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1. Introduction

We shall consider the following mathematical model of dams of finite
capacity. In the time interval (0, oo) water is flowing into a dam (reservoir).
Denote by %(u) the total quantity of water flowing into the dam in the time
interval (0, u). The capacity of the dam is a finite positive number h. If
the dam becomes full, the excess water overflows. Denote by d(u) the total
quantity of water demanded in the time interval (0, u). If there is enough
water in the reservoir the demand is satisfied, if there is not enough water
the difference is supplied from elsewhere. Denote by rj(t) the content of
the dam at time t. t](0) is the initial content.

In many applications it is assumed that d(u) = u, 0 ^ u < oo. In
this case there is a continuous release at a constant unit rate when the
dam is not empty.

If either the input {%(«), 0 jg u < oo}, or the demand, {&(u), 0 ^ u < oo},
or both are stochastic processes and if we consider their separable versions,
then r}{t), the content of the dam at time t, is a random variable for all
t 2; 0. The random variable r](t) is completely determined by »?(0), by
|(w) = %(u)— <S(w) for 0 2S u ^ t and by h. We always suppose that >;(0)
and {f (u), 0 ^ u < oo} are independent.

We note that {£(«), 0 rg! u < oo} can also be interpreted as the process
describing the fluctuations of the level of the dam provided that the level
can vary in the interval (— oo, oo), and {rj(t), 0 sS t < oo} describes the
fluctuations of the level of the dam if the level can vary only in the interval
[0, h], that is, the excess water overflows and if necessary auxiliary water
is used to ensure that the level never decreases below 0. This latter inter-
pretation permits us also to consider more general types of processes
{f (u), 0 :g u < oo} than we mentioned above.

In this paper we shall find the limiting distribution of rj(t) as t -> oo
when {£(M), 0 < u < oo} is a real-valued, separable stochastic process with
stationary independent increments for which the sample functions have no
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negative jumps and vanish at u = 0 with probability 1. In this case
{t](t), 0 rg t < oo} is a Markov process. If we exclude the trivial case
P{f (w) = 0} = 1 for u 5: 0, then the limiting distribution l im^^ P{rj(t) iS,x}
exists and is independent of the distribution of »y(0). We note that if
P{£(M) ^ 0} = 1 for all u ^ 0, then l i m , ^ P{n(t) = h] = 1 and if
P{£(w) ^ 0} = 1 for all u > 0, then l im^^ P{n(t) = 0} = 1 provided that
P{i(u) = 0} < 1 for all u > 0.

2. The limiting distribution of the content of the dam

If we suppose that {!(«), 0 5S u < oo} is a real-valued stochastic
process with stationary independent increments for which the sample
functions have no negative jumps and vanish at u = 0 with probability 1,
then

exists for Re (s) S: 0 and the most general form of $(s) is given by

/•oo , SX \

(2) 0 ( s )=as + l a 2 s 2 - J \\-e~>*- — J dN(x)

where a is a real constant, a2 is a nonnegative constant, N(x), 0 < x < oo,
is a nondecreasing function of x satisfying the requirements limx_^.aoN(x) = 0
and

(3) j*x2dN{x) < oo.

We note that if

(4) \l*dN{x) < oo,

then (2) can be reduced to the following form

(5) 0(s) = as+i<T2s2- f°° (l-e-^dNix)

where, in general, the constant a is not the same as in (2).
We shall exclude the trivial cases mentioned in the Introduction and

suppose that P{f («) > 0} > 0 and P{|(«) < 0} > 0 for all u > 0. If a
process {£(u), 0 ^ u < oo} has these properties, then we say that it belongs
to the class D. If 0(s) is given by (2) and $\xdN(x) = oo, then
{!(«), 0 ^ u < oo} belongs to Z). If &(s) is given by (5), when necessarily
JJ a; dN(x) < oo, then {£(M), 0 ^ « < oo} belongs to D if and only if either
a2 > 0 or a > 0 and 2V(z) ^ 0. (Cf. G. Baxter and J. M. Shapiro [1].)

