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MEAN CONVERGENCE OF LAGRANGE INTERPOLATION
FOR EXPONENTIAL WEIGHTS ON [�1Ò 1]

D. S. LUBINSKY

ABSTRACT. We obtain necessary and sufficient conditions for mean convergence
of Lagrange interpolation at zeros of orthogonal polynomials for weights on [�1Ò 1],
such as

w(x) = exp
�
�(1 � x2)�ã

�
Ò ã Ù 0

or
w(x) = exp

�
� expk(1� x2)�ã

�
Ò k ½ 1Ò ã Ù 0Ò

where expk = exp
�

exp
�
Ð Ð Ð exp( ) Ð Ð Ð

��
denotes the k-th iterated exponential.

1. Introduction and results. There is a vast literature on mean convergence of
Lagrange interpolation at zeros of orthogonal polynomials. For weights on [�1Ò 1], most
of the positive results deal with generalized Jacobi weights—see [12], [13], [17], [20] for
some recent references. The broad spectrum of results have applications ranging from
approximation theory to number theory and numerical analysis—see [18] for some of
these, notably for the insights that Lagrange interpolation provides on the orthogonal
polynomials themselves.

In this paper, we consider the analogous problem for exponential weights w2 on
[�1Ò 1], such as

w0Òã(x) = exp
�
�(1 � x2)�ã

�
Ò ã Ù 0(1)

or
wkÒã(x) = exp

�
� expk(1 � x2)�ã

�
Ò k ½ 1Ò ã Ù 0Ò(2)

where
expk = exp

�
exp

�
Ð Ð Ð exp(Ð Ð Ð) Ð Ð Ð

��
denotes the k-th iterated exponential. These are the first positive results on mean conver-
gence associated with weights that vanish strongly at š1. The corresponding question
for exponential weights on R has been considered in [3], [4], [10], [16].

Our results are based on the estimates of [8], which involve the following class of
weights: In its definition, we use the notation ¾. We write

f (t) ¾ g(t)

if there exist positive constants C1 and C2 such that for the relevant range of t,

C1 � f (t)Ûg(t) � C2
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1274 D. S. LUBINSKY

Similar notation is used for sequences and sequences of functions.

DEFINITION 1.1. Let w := e�Q, where Q: (�1Ò 1) ! R is even, and twice continuously
differentiable in (�1Ò 1). Assume moreover, that Q(j) ½ 0 in (0Ò 1), j = 1Ò 2, and that the
function

T(t) := 1 + tQ00(t)ÛQ0(t)Ò t 2 (�1Ò 1) n f0g
is increasing in (0Ò 1) with

T(0+) := lim
t!0+

T(t) Ù 1

and for t close enough to 1,
T(t) ¾ Q0(t)ÛQ(t)

while for some A Ù 2 and t close enough to 1,

T(t) ½ A
1 � t2



Then we write w 2 W .
We note that the last inequality is (1.34) in [8, p. 9] and is needed for the bounds on

the orthogonal polynomials there. In particular, it implies

lim
t!1�

Q(t) = 1Ò

which is required in Definition 1.1 in [8]. The weights wkÒã, k ½ 0, ã Ù 0 are the
archetypal elements of W .

Associated with the weight w2 (note that we write the weight as a square), we can
define orthonormal polynomials

pn(x) = pn(w2Ò x) = çnxn + Ð Ð Ð Ò çn Ù 0Ò

satisfying Z 1

�1
pnpmw2 = émn

We denote the zeros of pn by

�1 Ú xnn Ú xn�1Òn Ú Ð Ð Ð Ú x1n Ú 1

The Lagrange interpolation polynomial to a function f : (�1Ò 1) ! R at fxjng is denoted
by Ln[f ]. Thus, if Pn denotes the polynomials of degree� n, then Ln[f ] 2 Pn�1 satisfies

Ln[f ](xjn) = f (xjn)Ò 1 � j � n

The Gauss quadrature rule for w2 has the form

Z 1

�1
Pw2 =

nX
j=1
ïjnP(xjn)Ò P 2 P2n�1Ò
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LAGRANGE INTERPOLATION 1275

where the Christoffel numbers ïjn are positive.
In analysis of exponential weights, an important role is played by the Mhaskar-

Rahmanov-Saff number an, the positive root of the equation

n =
2
ô
Z 1

0

antQ0(ant)p
1 � t2

dt(3)

One of its features is the Mhaskar-Saff identity [11]

kPwkL1[�1Ò1] = kPwkL1[�anÒan]Ò P 2 Pn

For w 2 W , an ! 1 as n !1. We also need the quantity

én :=
�
nT(an)

��2Û3(4)

One may think of én as the spacing x1n� x2n between the largest and second largest zeros
of pn. For

w = w0ÒãÒ T(an) ¾ n
1

ã+ 1
2 ; én ¾ n�

2ã+3
2ã+1

2
3

[8, p. 8] so as ã ! 0, we have roughly speaking, én ! n�2, the spacing between the
largest and second largest zeros of the orthogonal polynomials for generalized Jacobi
weights. By contrast, for

w = wkÒãÒ k ½ 1Ò T(an) ¾
�k�1Y

j=1
logj n

�
(logk n)1+ 1

ã

where
logj = log

�
log

�
Ð Ð Ð log(Ð Ð Ð)

��
denotes the j-th iterated logarithm [8, p. 11]. Thus for w0Òã, T(an) grows like a power of
n, while for wkÒã, k ½ 1, it grows slower than any power of n. This difference plays a
role in describing our convergence results for Ln[f ]. The final piece of notation needed
to state our result is the function

gn(x) :=
þþþþþ1� jxj

an

þþþþþ + énÒ x 2 (�1Ò 1)(5)

Our Lagrange interpolation results depend on the following converse quadrature sum
estimate, which is an analogue of the classical Marcinkiewicz inequality for trigonometric
polynomials:

THEOREM 1.2. Let w 2 W , 1 Ú p Ú 1 and

1
4
� 1

p
Ú ∆ Ú min

²5
4
� 1

p
Ò 3

4
+

1
2p

¦
(6)

Then for n ½ 1 and P 2 Pn�1,

kPwg∆
nkLp[�1Ò1] � C

� nX
k=1
ïknw�2(xkn)jPwg∆

n jp(xkn)
�1Ûp

(7)
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1276 D. S. LUBINSKY

Here C is independent of P and n.

The upper bound on ∆ in (6) is probably not sharp, but this is largely irrelevant to this
paper: it is the lower bound on ∆ in (6), which is sharp. Following is our main result,
which requires (7) only for ∆ close to 1

4 � 1
p .

