange 
the treatments within the blocks of the subset in such a way that every 
treatment comes in each position exactly a times. If the blocks are written as 
columns, each treatment occurs a times in every row. When so written out 
the blocks will be said to be in the standard form. 

A subset of blocks of (Df) will be said to be of general type II if every 
treatment occurs in the subset exactly ft times when /3 is a divisor of X. The 
set of blocks will be said to form a ^-replicate. The number of blocks in 
such a subset is clearly (fiv)/(ki)-
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The component (Dt) is said to be separable in the general sense if the 
blocks of (Dt) can be divided into subsets of general type I or II. (Both types 
may occur in (JD*) at the same time.) If a = /3 = 1, then (Di) is called 
separable (4). 

If each (Di) is separable in the general sense with a and 0 independent of 
i, then (D) is called separable in the general sense. If each (Di) is separable 
then (D) will be called separable. 

The set of equiblock components (Di), (D2), . . . , (Di) will be said to form 
a clear set if XVô* blocks comprising (Di), (D2), . . • , (Dt) are such that 
no two blocks of the set have a treatment in common. Clearly a necessary 
condition for this is 

1 

J2 biki < v. 
1 

3. Use of pairwise balanced design in the construction of orthogonal 
arrays. 

THEOREM 1. Let there exist a pairwise balanced design (D) of type (v; k\, . . . , 
km; X) and suppose that there exist qt — 1 m.o.l.s. of order ku i = 1, 2, . . . , m. 
Put 

q = min(qi,q2, . . . ,qm). 

Then 

f(\v2) > q. 

If the set of equiblock components (Di), (Z>2), • • • , (Di) form a clear set, and 

q* = min(gi + 1, q2 + 1, . . . , qi + 1, ql+ll . . . , qm) 

then f(Xv2) > q*. If the design (D) is separable in the general sense, then 

f(\v>) >q+l 

and we can construct A = [\v2, q,v,2] which is \-resolvable. If in particular 
(D) is separable then A is resolvable. 

Proof. Proof follows the general lines of Theorem 1 in (4; 5). Let the 
treatments of the design be tiy t2, . . . , tv and let the blocks of the design 
(written out as columns) belonging to the equiblock component (Dt) be 

an, ôt2, . . . , 8tbi (i = 1, 2, . . . , m). 

Define the kt X bt matrix Dt by 

Dt — [on, 8i2, . . . , 5 i 6J. 

Let Pi be the matrix of order qt X kt (kt — 1) defined in Lemma 2 of (4), 
the elements of Pt being the symbols 1, 2, . . . , kt. LetPic, c = 1, 2, . . . , ki—1 
be the submatrices of Pf, such that each row of Pic contains the symbols 
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1, 2, . . . , kiy exactly once. Define Pi(ôiu) in the same manner as in Lemma 2 
of (4) and let 

PiiPt) = [P,(S«i),P,(S«), . . . ,P,(J t t l-)]. 

Then Pt{Di) is of order g< X &*&*(&* — 1). If ta and /6 are any two treatments 
occurring in the same block (ôiu), then the ordered pair ta, tb occurs exactly 
once as a column in any two-rowed submatrix of Pi(ôiu). Let At be the matrix 
obtained from Pi(Di) by retaining only the first q rows, and let 

A = (Ai, A2, . . . , Am). 

Then from (2.1), A is of order g X Xs/(z/ — 1) and since any two treatments 
occur exactly in X blocks of (D), any two-rowed submatrix of A contains 
exactly X columns of ordered pairs of any two distinct treatments chosen 
from tu h, . . . , tv. Let Ao be a q X Xf matrix containing tt in all positions 
in columns numbered from (i — 1)X + 1 to i\, i = 1, 2, . . . , v. Then the 
matrix (A0, A) obviously gives A = [\v2, q, v, 2]. 

The second part of the theorem can be proved along the same lines as 
Theorem 1 in (5). 

To prove the last part of the theorem we note that each (Dt) can be broken 
up into xt sets of av blocks of general type I and yt sets of ftv/kt blocks of 
general type II, where a and ft are divisors of X and are the same for each 
(Di). Thus each treatment occurs akiXt + /3yt = rt times in (2?*), i = 1, 
2, . . . , m. Following the proof of the latter part of Theorem 1 in (4), it is 
easily seen that the columns of A can be divided into ]£iwx *&*(&* — 1) sets 
of av and X ^ Ï C & Î ~~ 1) sets of fiv columns respectively, where in each set 
every row contains all the treatments exactly a and fi times respectively. 