THEOREM 1. Let {f (w), 0 :£ u ;S oo} be a real-valued, separable stochastic
process with stationary independent increments for which the sample functions
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have no negative jumps and vanish at u = 0 with probability 1. Suppose that
{f (w), 0 ^ w < oo} belongs to the class D. Let

(6) £{«-«*<»>} = e"*""

for Re (s) iS: 0. Then the limiting distribution

(7) lim P{v(t) ^ x} = W(ar)/W(A) (0 ^ a; ^ A)
t->-oo

exists, is independent of the distribution of r\ (0) and

(8) j™ e-'xW(x)dx=

for Re (s) > « ẑ /jere a» is the largest nonnegative real root of 0(s) = 0.
Before proving this theorem we shall give some examples for its

applications.

3. Examples

1. Suppose that £(«) =%(«)—w for 0 ^u < oo, where {%(M), 0 ^ M < OO}

is a separable stochastic process with stationary independent increments
for which almost all sample functions are nondecreasing step functions
vanishing at u = 0. The trivial case P{x(u) = 0} = 1 for u ^ 0 is excluded.
For such processes

(9) 0 (s) = s - JJ0 (1 - e-**)dN (*)

where

(10) j*xdN(x) < oo.

In this case E{%(u)} = pu where

(11) P = f~xdN(x)

is a positive number (possibly oo).
Now

(12)

for Re (s) > eu. If p 5S 1, then co = 0, whereas if p > 1, then w > 0.
If p ̂  1, then by inversion we obtain that

(13) W(x) = - ^ - - Cd^ixiu) ^ u+x}
0 {co) J+o

whereduP{x(u) ^ u+x} = P{u+x ^ %(u) ̂  u+x+du}.
If /*{^(M) gs a;} has a density function, then (13) reduces to
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(14) W{*) = ^
o 8x

If %(u) is a discrete random variable, then (13) reduces to

(15) W{x) = ^
9 («) 0<u<oo

If x < 0, then the right hand side of (13) is 0.
If p is a finite positive number, then we can also obtain W(x) in the

following way. If 0 < p < oo, then

\XN{y)dij
(16) H*(x)=J±

Jo N(y)dy

is a distribution function of a nonnegative random variable and for
Re (s) ^ 0

(17) <P(s) = s[l—py>*{s)],

where

(18) f*(s) = j™ e-sxdH*(x).

Since
1 1 1 °°

(19) — = = — y pn\w*<s)]n

for Re (s) > to, by inversion we get that

oo

(20) W(x) = V pnH*(x)
n=0

where H*(x) is the n-th iterated convolution of H*(x) with itself; H*(x) = 1
if x ^ 0 and H% (x) = 0 if x < 0.

Accordingly, if we know P{x(u) ^ a;} for 0 gS M < oo or H*(x), then
by (13) or by (20) we can find W(x). Now we shall consider some important
particular cases.

(i) Compound Poisson input. In (9) let

where A is a positive constant and H(x) is the distribution function of a
nonnegative random variable. Then

(22) 0 (s) = s—A[l—y>(s)],

where rp(s) is the Laplace-Stieltjes transform of H(x). In this case
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(23)

where Hn(x) denotes the w-th iterated convolution of H(x) with itself;
H0(x) = 1 if x ^ 0 and H0(x) = 0 if x < 0. Now p = Xv., where a is the
mean of the distribution function H(x). If p is a finite positive number,
then by (16)

(24) H*{x) =

for 0 ^ x < 00. By using (23) or (24) we can obtain W(x) by (13) or (20)
respectively.

This process has been considered before by J. Gani and N. U. Prabhu
[2] in the case when H(x) = 1 for x 2: a and H(x) = 0 if x < a and by
B. Weesakul and G. Yeo [5] in the case when H(x) = 1—e~xla for x ^ 0.

(ii) StoWe m/>«*. In (9) let

(25) #(*) = - _ _ _ ; . _ (0<*<OO)

where 0 < c < 1. Then

(26) 0(s) = s—sc.

In this case

(27)

for x Si 0, where

(28) fe(x) =

In particular,

(29)

Now p = 00 and <o = 1. Thus by (13)

du
(30) Wr

for x > 0. We have also
..n(l-c)

(
for x ^ 0.