THEOREM 1.3. Let w 2 W , 1 Ú p Ú 1 and ∆ 2 R. The following are equivalent:
(a) There exists C independent of f and n such that for n ½ 1, and measurable

f : (�1Ò 1) ! R,
kLn[f ]wg∆

nkLp[�1Ò1] � Ckf wkL1[�1Ò1](8)

(b)

∆ Ù 1
4
� 1

p
(9)

The disadvantage of the above result is that the weighting factor gn in the left-hand
side of (8) depends on n. In analogous questions for generalized Jacobi weights on
[�1Ò 1], one can effectively take gn(x) = g(x) = 1 � jxj, but not here.

We note too that there is no advantage to be gained by placing a factor gr
n, no matter

what choice for r, in kf wkL1[�1Ò1]. Indeed one needs (9) if (8) is to hold merely for f that
vanish outside any fixed non-empty subinterval of (�1Ò 1).

To avoid weighting factors that depend on n, we consider separately p Ú 4 and p ½ 4:
for the former case, we do not need a weighting factor:

THEOREM 1.4. Let w 2 W and 1 Ú p Ú 4. Let f : (�1Ò 1) ! R be Riemann integrable
in each compact subinterval of (�1Ò 1) and assume that for some ã Ú 1

p ,

lim
jxj!1�

(f w)(x)(1 � x2)ã = 0(10)

Then
lim

n!1
k(Ln[f ] � f )wkLp[�1Ò1] = 0(11)

We note that one may replace (1 � x2)ã by (1 � x2)1Ûpj log(1 � x2)jã, where ã Ú 1
p

(and so on). The weighting factor is more complex for p Ù 4:

THEOREM 1.5. Let w 2 W , p ½ 4, ∆ 2 R.
(a) Let

∆ Ù 1
4
� 1

p
(12)

Let f : (�1Ò 1) ! R be Riemann integrable in each compact subinterval of (�1Ò 1) and
assume that for some ã Ú 1

p , (10) holds. Then

lim
n!1

k(Ln[f ] � f )w[1 + Q2Û3T]�∆kLp[�1Ò1] = 0(13)

(b) Conversely, if (13) holds for each f : [�1Ò 1] ! R that is continuous and vanishes
outside [� 1

2 Ò 1
2 ], it is necessary that

∆ ½ 1
4
� 1

p
(14)
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LAGRANGE INTERPOLATION 1277

If p = 4, (12) is also necessary.

If instead of (13) we considered

lim
n!1

(Ln[f ] � f )w
�
log(2 + Q)

�
[1 + Q2Û3T]�∆


Lp[�1Ò1]

= 0

then (12) is necessary and sufficient for all p ½ 4. In fact we could replace log(2 + Q) by
any slowly growing function with limit 1 at 1. However, this would make an awkward
weighting factor even more awkward!

The closest relative of this situation for weights on R is the so-called Erdős weights
considered by S. B. Damelin and the author [3], [4]. There the weighting factor used was
equivalent to (1 + Q2Û3)�∆. This was possible as T there grows slower than Q¢ for any
¢ Ù 0. However, as we have noted above, in the present situation, T may grow faster
than Q, unless Q grows fast enough near 1. Indeed, for w0Òã,

T(x) ¾ 1
1 � x2

; Q(x) =
1

(1 � x2)ã
Ò x ! 1 � 

By contrast for wkÒã, k ½ 1, for each ¢ Ù 0,

T(x) = O
�
log Q(x)

�1+¢Ò x ! 1 � 

For weights such as the latter we can then drop the T in (13).
Further justification for the choice of 1 + Q2Û3T is provided by:

THEOREM 1.6. Let w 2 W and p ½ 4. Let U: (�1Ò 1) ! R be measurable and satisfy

lim
x!1�

U(x)[1 + Q2Û3(x)T(x)]
1
4�

1
p = 1(15)

Then there exists continuous f : (�1Ò 1) ! R such that f vanishes outside [� 1
2 Ò 1

2 ] and

lim sup
n!1

kLn[f ]wUkLp[�1Ò1] = 1(16)

Our proof of Theorem 1.2 uses König’s method [6], [7], adjusted so as to work for all
1 Ú p Ú 1. It is interesting to note that this is the third method we tried, the first two
failed to yield sharp results: we began by applying the method that has proved successful
for Freud weights onR ([3], [10], [16]). This failed because the requisite results on mean
convergence of orthonormal expansions are not available, and moreover, the use of a
Lebesgue function type estimate yielded an extra factor of log n. The second method
tried was Nevai’s from [17], but that failed as it needs polynomials Rn of degree � n
such that

Rn ¾ w in [�anÒ an]
These are not available.

This paper is organised as follows: In Section 2, we state extra notation, and state some
technical lemmas. In Section 3, we state lemmas needed specifically for Theorem 1.2
and in Section 4, we prove Theorem 1.2. In Section 5, we prove the remaining results.
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1278 D. S. LUBINSKY

2. Technical estimates. In the sequel, CÒC1ÒC2Ò    denote positive constants in-
dependent of n, x and P 2 Pn. The same symbol does not necessarily denote the same
constant in different occurrences.

The Lagrange interpolation polynomial Ln[f ] admits the representation

Ln[f ] =
nX

j=1
f (xjn)‡jn(x)

where the fundamental polynomials ‡jn in turn admit the representation

‡jn(x) =
pn(x)

p0n(xjn)(x � xjn)


We set
x0n := x1n(1 + én); xn+1Òn := xnn(1 + én)(17)

and
Ijn := (xjnÒ xj�1Òn); jIjnj := xj�1Òn � xjnÒ 1 � j � n

We also define the characteristic functions

üjn(x) :=
(

1Ò x 2 Ijn

0Ò x Û2 Ijn
Ò 1 � j � n

In describing spacing of zeros and related quantities, the function

ûn(x) := max
(q

gn(x)Ò 1

T(an)
p

gn(x)

)
(18)

plays an important role. (Recall gn was defined at (5)). In the sequel, we assume that
w 2 W without further mention. First we record all our estimates relating specifically
to orthogonal polynomials:

LEMMA 2.1. (a) For n ½ 1,
þþþþ1 � x1n

an

þþþþ � Cén(19)

(b) Uniformly for n ½ 1 and 1 � j � n,

ïjnw�2(xjn) ¾ jxjš1Òn � xjnj ¾
1
n
ûn(xjn)(20)

(c) Uniformly for n ½ 1 and 1 � j � n, and x 2 [xj+1ÒnÒ xj�1Òn],

gn(x) ¾ gn(xjn); ûn(x) ¾ ûn(xjn)(21)

(d) Uniformly for n ½ 1 and 1 � j � n,

1
jp0nwj(xjn)

¾ (xjn � xj+1Òn)gn(xjn)1Û4(22)
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(e) Uniformly for n ½ 1 and 1 � j � n and x 2 (�1Ò 1),

j‡jn(x)jw�1(xjn)w(x) ¾ (xjn � xj+1Òn)gn(xjn)1Û4
þþþþþpn(x)w(x)

x � xjn

þþþþþ(23)