If a = fi = 1, then (Ao, A) is a resolvable array [Xz;2, g, v, 2]. We can now 
add an additional row by putting tt in the q + 1th position under X sets of v 
columns of (A0, A), i = 1 ,2 , . . . , ? ; . This gives an array [Xz/2, q + 1, v, 2]. 

Now consider the case where both a and $ are not equal to 1. Since 
m m m 

av X) Xiki(ki — 1) + fiv ^ yt(ki — 1) = » 5Z (*< ~ 1) [aktXt + Pyt] 
l l l 

m 

= v 2 (ki — l)rt 
l 

m 

= Z (*i - i) w « 

1 

= \v(v - 1), 
(3.1) a E ««JfeiOfe, - 1) + |8 2 ?<(*« - 1) = X(» - 1). 

1 1 

Let X = pa = p'jft, say, and let 

(3.2) ^ ***,(*, - 1) = pc + d, c > 0, 0 < d < p 
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and 
m 

(3.3) £ y,(kt - 1) = p'c' + d', c' > 0, 0 < d' < p'. 
1 

Then (3.1) gives 

a[pc + d] +p[p'c' +d'] = \(v - 1) 

or 

(3.4) X(c + d) + da + d'/3 = \(v - 1). 

Since da < pa = X, d'/3 < />'/3 = X, (3.4) implies that 

(3.5) da + d'p = X. 

From (3.2), it is clear that Y,xiki(ki ~~ 1) sets of aw columns of A can be 
separated into c sets of \v columns, each set containing every one of the v 
treatments exactly X times in any row and another set containing dav columns 
in which every treatment occurs exactly da times in every row. Similarly 
from (3.4) we get d sets of \v columns containing each treatment X times in 
every row and a set of d'fiv columns contains each treatment exactly d'ft 
times in a row. Combining the sets of dav and d'/3v columns we get \v columns 
containing each treatment X times in every row. Thus the columns of A are 
divisible into (v — 1) sets each of \v columns, such that in each set every 
row contains all the v treatments exactly X times. It is now obvious that 
(A0, A) is an array [\v2, q, v, 2] which is X-resolvable. We can now add an 
additional row by placing tt in the (q + l) th position under the ith set 
i = 1, 2, . . . , v, thus giving [Xz>2, q + 1, v, 2]. 

COROLLARY 1.1. Existence of BIB (v, k\ X) and the existence of q — 1 m.o.l.s. 
of order k implies that 

f(\v>) > q. 

Further, if the design is separable in the general sense, then 

f(\v>) >q+l 

and we can construct A = [\v2, q, v, 2] which is \-resolvable. If the design is 
separable, then A is resolvable. 

4. Composition of blanced incomplete block designs. 

THEOREM 2A. / / BIB {VU k; Xx) and BIB (v2; k\ X2) exist and if7(X2z>22) > k, 
then BIB (viv2', k; XiX2) exists. 

Proof. Let the two designs be denoted by (Di) and (J92) respectively. Write 
the blocks of each design as columns. Then (Di) can be written as a matrix 
of k rows and b± columns, where b\ is the number of blocks in (Di). Let the 
treatments of (D{) be t\y fa, . . . , tv; and let A be an orthogonal array 
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A = [k2v2
2, k, v2, 2] in the integers 1, 2, . . . , v2. Let (#*) be any block of (Dx) 

containing treatments 

in positions 1, 2, . . . , k respectively. Whenever j (j = 1, 2, . . . , z/2) occurs in 

row £ of ^4, replace it by 

*w, £ = 1,2, . . . ,*. 

We thus get a matrix ^4(00 of k rows and X2z;2
2 columns. Define 

AiD,) = (^4(j9i) ^(/36I)). 

