
ALMOST MULTIPLICATION RINGS 

H. S. BUTTS AND R. C. PHILLIPS 

Introduction. It is well known that an ideal A in a. Dedekind domain has 
a prime radical if and only if A is a power of a prime ideal. The purpose of 
this paper is to determine necessary and sufficient conditions in order that a 
commutative ring with unit element have this property and to study the ideal 
theory in such rings. Domains with unit element having the above property 
possess many of the characteristics of Dedekind domains (however, they 
need not be Noetherian) and will be referred to in this paper as "almost 
Dedekind domains"—these domains are considered in Section 1. We call a 
commutative ring with unit element an "almost multiplication ring" provided 
it has the above property. It is shown in Section 2 that every multiplication 
ring is an "almost multiplication ring" and that "almost multiplication 
rings" have several of the important properties of multiplication rings. A 
summary of the necessary and sufficient conditions obtained in this paper is 
given by Theorem 1.0 and Theorem 2.0 of Sections 1 and 2 respectively. 

Preliminaries. In this paper ring will mean a commutative ring with 
1 ^ 0 , and domain will mean a ring in which the zero ideal is prime. We shall 
call a ring R a multiplication ring if whenever A and B are ideals of R with 
A C B, there is an ideal C of R such that A = BC (6, p. 2). By a special 
primary ring ("primarer zerlegbarer Ring," (4, p. 84)) we mean a ring R 
with exactly one prime ideal P 9^ R, such that Pn = (0) for some positive 
integer n and the only ideals of R are R, P, P2 , . . . , Pn = (0). Discrete valuation 
ring will mean a Dedekind domain with at most one proper (different from (0) 
and (1)) prime ideal. A domain / will be called strongly integrally closed if J 
contains each element x of its quotient field for which the polynomial domain 
J[x] is contained in a finite /-module. The quotient ring RP (11, p. 221) of the 
ring R with respect to the prime P of R will be called proper if P is proper. 
The symbols Ae, Ac, A^, and rad(^4) will denote the extension, contraction 
(11, p. 218), nth symbolic power (11, p. 232), and radical (11, p. 147) of the 
ideal A respectively. The symbol " £ " will allow equality while " < M will 
indicate proper containment. Throughout this paper, / will denote a domain 
with quotient field K, and R will denote a ring with total quotient ring T. 

1. Almost Dedekind domains. The necessary and sufficient conditions 
obtained in this section are included in the following theorem, the proof of 
which follows from Theorems 1.1, 1.4, 1.5, 1.6, and Corollary 1.2. 
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THEOREM 1.0. In a domain J, these are equivalent: 
(i) for each proper prime P of J, JP is a discrete valuation ring; 

(ii) whenever A is an ideal of J such that rad(yl) = P , a prime of J, A is 
then a power Pn of P; 

(iii) each proper primary ideal of J is a power of a maximal ideal of J; 
(iv) whenever A, B, and C are ideals of J with AB = AC and A is non-zero, 

then B = C; 
(v) (a) finitely generated non-zero ideals of J are invertible, 

(b) proper primes of J are maximal, and 
(c) J contains no proper idempotent prime ideal; 

(vi) (a) and (c) of (v) together with 
(b') for each proper prime P of J, JP is strongly integrally closed. 

DEFINITION 1.1. A domain with respect to which each proper JP (P a prime of 
J) is a discrete valuation ring will be called an almost-Dedekind domain (AD-
domain). 

LEMMA 1.1. If, in J, each ideal with prime radical is a power of its radical, 
proper primes of J are maximal. 

Proof. It clearly suffices to show that a minimal prime of a non-zero principal 
ideal is maximal. Let (a) be a non-zero principal ideal of J and P a minimal 
prime of (a). Since P is minimal for (a), 

rad (aJP) C\ J = PJP C\J = P. 