(f) Uniformly for n ½ 1 and 1 � j � n and x 2 (�1Ò 1),

j‡jn(x)jw�1(xjn)w(x) � C(24)

(g) Uniformly for n ½ 1 and 1 � j � n � 1 and x 2 [xj+1ÒnÒ xjn],

‡jn(x)w�1(xjn)w(x) + ‡j+1Òn(x)w�1(xj+1Òn)w(x) ¾ 1(25)

(h) Uniformly for n ½ 1 and x 2 (�1Ò 1),

jpnwj(x) � Cgn(x)�1Û4(26)

(i) Let 0 Ú p � 1. For n ½ 1,

kpnwkLp[�1Ò1] ¾

8>>><
>>>:

1Ò p Ú 4,�
log(n + 1)

�1Û4Ò p = 4,

é
1
p�

1
4

n Ò p Ù 4

(27)

(j) Uniformly for n ½ 1 and 1 � j � n � 1 and x 2 (xj+1ÒnÒ xjn),

jpnwj(x) ¾ gn(xjn)�1Û4

xjn � xj+1Òn
minfjx � xjnjÒ jx � xj+1Ònjg(28)

PROOF. (a) This is Corollary 1.4(i) in [8, p. 9].
(b) This follows from Theorem 1.2 and Corollary 1.4 (ii) in [8].
(c) This follows from (10.12) in [8, p. 111].
(d) This follows from Corollary 1.5(iii) in [8, p. 11] and Corollary 1.4(ii) in [8, p. 9].
(e) This is a consequence of (d) and the formula for ‡jn.
(f) This is Lemma 12.2(b) in [8, p. 134].
(g) It is a special case of the result of [9] that in [xj+1ÒnÒ xjn],

‡jn(x)w�1(xjn)w(x) + ‡j+1Òn(x)w�1(xjn)w(x) ½ 1

An inequality in the other direction follows from (f).
(h) This follows from Corollary 1.5 (i), (ii) in [8, p. 10].
(i) This follows from Corollary 1.5(ii) and Theorem 1.8 in [8, p. 12].
(j) This follows easily from (e) and (g) and the fact that jIjnj ¾ jIjš1Ònj.

Next we record estimates involving Q and an. We note that we may define au by (3)
even for all u Ù 0 (and not just for integers n).
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LEMMA 2.2. (a) For j = 0Ò 1Ò 2, and u ½ C,

Q(j)(au) ¾ uT(au)j� 1
2 (29)

(b) Let ã, å Ù 0. Then uniformly for j = 0Ò 1Ò 2, and u ½ C,

T(aãu) ¾ T(aåu); Q(j)(aãu) ¾ Q(j)(aåu)(30)

(c) There exist C, ¢ Ù 0 such that

T(au) � Cu2�¢Ò u ½ C(31)

(d) There exists C Ù 0 such that for 1
2 � u

v � 2,

þþþþ1 � au

av

þþþþ ¾ 1
T(au)

þþþþ1 � u
v

þþþþ(32)

Moreover, if ã Ù 0, there exists C Ù 0 such that for u ½ C,
þþþþ1 � aãu

au

þþþþ ¾ 1
T(au)

(33)

PROOF. This is part of Lemma 3.2 in [8, p. 24], except (32), which follows by
integrating (3.9) in [8, p. 24].

In the proof of the necessity parts of the theorems, we shall need:

LEMMA 2.3. Let 0 Ú p Ú 1, 0 Ú A Ú B Ú 1. Let ò: (�1Ò 1) ! (0Ò1) be an even
function with the following property: Uniformly for n ½ 1, 1 � j � n,

A � ò(x)
ò(xjn)

� BÒ x 2 [xj+1ÒnÒ xjn](34)

For n ½ 1, let In be a subinterval of (xnnÒ x1n) containing at least two zeros of pn. Then

kpnwòkLp(In) ½ Ckg�1Û4
n òkLp(In)(35)

The constant C is independent of n, In, ò but depends on A, B in (34).

PROOF. We note first that if 1 � j � n � 1, (28) and (34) give

Z xjn

xj+1Òn
jpnwòjp ¾

 
gn(xjn)�1Û4

xjn � xj+1Òn

!p

ò(xjn)p
Z xjn

xj+1Òn
minfjx � xjnjÒ jx � xj+1Ònjgp dx

¾ gn(xjn)�pÛ4ò(xjn)p(xjn � xj+1Òn) ¾
Z xjn

xj+1Òn
g�pÛ4

n òp

by (21) and (34). Adding over those j for which [xj+1ÒnÒ xjn] ² In gives the result: Note
that terms over adjacent intervals are of the same size up to ¾. Thus if the endpoints of
In do not coincide with zeros of pn, the small intervals around these endpoints are of the
same size as an adjacent [xj+1ÒnÒ xjn] ² In. Of course, as In contains at least two zeros,
there is such an adjacent interval.

Our final lemma in this section is a restricted range inequality:
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LEMMA 2.4. Let 0 Ú p � 1 and ∆ 2 R. Let s Ù 0. Then there exists n0 such that
for n ½ n0 and P 2 Pn,

kPwg∆
nkLp[�1Ò1] � CkPwg∆

nkLp[�an(1�sén)Òan(1�sén)](36)

PROOF. We claim that we can find n0 and for n ½ n0, polynomials RnÒ∆ of degree

O(é�1Û2
n ) such that

RnÒ∆ ¾ g∆
n in [�anÒ an]; RnÒ∆ ½ Cg∆

n in [�1Ò 1](37)

Once we have such polynomials, we note that for P 2 Pn, PnRnÒ∆ has degree

m = m(n) = n + O(é�1Û2
n ) = n

0
B@1 + O

 
T(an)

n2

!1Û3
1
CA = n

�
1 + o(1)

�


Then from (32),

1 � an

am
� C

T(an)

�
1 � n

m

�
� CénÒ

so
am � an(1 + Cén); ém ½ Cén

In particular for a given s, we can choose t Ù 0 so large that for large enough n,

am(1 � tém) � an(1 � sén)

By Theorem 1.7 in [8, p. 12], given K Ù 0, we have for n ½ n1(K),

kPwg∆
nkLp[�1Ò1] � CkPwRnÒ∆kLp[�1Ò1]

� CkPwRnÒ∆kLp[�am(1�tém )Òam(1�tém)]

� CkPwRnÒ∆kLp[�an(1�sén)Òan(1�sén)]

So we have (36).
We now turn to the proof of (37). For this purpose, we use Christoffel functions for

the classical Jacobi weights. First let å 2 [� 1
4 Ò 0), and

u(x) := (1 � x2)�å�
1
2 Ò x 2 (�1Ò 1)