Then 4̂ (Z>i) is a matrix of fe rows and b{K2v2
2 columns in which the entries 

are the V\V2 symbols tit1, i = 1, 2, . . . , VU j = 1, 2, . . . , v2. If c 9e c', the 
treatments ĉ and Jc/ occur together in exactly Xi blocks of (£>i). Suppose 
((3) is a block of (D\) containing tc and tc> in positions ^ and i' respectively. In 
A integers j,f occur in positions i and i' respectively in exactly X2 columns. 
Hence treatments tCtj and tc> j> occur together in the corresponding X2 columns 
of A (13). Obviously then these treatments will occur in XiX2 columns of A (D\). 
We note that this is true whether or not j and / are equal. Thus the Viv%, 
treatments titj can be divided into v\ sets (^,1, ̂ j2, . . . , titV2), i = 1, 2, . . . , Vi, 
such that any two treatments coming from different sets occur exactly XiX2 

times in the blocks (columns) of A(Di). We now take Xi repetitions of the 
design (D2) for each of these vi sets of v2 treatments. The totality of blocks 
thus obtained obviously provide BIB {v\V2; k; XXX2). 

COROLLARY 2A.1. If BIB (vi\ k) and BIB (z/2; k) exist and N(v2) > k — 2, 
then BIB (viv2; k) exists. 

Using the above corollary and Theorem C, we have the following result 
due to Skolem, given in the notes to Netto's book (12). 

COROLLARY 2A.2. If k is a prime power and BIB (VU k) and BIB (v2; k) 
exist, then BIB (viv2; k) exists. 

THEOREM 2B. If separable designs BIB (VU k; Xi) and BIB (v2; k; X2) exist 
and if a resolvable array A = [\2v2

2, k, v2, 2] exists, then a separable design 
BIB (viv2\ k; XiX2) exists. If in particular the original designs are resolvable so 
is the obtained design. 

Proof. Suppose that the first design (Di) can be separated into sets Si, 
S2, . . . , Sx of type I and 5*i, 5*2, . . . , 5 V of type II. Then obviously 
xk + x' — fi, the number of replications of any treatment in (Di). The sets 
Sq each contain v\ blocks and the sets 5%/ each contain Vi/k blocks. Without 
loss of generality assume that each set Sq is put in the standard form, that 
is, in each row of SQ every treatment of (Di) occurs exactly once. 

vSince A is resolvable, we can put 

A = (AhA2,...,AX2V2) 
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where each row of At contains all the integers 1, 2, . . . , v2 exactly once. As 
in the previous theorem, let 

A(D,) = ( . . . M A ) ^ ' ) ) 
where £ = 1 , 2 , . . . , \2v2; q = 1, 2, . . . , x; qf = 1, 2, . . . , x'. Then it is easily 
seen that with respect to the vxv2 treatments ttj defined in the previous 
theorem, each set Ap(Sq) gives a set of V\V2 blocks of type I and each set 
Ap(S*q>) gives a set of {v\V2)/k blocks of type II. Taking the additional blocks 
obtained from Xi repetitions of the separable design (D2) for each of the Vi 
sets of v2 treatments as in the previous theorem, we get a separable design 
BIB (viV2; k; XiX2). It is obvious that if in particular the original designs are 
resolvable so is the new design for V\V2 treatments. 

Taking Xi = X2 = 1 and the particular case of resolvability, we get from 
Theorem B, 

COROLLARY 2B.1. 7 /RBIB Oi; k) and RBIB (v2-, k) exist and N(v2) > jfe — 1 , 
then RBIB {v\V2\ k) exists. 

Using Theorem C, the above gives 

COROLLARY 2B.2. If k is a prime power and RBIB {VU k) and RBIB (v2; k) 
exist, then RBIB (viv2; k) exists. 

THEOREM 2C. If BIB (vx;k; Xi) BIB (v2; k; X2) exist andf(X2(v2 - 1)2)> *, 
then BIB (vi(v2 — 1) + 1;&;XIX2) exists. 

Proof. Let (Di) be the design with Vi treatments and let Ai = [X2(z>2 — l)2 , 
k, v2 — 1, 2]. Then as in Theorem 2A, the matrix Ai(Di) gives blocks of size 
k in which any two treatments coming from different sets 

(ti.u • • • , titV2-!), i = 1, 2, . . . , vi, 

occur together in exactly XiX2 blocks. Take a new treatment say 6, and con­
sider the vi sets of v2 treatments 

(0, titi, . . . , ti,V2-i), i = 1, 2 , . . . , i/i. 

The Xi repetitions of the design (D2) with each of the vi sets of z;2 treatments 
above together with the blocks Ax{Di) give the BIB (vi(v2 — 1) + 1; k; XiX2). 

COROLLARY 2C.1. If BIB fa; k) a ^ B I B (v2\ k) exist and N(v2 — 1) > ife —2, 
//zew BIB (̂ i(z;2 — 1) + 1; k) exists. 