Therefore aJP C\ J = Pn for some positive integer n. But then 

aJP = (aJP C\ J)JP = PnJP = (PJP)n 

and hence PJP is invertible since its nth. power is principal. This implies that 
PJP ^ (PJP)\ which implies that P ^ P 2 . Now P 2 C P ( 2 ) C P so that 
rad(P(2>) = P and either P<2> = P or P<2> = P 2 . If P<2> = P , PUP = PJP, 
which cannot happen. Therefore, P ( 2 ) = P 2 and P 2 is primary. Now let p be 
an element of P — P 2 , and m an element of J — P . Since P 2 is primary, pm 
is not in P 2 and hence P 2 + {pm) = P . Then let p = q + rpm, where q is in 
P 2 , r in J. We have p(l — rm) is in P 2 and p is not in P 2 , primary, which 
implies that 1 — rm is in P . But this implies that 1 is in P + (w) and since 
m was arbitrary outside P , P is maximal. 

THEOREM 1.1. A domain J is an AD -domain if and only if each ideal of J, 
with prime radical, is a prime power. 

Proof. If each proper JP is a discrete valuation ring, proper primes of / are 
clearly maximal. Thus rad (̂ 4) = P , a proper prime of J, implies that A is 
primary, so that AJP C\ J = A, (11, p. 223); but since JP is a discrete valu­
ation ring, AJP = {PJP)n for some positive integer n. Now since A is primary 
and contained in P , A = AJP C\ J, and hence A = Pn. On the other hand, 
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if each ideal with prime radical is a prime power, then according to Lemma 1.1, 
each proper prime P of J is maximal, so that JP has exactly one proper prime 
ideal. Then since (by the proof of Lemma 1.1) PJP is invertible, JP is a 
Dedekind domain (8, p. 234), thus a discrete valuation ring. 

REMARK 1.1. An AD-domain is strongly integrally closed in its quotient field. 

Proof. It is easy to show that any domain / is the intersection of its quotient 
rings JP for proper primes P of / . Since each JP of an AD-domain is strongly 
integrally closed, it follows that J is strongly integrally closed. 

REMARK 1.2. In an AD-domain J, the powers of any proper ideal intersect 
in (0). 

Proof. If A is a proper ideal of J, A is contained in P for some proper prime 
P of / . Thus A C AJP C PJP and 

oo oo 

nAnen (pjPy = (o) 
since JP is a Dedekind domain. 

REMARK 1.3. A Noetherian AD-domain is a Dedekind domain. 

Proof. We have already shown that an AD-domain is integrally closed and 
has no non-maximal proper prime ideals (10, pp. 85, 86). 

We state without proof a theorem of Krull (3, p. 554). 

THEOREM 1.2. In J, these are equivalent: 
(i) / is a Prilfer domain (i.e., finitely generated proper ideals of / are 

invertible) ; 
(ii) for each proper prime P of J , JP is a Prilfer domain; 

(iii) for each proper prime P of / , JP is a valuation ring. 

COROLLARY 1.1. An AD-domain is a Prilfer domain. 

THEOREM 1.3. If J is an AD-domain and J C. R C Ky then R is an AD-
domain. 

Proof. Let Q be a proper prime of R and P = Q C~\ J. Then P is a proper 
prime of J and JP is a discrete valuation ring with JP C RQ C K SO that RQ 

must also be a discrete valuation ring. 

It should be mentioned here that Theorem 1.3 is also true with "AD-
domain" replaced by either (a) "Priifer domain" or (b) "Priïfer domain in 
which proper primes are maximal," since any ring between a valuation ring 
and its quotient field is a valuation ring. 

THEOREM 1.4. A domain J is an AD-domain if and only if each proper primary 
ideal of J is a power of a maximal ideal. 
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Proof. I t has already been shown that in an AD-domain, proper primes are 
maximal and each primary ideal is a power of its radical. On the other hand, 
each proper prime of J is a proper primary, hence is maximal. Thus each 
ideal with prime radical has maximal radical and is primary so that, by 
hypothesis, it is a maximal (in particular prime) power. So J is an AD-domain 
by Theorem 1.1. 