Its Christoffel function ï‡(uÒ x) satisfies [15, p. 108],

‡�1ï�1
‡ (uÒ x) ¾ (j1 � x2j + ‡�2)åÒ x 2 [�1Ò 1]

Moreover, if pj(uÒ x) is the j-th orthonormal polynomial for u, its zeros all lie in (�1Ò 1),
so

ï�1
‡ (uÒ x) =

‡�1X
j=0

p2
j (uÒ x)
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is increasing in (1Ò1) while (j1 � x2j + ‡�2)å is decreasing there. Thus

‡�1ï�1
‡ (uÒ x) ½ C(j1 � x2j + ‡�2)åÒ jxj Ù 1

Then defining ‡ = ‡(n) := greatest integer � é�1Û2
n , and

RnÒå(x) := ‡�1ï�1
‡

�
uÒ x

an

�

we see that
RnÒå ¾ gån in [a�nÒ an]; RnÒå ½ gån in [�1Ò 1]

So we have RnÒ∆ satisfying (37) for ∆ = å 2 [� 1
4 Ò 0). Now for any ∆ 2 R, we can write

∆ = kå + 2j, where k, j are non-negative integers, and å 2 [� 1
4 Ò 0). We can then set

RnÒ∆(x) := Rk
nÒå(x)

 �
1 � x2

a2
n

�2
+ é2

n

!j

and easily see that (37) holds.

3. Lemmas for Theorem 1.2. In this section, we present three lemmas required
specifically for the proof of Theorem 1.2. The first involves the Hilbert transform

H[g](x) := lim
¢!0+

Z
jt�xj½¢

g(t)
x � t

dt

If g 2 L1(R), then g exists a.e. Moreover, a famous theorem of M. Riesz asserts that H is
a bounded operator on Lp for 1 Ú p Ú 1. We need a modification of M. Riesz’ theorem
that is essentially due to Muckenhoupt:

LEMMA 3.1. Let 1 Ú p Ú 1 and

� 1
p
Ú r Ú 1 � 1

p
(38)

Then for b, c 2 R and g 2 Lp[�1Ò 1],H[g](x)
þþþþ þþþb � jxj

þþþ + c
þþþþr


Lp(R)
� C

 g(x)
þþþþ þþþb � jxj

þþþ + c
þþþþr


Lp(R)
Ò(39)

where C is independent of g, b and c.

PROOF. The result is a special case of general results on Ap weights, and the idea
already appears in [14], [6]. See also [17, p. 676]. However, since the result is not
formally stated anywhere, we give the proof. We shall use the notation

H[f (y)](x) = H[f ](x)

to indicate the variable y of the function whose Hilbert transform is being taken. Now
we see that (39) follows if we can show thatH

2
64 h(y)þþþþ þþþb � jyj

þþþ + c
þþþþr
3
75(x)

þþþþ þþþ b � jxj
þþþ + c

þþþþr


Lp(R)

� CkhkLp(R)
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(For, one can then set h(x) = g(x)
þþþþ þþþ b � jxj

þþþ + c
þþþþr.) We shall assume that b ½ 0, the case

b Ú 0 is similar. By a variable substitution y = bt, x = bs, c = bd we see that it suffices
to show that

ú :=

H
2
64 h(t)þþþþ þþþ 1 � jtj

þþþ + d
þþþþr
3
75(s)

þþþþ þþþ 1 � jsj
þþþ + d

þþþþr


Lp(R)

� CkhkLp(R)Ò(40)

with C independent of h and d. (This works for b 6= 0, see below for b = 0). It suffices to
prove (40) for non-negative h. (In the general case, we write h = maxf0Ò hg�maxf0Ò �hg
and use the fact that the Lp norms of each of these factors on the right is no larger than the
corresponding norm for h.) We may also assume that h vanishes in (�1Ò 0). (For in the
general case, we write h = hü[0Ò1) + hü(�1Ò0), where ü denotes characteristic function,
and use the fact that each of the components on the right has Lp norm no larger than
that of h. We also use a reflection t ! �t in handling the second term). So suppose now
h ½ 0 and has support in [0Ò1). Then we estimate ú above by

ú � 21Ûp
 H

"
h(t)þþþ j1 � tj + d

þþþr
#
(s)
þþþ j1 � sj + d

þþþr


Lp[0Ò1)

+
H
"

h(t)þþþ j1 � tj + d
þþþr
#
(s)
þþþ j1 + sj + d

þþþr


Lp(�1Ò0]

!

=: 21Ûp(ú1 + ú2)

We attend first to the term ú2, which is more difficult because of differing factors 1 � t
and 1 + s. Now if r ½ 0, then for s 2 (�1Ò 0],

�
j1 + sj + d

�r �
�
j1 � sj + d

�r

so that

ú2 �
H
"

h(t)þþþ j1 � tj + d
þþþr
#
(s)
þþþ j1 � sj + d

þþþr


Lp(�1Ò0]


On the other hand if r Ú 0 then for t 2 [0Ò1),

1þþþ j1 � tj + d
þþþr �

1þþþ j1 + tj + d
þþþr 

Since the integrand in

H
"

h(t)þþþ j1 � tj + d
þþþr
#
(s)

is of one sign for s Ú 0, we deduce that

ú2 �
H
"

h(t)þþþ j1 + tj + d
þþþr
#
(s)
þþþ j1 + sj + d

þþþr


Lp(�1Ò0]
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In summary, if õ := �sign (r), then

ú2 �
H
"

h(t)þþþ j1 + õtj + d
þþþr
#
(s)
þþþ j1 + õsj + d

þþþr


Lp(�1Ò0]


Now in ú2 we make the substitutions

1 + õt = jdjv; 1 + õs = jdju

and in ú1, we make the substitutions

1 � t = jdjv; 1 � s = jdju

We see then that it suffices to show thatH
"

g(v)þþþ jvj š 1
þþþr
#
(s)
þþþ jvj š 1

þþþr


Lp(R)
� CkgkLp(R)

with C independent of g 2 Lp(R). For the factor
þþþ jvj + 1

þþþ, this is a well known result of

Muckenhoupt [14, p. 308]. For the factor
þþþ jvj � 1

þþþ, we may proceed as above to show
that it suffices to consider factors of the form jvš 1j, which can be reduced to the factor
jvj; this and the case b = 0 or d = 0 reduces to Muckenhoupt’s inequality [14, p. 308]

H
"

h(v)
jvjr

#
(s)jvjr


Lp(R)

� CkhkLp(R)

We shall also need an operator inequality of König, involving

khkLp(dñ) :=
�Z

Ω
jhjp dñ

�1Ûp

where (ΩÒ ñ) is a measure space and h is ñ-measurable.