(iii) Generalized stable input. In (9) let

(32) N(x) = - 7 ^ _ - J e-» ^ . (0 < x < co)
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where 0 < c < 1 and /* ^ 0. If fi = 0 in (32), we get (25). Then

(33) 0(s) =

and

(34) P{x(t) ^ x} = «*'

for x 5; 0, where /c(a;) is defined by (28). Now p = Cjie~x. If p ^ 1, then
PT(x) is given by (13). If p is a finite positive number, then

dx r(l-c)J.
(35)
V dx

and W(a;) can also be obtained by (20).

(iv) Gamma input. In (9) let
dvr00 dv

(36) N{x) = — e-'1" — , (0 < a; < oo)

where ,« is a positive constant. Then

(37) #(s) = s-lo

and

(38) P{x(t) ±2 x} = - i -

for a; ^ 0. Now p = 1/// and

39 _ ^ J = / e

dx J y

for a; > 0. Both (13) and (20) can be used to obtain W(x).
This process has been introduced by P. A. P. Moran [2], but he did

not give the limiting distribution for finite dams.

2. Suppose that {f (u), 0 5S u < oo} has stationary independent in-
crements and 0(s) is given by (2) with a2 = 0 and N(x) = —I/a? for
0 < x < oo. Then

(40) 0(s) = flS-J ( l - « - « - — j — = S[fl_l +

where y = 0.5772157 • • • is the Euler constant. Now m = e1'"-"11 and

(41) W(x) = — 1, ' x du
V ; V co Jo r(u+2)
for x > 0.
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3. Suppose that {!(«), 0 <S u < oo} is a Brownian motion process with
£{!(«)} = aw and Var {£(«)} = <r2w. Then

\/o2u
and

(43) 0(s) = -o

Now to = 0 if a 5S 0 and m — 2a/<xa if a > 0. Since

C°° 2 l r or2 l i
(4.4) I e~txW (x)dx = = I

J o s(a2s—2a) a L<72s—2a s j
for Re (s) > w, we get by inversion that for x ^ 0

(45) W(x) = — (e***/**— 1) if a#0,
a

and
(46) W{x) = 2*/ff2 if a = 0.

4. A discrete storage process

First we shall prove an auxiliary theorem.

LEMMA. Let nf, ; = 0, 1 2, • • •, be a probability distribution with ex-
pectation

(47) r = 2 /»<
3=0

(0 5S y ^ oo) and generating function

(48) 71(2) = 2 ^ , z 3 '
3=0

for \z\ ^ 1. / / :rc0 > 0, ^Ae« ^ solution of the following system of linear
equations

(49) <2* = i >
3=0

is given by the generating function

oo

(50) 7l(z)—Z

which is convergent if \z\ < 6 where z = 6 is the smallest nonnegative real
root of n{z) = z. If y <S 1, then 6=1, whereas if y > 1, then 0 < 6 < 1.
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PROOF. If y 5S 1 and TI0 > 0, then n(z) = z has exactly one root 2 = 1
in the unit circle \z\ ^ 1 (z = 1 is a simple root if y < 1 and z = 1 is a
double root if y = 1). If y > 1, then n{z) = z has two roots z = 1 and
^ = (5, where 0 < <5 < 1, in the unit circle |jar| ^ 1. This can be proved
directly or by using Rouche"s theorem. If we form the generating function
of (49), then we get (50) and (50) is convergent if |2| < d.

Now we define a storage process in the following way. Let
{v(u), 0 5S u < oo} be a Poisson process of density X and let vx, v2, • • •, vn, • • •
be a sequence of mutually independent and identically distributed random
variables with distribution P{vn = j) = njt j = 0, 1, 2, • • •, and let {vn}
be independent of {v(u), 0 :£ u < oo}. Set Nn = r1+"a+" • '+' '„ f°r

n = 1, 2, • • • and No = 0. Define |(«) = N,(u)—v(u) for 0 ^ u < oo. Then
{£(«), 0 ^ M < oo} is a compound Poisson process. Now consider a store
which may contain 0, 1, 2, • • •, m items. Let 77(0) be the initial stock size.
Suppose that starting from its initial value the stock size varies according
to the process {£ (u), 0 :£ u < 00}; however, the stock size cannot increase
over m or decrease below 0. That is, an overflow may occur if the store
is full and demands are not satisfied if the store is empty. This is the discrete
version of the dam process defined in the Introduction. Denote by r)(t)
the stock size at time t, and suppose that rj(O) and {£(u), 0 5S u < 00} are
independent.