For completeness we state here without proof a result communicated by 
Robert Gilmer (see the paper "The Cancellation Law for Ideals in a Commutative 
Ring1' on pp. 281-7 of this issue of the Canadian Journal of Mathematics). 

THEOREM 1.5. A domain J is an AD-domain if and only if for A, B, C non-zero 
ideals of J such that AB = AC, B = C. 

THEOREM 1.6. A domain J is an AD-domain if and only if 
(a) J is a Prilfer domain, 
(b) proper primes of J are maximal, and 
(c) / contains no proper indempotent prime. 

Proof. We have already shown that an AD-domain has properties (a), (b), 
and (c). On the other hand, if / is a Prufer domain, each JP is a valuation 
ring. If J has no non-maximal proper primes, J P has rank 1; but if / contains 
no non-zero proper idempotent prime, neither does J P, since the prime powers 
of / are primary. Now a rank 1 valuation ring is a Dedekind domain if and 
only if its maximal ideal is not idempotent (12, p. 45; 10, p. 240). 

Since only rank 1 valuation rings are strongly integrally closed (11, p. 255; 
12, p. 45), we have 

COROLLARY 1.2. A domain J is an AD-domain if and only if (a), (c) of 
Theorem 1.6 hold and 

(b') each proper JP is strongly integrally closed. 

COROLLARY 1.3. The union of a tower of AD-domains is an AD-domain if 
and only if it has no proper idempotent primes. 

Proof. It is easily shown that the union J of a tower of AD-domains is a 
Prùfer domain and each proper JP is strongly integrally closed. 

THEOREM 1.7. If J is an AD-domain, F a finite algebraic extension of ._ ~..^ 
/ * the integral closure {in the polynomial sense) of J in F, then J* is an AD-
domain. 

Proof. Let Q be a proper prime of /*. Then P = Q r\ J is a proper prime of 
/ ; hence JP is a discrete valuation ring. Now we know that the integral closure 
L of JP in F is a Dedekind domain (11, p. 281). It can easily be shown that 
L C JQ* C F and that F is the quotient field of L. Hence JQ* is a Dedekind 
domain (between a Dedekind domain and its quotient field (2, p. 31)). It 
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should be noted that the strong integral closure of J in F is between J* and F 
so that it too is, by Theorem 1.3, an AD-domain. 

COROLLARY 1.4. The ring of integral elements of an algebraic number field 
forms an AD-domain if and only if this ring has no proper idempotent primes. 

Proof. This ring can be written as a union of a tower of rings each of which 
is the integral closure of the rational integers in a finite algebraic extension of 
the rational numbers. Hence Corollary 1.4 follows from Theorem 1.7 and 
Corollary 1.3. 

Example. Nakano (7, p. 426) gives the following example of an algebraic 
number field K, the integral elements of which form an AD-domain which is 
not a Dedekind domain. Let K be the field obtained by the adjunction, to 
the field of rational numbers, of the pth roots of unity for every rational 
prime p. Let / be the integral elements of K. Nakano showed that J has no 
idempotent proper primes, so that / is an AD-domain by Corollary 1.4. He 
also showed that / has no finitely generated proper primes, so that / is not a 
Dedekind domain. 

THEOREM 1.8. The integral closure {in the polynomial sense) J of an AD-
domain J' in an algebraic extension of the quotient field of J' is an AD-domain 
if and only if J has no proper idempotent ideals. 