The particular case of this corollary when v2 = k is given in the notes 
added by Skolem in (12). 

Using Theorem D and the above corollary we have 

COROLLARY 2C.2. If k and k — 1 are both prime powers, then the existence 
of BIB (Î/IÎ k) and BIB (v2\ k) implies the existence of BIB (vi(v2 — 1) + 1; k). 
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THEOREM 2D. If BIB (v\k;X) exists and k — 1 is a prime power, then 
BIB ((k — 2)v + 1; k — 1; X) exists which is X-resolvable. 

Proof. Let the remaining parameters of (D) the BIB (v; k; X) be b and r. 
Since k — 1 is a prime power, there exists an orthogonal array 4̂1 = [(& — l)2 , 
&, & — 1,2] in k — 1 integers 1,2,..., & — 1. Without loss of generality assume that 
the first column of Ai consists entirely of l's. Using Theorem 2C with v\ = z>, 
Xi = X, z>2 = k, X2 = 1, we obtain a BIB design with parameters v* = v(k — 1) 
+ 1, b* = 6(& — l)2 + Xz;, r* = Xy, k* = k, X* = X. From this design omit 
the b blocks of AX(D) which arise from the first column of Ax. Obviously 
these blocks form a BIB (v; k; X) for the treatments titi, . . . , tVtu where 
h, t2, . . • , tv are the treatments of (D) In the design (Di) formed of the 
remaining b(k — l )2 + Xv — b blocks, each of the treatments Ji.i, . . . , /»,i 
occurs Xv — r times. Further, no two of these treatments can occur in the 
same block of (Di). Since from (1.1) 

b(k - I)2 + Xv - b = bk2 - 2bk + Xv 

= v(rk - 2r + X) 

= v(Xv — r) 

the blocks of (Z>i) can be separated into v sets of (Xv — r) blocks, such that 
each block of the ith. set contains the treatment tif\, i = 1 ,2, . . . , v. In this 
set tt,i obviously occurs X times with each of the remaining v(k — 2) + 1 
treatments excepting tjti, j i£ i — 1, 2, . . . , v. Omitting the treatment titl from 
the blocks of the ith set i = 1, 2, . . . , v, we get BIB ((& - 2)v + 1 ; k - 1 ; X) 
which is obviously X-resolvable. 

COROLLARY 2D.1. If BIB (v; k) exists and k — 1 is a prime power then 
RBIB ((jfe - 2)v + 1; k - 1) exists. 

We note that in actual applications of the above theorems the trivial 
existence of RBIB (k; k) is very useful. 

5. BIB designs with k = 5, X = 1. A BIB design with k = 5, X = 1 
belongs to one of the two series (1) 

(Gi) v = 20t + 1, b = t(20t + 1), r = 5* 

(G2) w = 20/ + 5, b = (bt + 1) (4* + 1), r = 5t + 1. 

If v = 20t + 1, we denote the corresponding design by Gi(v). Similarly if 
v = 20t + 5, the corresponding design is denoted by G2(v). When v is of the 
form 20t + 1 or 20t + 5 the corresponding design will be denoted by G(v). 
Using the results in (1) and on p. 118 of (11) and the corollaries 2A.2, 2B.2, 
2C.2, we can state the following theorem. 

THEOREM 3. (a) If v = 20/ + 1 is a prime power and x is a primitive element 
of GF(v) and if xil + 1 = xq, a odd then Gi(v) exists. 
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(b) If v = 20/ + 5 and 4/ + 1 is a prime power, then G2(v) exists. 
(c) Existence of G(v) implies the existence of G(5v), and if G(v) is resolvable 

so is G(5v). 
(d) / / G(vi) and G(v2) exist, then G(viV2) exists, and if G(v\) and G(v2) are 

both resolvable so is G{viv2). 
(e) Existence of G(v) implies the existence of G(4:V + 1) and G(5v — 4). 
(f) Existence of G(vi) and G{v2) implies the existence of G(vi(v2 — 1) + 1). 