LEMMA 3.2. Let 1 Ú p Ú 1 and q := p
p�1 . Let (ΩÒ ñ) be a measure space and

SÒR: Ω2 ! R. For ñ-measurable f , define

J[f ](u) :=
Z

Ω
S(uÒ v)f (v) dñ(v)(41)

Assume that

sup
u

Z
Ω
jS(uÒ v)j jR(uÒ v)jq dñ(v) � N;(42)

sup
v

Z
Ω
jS(uÒ v)j jR(uÒ v)j�p dñ(u) � N;(43)

Then J is a bounded operator from Lp(dñ) to Lp(dñ), more precisely,

kJkLp(dñ)!Lp(dñ) � N(44)
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PROOF. See [4, Lemma 2.5, p. 745] for a full proof.

König’s method involves replacing 1
x�xjn

by H[üIjn ]. This is achieved with the aid of
the following lemma:

LEMMA 3.3. For 1 � j � n, let

újn(x) := (pnw)(x)
"

1
x � xjn

� H[üjn](x)
jIjnj

#
(45)

Let

fjn(x) := min
(

1
jIjnj

Ò jIjnj
(x � xjn)2

)
gn(x)�1Û4(46)

Then uniformly for n ½ 1 and 1 � j � n and x 2 [xnnÒ x1n],

jújn(x)j � Cfjn(x)(47)

PROOF. The idea already appears in [6], [7] and the proof is very similar to that in
[4], but we include the details. Note first that

H[üjn](x) = log
þþþþ x � xjn

xj�1Òn � x

þþþþ = � log
þþþþþ1 � jIjnj

x � xjn

þþþþþ(48)

We consider two ranges of x:
(I) jx � xjnj ½ 2jIjnj
Using the inequality

j log(1 � t) + tj � t2Ò jtj � 1
2

we see that þþþþþ 1
x � xjn

� H[üjn](x)
jIjnj

þþþþþ =
1
jIjnj

þþþþþ jIjnj
x � xjn

+ log
"
1 � jIjnj

x � xjn

#þþþþþ
� jIjnj

(x � xjn)2


Then our bound (26) for pn gives (47) for this range of x.
(II) jx � xjnj Ú 2jIjnj
From (28) and (21) we obtain if 2 � j � n,

jpnwj(x) � C
gn(x)�1Û4

jIjnj
minfjx � xjnjÒ jx � xj�1Ònjg

� Cfjn(x) minfjx � xjnjÒ jx � xj�1Ònjg

(We also use the fact that if k is fixed, jIjnj ¾ jIjškÒnj uniformly in jÒ n). For j = 1, this
holds with the minimum replaced by jx � x1nj. Then for 2 � j � n, the first identity in
(48) shows that

jújn(x)j � Cfjn(x)
"
1 + minfjx � xjnjÒ jx � xj�1Ònjg

1
jIjnj

þþþþþlog
þþþþ x � xjn

xj�1Òn � x

þþþþ
þþþþþ
#
(49)
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Since
jIjnj ½ C maxfjx � xjnjÒ jx � xj�1Ònjg

we see that with
u :=

þþþþ x � xjn

xj�1Òn � x

þþþþÒ
we obtain for both signs of the exponent,

jújn(x)j � Cfjn(x)[1 + uš1j log uš1j]

As either u or u�1 lies in [0Ò 1] and t log t is bounded for t 2 [0Ò 1], we obtain (47). It
remains to handle the case j = 1. Note that for x 2 [xnnÒ x1n], (it is only here we need this
restriction), with jx � x1nj � 2jI1nj, we have

jx � x0nj ¾ én

(See (17)). Then instead of (49), we obtain

jú1n(x)j � Cf1n(x)

2
641 + C

jx � x1nj
én

þþþþþlog
"
õjx � x1nj

én

# þþþþþ
3
75Ò

where õ ¾ 1 independently of x, j, n. As jx � x1nj � Cén, the boundedness of t log t in
any finite subinterval of [0Ò1) again gives the result.

4. Proof of Theorem 1.2. Throughout we assume that w 2 W , that the hypotheses
of Theorem 1.2 hold, and assume the notation of Section 2, as well as (45), (46). We
shall break the proof of Theorem 1.2 into several steps:

STEP 1. Express PW as a sum of two terms.
Let P 2 Pn�1. For 1 � k � n, set

ykn :=
(Pw)(xkn)
(p0nw)(xkn)

and recall that
ïknw�2(xkn) ¾ xk�1Òn � xkn = jIknj

We write

(Pw)(x) = (Ln[P]w)(x)

= (pnw)(x)
nX

k=1
ykn

"
1

x � xkn
� H[ükn](x)

jIknj

#

+ (pnw)(x)H
" nX

k=1
ykn

ükn

jIknj

#
(x) =: J1(x) + J2(x)(50)

Note that in view of the behaviour of the smallest and largest zeros (see (19)) and the
restricted range inequality Lemma 2.4, we have for some C independent of P and n,

kPwg∆
nkLp[�1Ò1] � CkPwg∆

nkLp[xnnÒx1n](51)
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STEP 2. Estimate kJ2g∆
nk.

(We begin with J2 as it is easier to handle). We may write

∆ =
1
4

+ r(52)

where

� 1
p
Ú r Ú 1 � 1

p
and r Ú 1

2

�
1 +

1
p

�
(53)

Using our bound (26) for pn, we then have

kJ2g∆
nkLp[xnnÒx1n] � C

H
" nX

k=1
ykn

ükn

jIknj

#
gr

n


Lp[xnnÒx1n]

� C


" nX

k=1
ykn

ükn

jIknj

#
gr

n


Lp[xnnÒx1n]

= C
" nX

k=1

( jyknj
jIknj

)p Z
Ikn

grp
n

#1Ûp



where, in the second last line, we used Lemma 3.1. Now by (21),
Z

Ikn

grp
n ¾ gn(xkn)rpjIknj

and by (22),
jyknj ¾ jPwj(xkn)jIknjgn(xkn)1Û4(54)

Then using (52) followed by (20), we have

kJ2g∆
nkLp[xnnÒx1n] � C

� nX
k=1
jIknj jPwg∆

n jp(xkn)
½1Ûp

� C
� nX

k=1
ïknw�2(xkn)jPwg∆

n jp(xkn)
½1Ûp

(55)

STEP 3. Estimate kJ1g∆
nk.