Proof. Let / * be the union of a maximal tower of AD-domains in J" (such a 
tower exists by the Hausdorff maximality principle and the existence of one 
AD-domain in / ) . By Corollary 1.3, J* is an AD-domain if and only if it has 
no idempotent proper primes. Now suppose 7 has no idempotent proper 
ideals. Then if P* is any proper prime of J*, P*J is a proper ideal of / so that 
P* is not idempotent since P*J is not. So J* is an AD-domain and if J* < J, 
there exists an element x in J — / * and x is integral over /* . Then the domain 
/**, which is the integral closure of J* in K*(x) (K* the quotient field of / * ) , 
is an AD-domain by Theorem 1.10, contradicting the maximality of the tower 
which formed J*. Therefore J* = J and the theorem is proved. 

2. Almost multiplication rings. 

DEFINITION 2.1. For a prime ideal P of R, let M(P) be R — P and N{P) be 
the set of elements x of R such that 0 is an element of xM(P). Discrete valuation 
ring and special primary ring ("primarer zerlegbarer Ring," 4, p. 84) will be 
denoted by dvr and spr respectively. 

We include the following theorem as a summary of the necessary and 
sufficient conditions obtained in this section. 

THEOREM 2.0. In a ring R, these are equivalent: 
(i) for each proper prime P of R, RP is a ZPI ringf 
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(ii) whenever A is an ideal of R such that rad (̂ 4) = P, a prime of R, A is 
then a power Pn of P, 

(iii) for each proper prime P of R, RP is a multiplication ring, 
(iv) for each proper primary ideal Q of P , there is a maximal ideal M of R 

such that Q is either N(M) or a power of M. 
(v) whenever A is an ideal of R such that rad (̂ 4) = P\. . . Pn (a product of 

distinct primes), then 

A = P^PJ*. . . Pn
en. 

DEFINITION 2.2. P will be called an almost multiplication ring (AM-ring), if 
for each proper prime P of P , RP is a ZPI ring (5, p. 117), i.e., each ideal of RP 

is factorable into a product of prime powers. (In Theorem 2.7 we show that 
every proper RP is a ZPI ring if and only if every proper RP is a multiplication 
ring. It is well known that every ZPI ring is a multiplication ring and Lemma 
2.4 shows that every multiplication ring is an AM-ring). 

I t has been shown by Asano (1, p. 83) that a ZPI ring with a unique maximal 
ideal is either a dvr or an spr. Therefore, P is an AM-ring if and only if each 
proper RP is either a dvr or an spr. 

For the proofs in this section it will be convenient to state here a theorem 
from Zariski and Samuel (11, p. 228), namely 

THEOREM 2.1. Let P be a prime ideal of P . The mapping A —* Ae establishes 
a 1-1 correspondence between the set of prime {primary) ideals of R contained in 
P , and the set of all prime (primary) ideals of RP. 

LEMMA 2.1. If R is an AM-ring and P a proper prime of R such that N(P) is 
not prime, then rad (JV(P)) = P . 

Proof. Since N(P) is not prime, RP is not a domain and hence RP is an spr. 
Therefore, there exists a positive integer n such that (Pe)n = (0) and thus 
for p in P , ((p)e)n = (0), i.e., pn is in N(P). This implies that P is contained 
in rad (N(P)), but the other containment always holds, so that rad (N(P)) = P . 

THEOREM 2.2. If R is an AM-ring, P a proper prime of P , and N(P) is not 
prime, then P is minimal and maximal, RP is an spr and rad (̂ 4) = P implies 
that A is a power of P. 

Proof. As in Lemma 2.1, RP is an spr and hence contains only one proper 
prime ideal, Pe; and by Theorem 2.1, there are therefore no prime ideals of P 
properly contained in P , i.e., P is minimal. Now suppose that P' is a maximal 
ideal of P containing P . If RP> is an spr, P' is minimal and P = Pr is maximal. 
On the other hand, if RP' is a dvr, N(P') is prime in P . Again, using Theorem 
2.1, P' and N(P)r are the only primes of P contained in P' so that either 
P = P! is maximal or P = N(P') C N(P) C P , which implies that P = N(P) 
and contradicts N(P) not being prime. Therefore P is maximal and rad (A) = P 
implies that A is primary. So by Theorem 2.1, since Ae = (Pe)n = (Pn)e, 
A = Pn. 
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THEOREM 2.3. If R is an AM-ring, P a proper prime of R, N(P) is prime, 
and P ^ N(P), then P is maximal, N(P) is the only prime of R properly con­
tained in P, RP is a dvr, 

r\pn = N(P), 
n=l 

and rad(^4) = P implies that A — P71 for some positive integer n. 