THEOREM 2. / / n0 > 0, then

(51) lim
t—>oo

for k — 0, 1, • • •, m, where Qk, k = 0, 1, 2, • • •, is defined in the Lemma with
an arbitrary Qo =£ 0. The limit (51) is independent of the distribution of rj(O).

PROOF. NOW {r)(t), 0 rg: t < 00} is a Markov process with state space
/ = {0, 1, • • •, m}. If we suppose that n0 > 0, then it can easily be seen that
lim^oo P{r}(t) ̂  k) = Q* exists and is independent of the distribution of
r](0). For t 2; 0 and k = 0, 1, • • •, m—1, we have

(52) P{t)(t+u) <k}= (l-Xu)P{ri(t) ^
3=0

and P{t](t) j£ m) = 1. If we form the limit t -> 00 in (52), then it follows
that

(53) 0? = i > , « - , + i
j=o

for k = 0, 1, • • •, m—1 and @* = 1. If we compare (49) and (53), then
we can conclude immediately that Q* = Qk/Qm for k = 0, 1, • • -, m. This
completes the proof of Theorem 2.
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5. Proof of Theorem 1

Consider the process {£(u), 0 rgJ u < 00} introduced in Section 4.
However, we suppose that the probabilities nt (/ = 0, 1, 2, • • •) also depend
on X. We use the notation nf\ 7i{X){z) and Q^ indicating this dependence.
Also we use the notation {fA(w), 0 ^ u < 00} for the corresponding process.
It is easy to see that we can choose the distributions {nf\ j = 0, 1, 2, • • •}
and a normalizing factor, say xjy/X, such that, as X -> 00, the finite dimen-
sional distributions of the process {ocfA(w)/\/A, 0 fS u < 00} converge to
the corresponding finite dimensional distributions of the process {£(«),
0 :g u < 00} defined in Theorem 1. For if we denote by TI(X) (z) the generating
function of {nf\ j = 0, 1, 2, • • •}, then for Re (s) ^ 0

where

and we can choose the distributions {T4A>J such that

(56)

for Re (s) ^ 0, where 0(s) is defined by (2). Hence the statement follows.
If we denote by {r)\{u), 0 g! u < 00} the storage process corresponding

to {fA(M)> 0 SS « < 00} and suppose that

m = [y/Xhfx] and >;A(0) = [\/X )j(0)/a],

then we can conclude that as A -> 00 the finite dimensional distributions
of the process {a.t)x(u)l\/X, 0 ^. u < 00} converge to the corresponding
finite dimensional distributions of the process {rj(u), 0 ^ u < 00} considered
in Theorem 1.

Accordingly we can conclude that for 0 5S x ^ h

whenever A = [-y/A */a] and w = [\/X hja.]. Thus,

(58) limP{>;(<) ^ x} =

for 0 :S a; fg A, where

(59) I e-«*W(a;)<&; = lim — £ <2iA) e-s*a/^A = lim A
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If we choose Q\f] = \ZX/x, then we get

(60) f~e-"W(x)dx=ll0(s)

for Re (s) > a>, where 0(s) is defined by (2). This completes the proof
of Theorem 1.

NOTE. Finally, we would like to note that the limiting distribution of
the content of the dam can also be expressed in the following way

(61) lim P{ri(t) Sx} = P{H") ^ a; for 0 ̂  « ^ 0(h-x)}

for 0 5S x jS h, where

(62) d(x) = inf {u : |(«) ^ —x and 0 ̂  u < oo}

and Q(x) = oo if £(«) > —x for all u ^ 0. (See reference [4].)
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