By Lemma 3.3,

jJ1(x)j =
þþþþ nX
k=1

yknúkn(x)
þþþþ � C

nX
k=1
jyknjfkn(x)

so

kJ1g∆
nkLp[xnnÒx1n] � C

" nX
j=2

Z
Ijn

� nX
k=1
jyknjfkn(x)

½p
g∆p

n (x) dx
#1Ûp



Using the spacing (20), (21) and the definition (46) of fkn, we see that

fkn(x) ¾ jIknj
(xjn � xkn)2

gn(xjn)�1Û4Ò x 2 Ijn

uniformly in n and in jÒ k with j 6= k. We deduce that

kJ1g∆
nkLp[xnnÒx1n] � C[S1 + S2]Ò(56)
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where (recall (52) and (54))

S1 :=

2
64 nX

j=2
jIjnj

" nX
k=1
k6=j

jyknj
jIknj

(xjn � xkn)2
gn(xjn)r

#p
3
75

1Ûp

and by (46) and (21),

S2 :=
� nX

j=2
jyjnjpjIjnj1�pgn(xjn)rp

½1Ûp


Exactly as in the last part of Step 2, we see that (54) gives

S2 � C
� nX

j=1
ïjnw�2(xjn)jPwg∆

n jp(xjn)
½1Ûp

(57)

To deal with S1, we use Lemma 3.2 with a discrete measure space. Using (54), we see
that

S1 � C
" nX

j=1

� nX
k=1

bjkfjIknj1ÛpjPWg∆
n j(xkn)g

½p
#1Ûp

where

bkk = b1k = 0Ò 1 � k � n

and for j 6= k,

bjk := jIknj2�
1
p jIjnj1Ûp(xkn � xjn)�2

 
gn(xjn)
gn(xkn)

!r



Defining the n ð n matrix B := (bjk)n
jÒk=1, we see that if ‡n

p denotes Rn with the usual ‡p

norm, then

S1 � CkBk‡n
p!‡n

p

� nX
k=1
jIknj jPWg∆

n jp(xkn)
½1Ûp



If we can show that for some C1 independent of n, that

kBk‡n
p!‡n

p
� C1Ò n ½ 1Ò(58)

then, we obtain, taking account of (56) and our estimate (57) on S2 that

kJ1g∆
nkLp[xnnÒx1n] � C

� nX
k=1
ïknw�2(xkn)jPwg∆

n jp(xkn)
½1Ûp



Together with (50) and our estimate (55) for J2, we then obtain the desired inequality
(7).
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STEP 4. The proof of (58).
Let us set Ω = f1Ò 2Ò 3Ò    Ò ng in Lemma 3.2, and let us set thereñ(fjg) = 1, 1 � j � n,

and

S(jÒ k) := bjk; R(jÒ k) :=
 jIknj
jIjnj

! 1
pq
 

gn(xkn)
gn(xjn)

! ã
pq

where ã will be chosen later. We see that Lemma 3.2 gives (58) if we can show that

sup
j

nX
k=1

S(jÒ k)R(jÒ k)q � C;

sup
k

nX
j=1

S(jÒ k)R(jÒ k)�p � CÒ

that is, if we recall the choice of fbjkg, S, R and that 1
p + 1

q = 1,

sup
j

nX
k=1
k6=j

jIknj2(xkn � xjn)�2
 

gn(xkn)
gn(xjn)

!�r+ãÛp

� C;

sup
k

nX
j=1
j6=k

jIknj jIjnj(xkn � xjn)�2
 

gn(xkn)
gn(xjn)

!�r�ãÛq

� C

Now recall (20) and (21). Then we see that we can reformulate these sums as integrals,
and it suffices to show that for õ = 0Ò 1,

sup
x2[�an Òan]

ûn(x)1�õ

n

Z
ft2[�an Òan]:jx�tj½ C

n ûn(x)g

ûõn(t)
(x � t)2

 
gn(t)
gn(x)

!åõ
dt � C1Ò(59)

where
å0 := r +

ã
q

; å1 := �r +
ã
p
(60)

(Note that our range of integration and range of x may exclude small intervals around x1n

or xnn, but this is fine in view of (20), (21); the term õ = 0 corresponds to the second sum
and õ = 1 corresponds to the first sum). We need only estimate the integral for x 2 [0Ò an]
and thus need only show for õ = 0Ò 1,

sup
x2[0Òan ]

ûn(x)1�õ

n

Z
ft2[0Òan ]:jx�tj½ C

n ûn(x)g

ûõn(t)
(x � t)2

 
gn(t)
gn(x)

!åõ
dt � C1(61)

Now for x, t 2 [0Ò an],
x � t = an[gn(t) � gn(x)]

and recall that ûn(t) is given by (18) and gn(t) is given by (5). Thus making the substitu-
tions u = gn(t), v = gn(x) it suffices to show for õ = 0Ò 1,

sup
v2[énÒ1+én]

†n(v)1�õ

n

Z
fu2[énÒ1+én]:ju�vj½ C

n †n(v)g

†õn(u)
(u � v)2

�u
v

�åõ
du � C1Ò(62)
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where

†n(s) := max
(p

sÒ 1
T(an)

p
s

)
(63)

Let us make the further substitution u = vy. We see that it suffices to show that for our
range of v, and õ = 0Ò 1,

I :=
†n(v)1�õ

nv

Z
fy2[énÛvÒ2Ûv]:jy�1j½ C

nv†n(v)g

†õn (vy)yåõ

(y � 1)2
dy � C1(64)

Note that

†n(v)
nv

= max
(

1
n
p

v
Ò 1

nT(an)v3Û2

)
� max

(
1

n
pén

Ò 1

nT(an)é3Û2
n

)

= max
( 

T(an)
n2

!1Û3

Ò 1
)
� 1Ò

for large n, by (31). Thus if C in the limit of integration in (64) is small enough, we may
estimate

I � †n(v)1�õ

nv

�Z 1Û2

énÛv
+
Z
fy2[1Û2Ò2]:jy�1j½ C

nv†n(v)g
+
Z 2Ûv

2

½†õn(vy)yåõ

(y � 1)2
dy

=: I1 + I2 + I3(65)

Firstly in I2, we have †n(vy) ¾ †n(v), so

I2 � C
†n(v)

nv

Z
fy2[1Û2Ò2]:jy�1j½ C

nv†n(v)g

dy
(y � 1)2

� C(66)

We also see that

I1 � C
†n(v)1�õ

nv

Z 1Û2

énÛv
†õn(vy)yåõ dy(67)

and

I3 � C
†n(v)1�õ

nv

Z 2Ûv

2
†õn(vy)yåõ�2 dy(68)

We now distinguish two ranges of x:

RANGE I. v 2 [énÒ 1
T(an) ]

Here

†n(v) ¾ 1
T(an)

p
v

and

y 2
�
0Ò 1

2

½
) †n(vy) ¾ 1

T(an)
p

vy

so

I1 �
C

nT(an)v3Û2

Z 1Û2

0
yåõ�õÛ2 dy � C

nT(an)é3Û2
n

= CÒ
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provided

åõ �
õ
2
Ù �1Ò õ = 0Ò 1(69)