From (a) using the powers of primitive roots of primes given in (9) solu­
tions for v = 41, 61, 241, 281, 641, 701, 881 can be obtained. From (b) we 
get solutions for v = 25, 45, 65, 85, 125, 145, 185, 205, 245, 265, 305, 365, 
405, 445, 485, 505, 545, 565, 605, 625, 685, 745, 785, 845, 865, 905, 965, 985. 
Similarly (c), (d), (e), and (f) provide solutions for a large number of values 
of v. Using these methods, solutions for all v ( < 1000) of the form 20/ + 1 
or 20/ + 5 can be obtained excepting for 81, 141, 161, 285, 345, 361, 381, 
385, 461, 465, 541, 561, 585, 645, 665, 681, 705, 761, 765, 781, 801, 941, 961, 
981. We note that resolvable solutions for v = sq, q > 2 can always be con­
structed. 

6. BIB designs with & = 4, X = 1. BIB designs with k = 4, X = 1 can be 
classified in two series: 

(Fi): v = 12/ + 1, b = /(12/ + 1), r = 4/ 

(F2): v = 12/ + 4, b = (4/ + 1)(3/ + 1), r = 4/ + 1. 

If v = 12/ + 1, we denote the corresponding solution by Fi(v) and if 
v = 12/ + 4 we denote it by F2(v). F(v) will denote the design when v is of 
the form 12/ + 1 or 12/ + 4. Using the results in (1) and on page 118 of 
(11) and the corollaries 2A.2, 2B.2, 2C.2, 2D.1, we have the following theorem. 

THEOREM 4. 

(a) If v = 12/ + 1 is a prime power and x is a primitive element of GF{v) 
and x4t — 1 = xq, g odd, then Fi(v) exists. 

(b) If v = 12/ + 4 and 4/ + 1 is a prime power, then a resolvable solution 
for F2{v) exists. 

(c) Existence of F{v) implies the existence of F(4:v), and if F(v) is resolvable 
so is F(4v). 

(d) If F{vi) and F(v2) exist, then F(v\V2) exists, and if F{vi) and F(v2) are 
resolvable, so is F(viv2). 

(e) Existence of F{v) implies the existence of F(Sv + 1) and F(4v — 3). 
(f) Existence of F(v{) and F(v2) implies the existence of F(vi(v2 — 1) + 1). 
(g) Existence of G (v) implies the existence of a resolvable solution for F(3v-{-1). 

From (a) above with the help of (9) we get solutions for v — 13, 25, 73, 
181, 277, 409, 457, 541, 709; from (b) resolvable solutions for v = 16, 28, 40, 
52, 76, 88, 112, 124, 148, 160, 184, 220, 244, 268, 292, 304, 328, 340, 364, 376, 

https://doi.org/10.4153/CJM-1960-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-015-8


ON BALANCED INCOMPLETE BLOCK DESIGNS 187 

412, 448, 472, 508, 520, 544, 580, 592, 688, 700, 724, 772, 808, 832, 844, 868, 
880, 940, 952 are obtained. From (g) we get resolvable solutions for v = 136, 
196, 256, 316, 436, 556, 604, 616, 664, 676, 796, 904, 916, 964. Resolvable 
solutions for v = 64, 208, 352, 496, 640, 736, 784, 976 are provided by (c). 
Similarly (d), (e), and (f) give solutions for a large number of values of v. It 
has not been possible to obtain solutions for v < 1000 for the following values: 
37, 133, 145, 172, 217, 232, 280, 361, 424, 460, 469, 505, 517, 529, 532, 565, 
568, 577, 613, 649, 652, 685, 697, 712, 745, 748, 841, 853, 856, 865, 889, 892, 
901, 925, 928, 997. 

7. Concluding remarks. The BIB designs with k = 5, A = 1 and RBIB 
designs with k = 4, X = 1 are especially interesting from the point of view 
of constructing orthogonal Latin squares. From Theorem 3 (5) it follows that 
existence of G(v) with v = 20/ + 1 and 20/ + 5 implies the existence of at 
least two orthogonal Latin squares of order 20/ — 2 and 20/ + 2, respectively, 
which are of the form 2 (mod 4). Similarly from Theorem 4 of (5) existence 
of resolvable solution F2(l2t + 4), / > 5, coupled with the fact that N(v) > 2, 
for v = 10, 14, and 18. (14, 5) gives the result that there exist at least two 
orthogonal Latin squares of orders 12/ + 14, 12/ + 18 and 12/ + 22. Since 
Euler's conjecture is false (5) for all numbers of the form 4/ + 2 which are 
< 74, excepting for 2 and 6, another proof for the falsity of the conjecture 
for all numbers > 10 could be given if it could be shown that a resolvable 
solution F2(12/ + 4) exists for all / > 5. 
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