Next, in estimating I3, we must take account of the fact that

y � 1
T(an)v

) †n(vy) ¾ 1
T(an)

p
vy

;

y Ù 1
T(an)v

) †n(vy) ¾ p
vy

Then

I3 �
C

nT(an)v3Û2

Z maxf2Ò 1
T(an )v g

2
y�õÛ2+åõ�2 dy

+
C

nT(an)v3Û2
[T(an)v]õ

Z 2Ûv

maxf2Ò 1
T(an )v g

yõÛ2+åõ�2 dy � C

as T(an)v � 1 and provided

åõ + õÛ2 Ú 1Ò õ = 0Ò 1(70)

RANGE II. v 2 [ 1
T(an) Ò 1 + én]

Here
†n(v) ¾ p

v

and
y 2 [2Ò1) ) †n(vy) ¾ p

vy

so

I3 �
C

n
p

v

Z 2Ûv

2
yõÛ2+åõ�2 dy � C

T(an)1Û2

n
= o(1)

by (31) and provided (70) holds. Next, we estimate

I1 �
C(
p

v)1�õ

nv

"Z maxf én
v Ò

1
T(an )v g

én
v

 
1

T(an)
p

vy

!õ
yåõ dy +

Z 1
2

maxf én
v Ò

1
T(an )v g

�p
vy
�õ

yåõ dy
#

� C

n
p

v

�
T(an)v

��õ Z 1

0
y�õÛ2+åõ dy +

C

n
p

v

Z 1

0
yõÛ2+åõ dy � C

provided (69) holds. Recall too that T(an)v ½ 1 and (31), which implies that v ½ Cn�2+¢

in this present range.
In summary, we have shown that for v 2 [énÒ 1 + én] and õ 2 f0Ò 1g,

I � C(I1 + I2 + I3) � C

and hence have completed the proof of (58), provided we can choose the parameter ã in
åõ to satisfy

1 � õ
2
Ù åõ Ù

õ
2
� 1Ò õ = 0Ò 1(71)
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STEP 5. The proof of (71) for a suitable choice of ã.
We see from (60) that we need

�1 Ú r +
ã
q
Ú 1; �1

2
Ú �r +

ã
p
Ú 1

2


Rearranging these inequalities leads to

�q(1 + r) Ú ã Ú q(1 � r); p
�

r � 1
2

�
Ú ã Ú p

�
r +

1
2

�


We see that we can choose such an ã provided

�q(1 + r) Ú p
�

r +
1
2

�
; p

�
r � 1

2

�
Ú q(1 � r)

Solving for r leads to

�pÛ2 + q
p + q

Ú r Ú pÛ2 + q
p + q

() �1
2

�
1 +

1
p

�
Ú r Ú 1

2

�
1 +

1
p

�


Finally, we also needed (38) for the application of Lemma 3.1, namely that

�1
p
Ú r Ú 1 � 1

p


Comparison of the lower and upper bounds for r shows that we need

�1
p
Ú r Ú min

²
1 � 1

p
Ò 1

2

�
1 +

1
p

�¦
Ò

which is precisely (53). So we have (71) and hence (58).
Finally, recalling that ∆ = r + 1

4 gives the condition (6) of Theorem 1.2.

5. Proof of Theorems 1.3 to 1.6. We begin with the

PROOF OF THE SUFFICIENCY PART OF THEOREM 1.3. Assume (9). Now if (8) holds for
a given ∆, then it also holds for any larger ∆, as gn is bounded in [�1Ò 1], independently
of n. Thus we may assume that ∆ is so small that (6) holds. Then setting P := Ln[f ] in
(7), we have

kLn[f ]wg∆
nkLp[�1Ò1] � C

� nX
k=1
ïknw�2(xkn)jf wg∆

n jp(xkn)
�1Ûp

� kf wkL1[�1Ò1]C
� nX

k=1
(xk�1Òn � xkÒn)g∆p

n (xkn)
�1Ûp

� kf wkL1[�1Ò1]C
�Z an

�an

g∆p
n (x) dx

�1Ûp

by (20) and (21). Then we continue this as

= kf wkL1[�1Ò1]Ca1Ûp
n

�Z 1

�1

hþþþ1 � jtj
þþþ + én

i∆p
dx
�1Ûp

� Ckf wkL1[�1Ò1]Ò

as ∆p Ù �1.

In the proof of the necessity part of all the theorems, we use the following:
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LEMMA 5.1. Let [aÒ b] be a closed subinterval of (�1Ò 0) and for n ½ 1, let
fn: (�1Ò 1) ! R, with fn = 0 outside [aÒ b], and

fn(xjn) = w�1(xjn)sign
�
p0n(xjn)

�
Ò xjn 2 (aÒ b)(72)

Then there exists n0 such that for n ½ n0 and x 2 [0Ò 1],

jLn[fn](x)j ½ Cjpn(x)j(73)

PROOF. Since [aÒ b] ² (�1Ò 0), we have for x 2 [0Ò 1],

Ln[fn](x) = pn(x)
X

xjn2(aÒb)

1
jp0nwj(xjn)(x � xjn)

¾ pn(x)
X

xjn2(aÒb)

(xjn � xj+1Òn)
x + jxjnj

¾ pn(x)
X

xjn2(aÒb)
(xjn � xj+1Òn) ¾ pn(x)

Here we have used (22), and the fact that �1 Ú a Ú b Ú 0, so that gn ¾ 1 in [aÒ b] for
large n.

PROOF OF THE NECESSITY PART OF THEOREM 1.3. Assume (8). Construct fn as in
Lemma 5.1 so that fn also satisfies

kfnwkL1[�1Ò1] = 1

(We may also assume that fn is continuous, but that is irrelevant to the proof). Then for
some C1 independent of n,

C = CkfnwkL1[�1Ò1] ½ kLn[fn]wg∆
nkLp[�1Ò1]

½ Ckpnwg∆
nkLp[0Òx1n] ½ Ckg

∆� 1
4

n kLp[0Òx1n](74)

by first Lemma 5.1 and then Lemma 2.3. Now (19) and an easy calculation (compare
(27)) shows that

kgr
nkLp[0Òx1n] ¾

8>>>><
>>>>:

1Ò r Ù � 1
p

(log n)1ÛpÒ r = � 1
p

ér+ 1
p

n Ò r Ú � 1
p



Since the last two terms on the right-hand side grow to 1 with n, we deduce from (74)
that

∆� 1
4
Ù �1

p
Ò

that is, (9) holds.
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PROOF OF THEOREM 1.4. Let f satisfy (10) and P be a polynomial. Then from
Theorem 1.2 with ∆ = 0, and n large enough,

k(f � Ln[f ])wkLp[�1Ò1] � k(f � P)wkLp[�1Ò1] + kLn[P � f ]wkLp[�1Ò1]

� k(f � P)wkLp[�1Ò1] + C
� nX

k=1
ïknw�2(xkn)j(P � f )wjp(xkn)

�1Ûp


Now by hypothesis, f w is Riemann integrable over each compact subinterval of (�1Ò 1),
and for some ã Ú 1

p ,

lim
jxj!1�

(f w)(x)(1 � x2)ã = 0

The same is true of Pw (even with ã = 0). Next, by Lemma 10.1 in [8, p. 106], there
exists

H(x) =
1X
j=0

h2jx2jÒ all h2j ½ 0Ò

with
H(x) ¾ w�2(x) in (�1Ò 1)

Defining
G(x) := H(x)(1 � x2)�ãpÒ x 2 (�1Ò 1)Ò

we see that G is even, has a Maclaurin series with all non-negative coefficients, and by
(10),

lim
jxj!1�

w�2(x)j(P � f )wj(x)pÛG(x) = 0

Next, given any fixed M Ù 0, we have for large enough n, (see (33))

an + Mén = an

0
B@1 + o

 
1

T(an)

!1CA � a2n Ú 1

Hence, given a large enough M Ù 0, we have for large n,

nX
j=1
ïjnG(xjn) ¾

nX
j=1
ïjnw�2(xjn)(1 � x2

jn)�ãp

� C
nX

j=1
ïjnw�2(xjn)(an + Mén � x2

jn)�ãp

� C
nX

j=1
ïjnw�2(xjn)gn(xjn)�ãp � C

Z an

�an

gn(x)�ãp dx � C

by an easy calculation, as ãp Ú 1. Here we have also used (19), (21). Then Theo-
rem 1.6(b) [5, p. 94] shows that

lim
n!1

nX
k=1
ïknw�2(xkn)j(P � f )wjp(xkn) =

Z 1

�1
j(P � f )wjp
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and hence
lim sup

n!1
k(f � Ln[f ])wkLp[�1Ò1] � Ck(f � P)wkLp[�1Ò1]

Here C is independent of P and n (it came only from the converse quadrature sum
estimate). Moreover, our condition (10) on f and density of polynomials in Lp[�1Ò 1],
easily imply that this last right-hand side may be made as small as we please.

PROOF OF THE SUFFICIENCY PART (A) OF THEOREM 1.5. Let

F(x) := 1 + Q2Û3(x)T(x)(75)

We first show that
gn(x)F(x) ½ CÒ x 2 (�1Ò 1)Ò n ½ 1(76)

We need only do this for x 2 [0Ò 1) and consider three ranges of x.
(I) x 2 [0Ò anÛ2]
Write x = ar. Then

gn(x) ½ 1 � ar

an
½ 1� ar

a2r
¾ 1

T(x)

by (33). Then

gn(x)F(x) ½ C
"

1
T(x)

+ Q2Û3(x)
#
½ C

so (76) follows.
(II) x 2 [anÛ2Ò a2n]
Here by (29), (30),

F(an) ¾ Q2Û3(an)T(an) ¾
�
nT(an)

�2Û3
= é�1

n (77)

As gn ½ én, (76) follows.
(III) x 2 [a2nÒ 1)
As both F and gn are increasing over this range of x, (76) follows from the previous

range of x.
Next let P be a polynomial and f satisfy the hypothesesof Theorem 1.5(a). We proceed

similarly to Theorem 1.4. Note that ∆ Ù 0 follows from (12). We also note that if the
conclusion of Theorem 1.5(a) holds for a given ∆, then it holds for any larger ∆, so we
may assume that ∆ is small enough to satisfy (6). Then using (76),

k(f � Ln[f ])wF�∆kLp[�1Ò1]

� C[k(f � P)wg∆
nkLp[�1Ò1] + kLn[P� f ]wg∆

nkLp[�1Ò1]]

� C
�
k(f � P)wg∆

nkLp[�1Ò1] +
� nX

k=1
ïknw�2(xkn)j(P � f )wg∆

n jp(xkn)
�1Ûp½

� C
�
k(f � P)wkLp[�1Ò1] +

� nX
k=1
ïknw�2(xkn)j(P � f )wjp(xkn)

�1Ûp½
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as g∆
n is bounded in [�1Ò 1] independently of n. Then proceeding as in the previous proof,

we obtain
lim sup

n!1
k(f � Ln[f ])wF�∆kLp[�1Ò1] � Ck(f � P)wkLp[�1Ò1]

with C independent of P and the result follows.

PROOF OF THE NECESSITY PART (B) OF THEOREM 1.5. Define fn as in Lemma 5.1 with
[aÒ b] = [� 1

2 Ò � 1
4 ] and the additional restrictions that fn is continuous in (�1Ò 1) and

kfnwkL1[�1Ò1] = 1
Let F be given by (75). By the conclusion of Lemma 5.1,

kLn[fn]wF�∆kLp[�1Ò1] ½ CkpnwF�∆kLp[anÛ2Òxn1]

½ CF(an)�∆kg�1Û4
n kLp[anÛ2Òxn1]

by Lemma 2.3. A straightforward calculation and (77) show that we may continue this
as

½ Cé∆� 1
4 + 1

p
n ð

(
(log n)1Û4Ò p = 4
1Ò p Ù 4

(78)

Next by applying the uniform boundedness principle to suitable (and obviously defined)
spaces of functions, we deduce from the hypothesis of (b) that for n ½ 1 and for every
continuous h: (�1Ò 1) ! R vanishing outside [� 1

2 Ò 1
2 ] that

kLn[h]wF�∆kLp[�1Ò1] � CkhwkL1[�1Ò1]Ò
where C is independent of h and n. Applying this to h = fn gives

C ½ é∆� 1
4 + 1

p
n ð

(
(log n)1Û4Ò p = 4
1Ò p Ù 4



Recall that én decays to 0 as n ! 1 faster than n�2Û3. Then for p = 4, we deduce that
∆ Ù 0 and for p Ù 4, we deduce that ∆ ½ 1

4 � 1
p .

Finally, we turn to

THE PROOF OF THEOREM 1.6. Assume that for continuous f : (�1Ò 1) ! R such that
f vanishes outside [� 1

2 Ò 1
2 ] we have

lim sup
n!1

kLn[f ]wUkLp[�1Ò1] Ú 1(79)

Let fn be as in the previous proof and F be given by (75). Then as above

C ½ kLn[fn]wUkLp[�1Ò1] ½ CkpnwUkLp[anÛ2Òxn1]

½ Ckg�1Û4
n UkLp[anÛ2 Òxn1]

Now given ï Ù 0, we can by hypothesis (15), and then (77) continue this for large n as

½ ïF(anÛ2)
1
p�

1
4 kg�1Û4

n kLp[anÛ2Òxn1] ½ C1ïé
1
4�

1
p

n kg�1Û4
n kLp[anÛ2Òxn1] ½ C2ïÒ

where C1, C2 are independent of ï. For large enough ï, we obtain a contradiction.
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