Proof. Since P 9^ N(P), N(P) < P. Since RP is a domain, it is a dvr and 
hence by Theorem 2.1, N(P) and P are the only primes of R contained in P. 
Let P' be a maximal ideal of R containing P. If N(P') were not prime, P' 
would be minimal by Theorem 2.2 so that P' would be P and N(P) would not 
be prime. Therefore N(Pf) is prime and is the only prime properly contained 
in P ' , which implies that either P = N(P')orP = P'.\ÎP = N(P'),P = N(P); 
therefore P = Pf is maximal. Then each Pn, for a positive integer n, is primary 
and (Pn)e = (Pe)n so that N(P) is contained in each Pn and 

N(P) C H Pn. 

But since RP is a dvr, 

n (Rer = (o) 
n=l 

so that 

npnc N(P), 
n=l 

i.e., 
00 

N(P) = n pn. 

Now since P is maximal, rad(^4) = P implies that A is primary, which implies 
by Theorem 2.1 that A = Pn for some positive integer n. 

LEMMA 2.2. Let A be any ideal of R. Then A is identical with the intersection 
of all Aec with respect to the prime ideals P such that A Q P < R. 

Proof. It is clear that A is contained in this intersection. Now suppose 
that x is an element of this intersection. If A:(x) = R, x is in A. But if 
A : (x) 7* R, A : (x) C M for some maximal ideal M of R. Then A C M < R 
and x is in Aec with respect to M, i.e., there is an element y of R — M such that 
xy is in A, which contradicts A : (x) C M. 

THEOREM 2.4. If R is an AM-ring and P is a prime of R such that P = N(P), 
then P is the only ideal with P as radical. 

Proof. Let A be an ideal of R with rad(^4) = P. If P1 is any proper prime of 
R such that P C P', then it follows as in the proof of Theorem 2.3 that 
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jV(P') = N(P) = P . Since rad(4) = P , then P' Z) A implies P' D P. I t 
follows that Aec, with respect to each proper prime Pf D ^4, is equal to P and 
therefore, by Lemma 2.2, A — P. 

LEMMA 2.3. If in R each ideal with prime radical is a prime power, this property 
also holds in each RP. 

Proof. Let A be an ideal of RP and rad(^4) = P*, a prime. Then, since 
rad(^4c) = (rad(yl))c and since (P*)c is prime, rad(4 c) = (P*)c, prime so 
that Ac = ((P*)c)wand 

A = Ace = (((P*)c)n)e = ((P*\ce\n = (p*\n 

and the lemma is proved. 

THEOREM 2.5. If in R each ideal with prime radical is a prime power, then each 
proper RP is a ZPI ring. 

Proof. Let P be a proper prime of R. If P is minimal in P , Pe is the only 
prime of RP properly contained in RP and, by Lemma 2.3, each ideal properly 
contained in RP is a power of Pe. In this case, RP is either a field (if P = N(P)), 
or an spr ((0)e = (Pe)n). If P is not minimal, let P' be a minimal prime con­
tained in P . It can be shown easily that the residue class ring of R modulo P' 
is an AD-domain so that proper primes of R/P' are maximal and P is maximal 
in R; and since P was any non-minimal prime, non-minimal primes of R are 
maximal and there are no primes properly between P' and P in R. 

We shall now show that in P , 
CO 

is the only prime of R contained in P . Since in R/P' the intersection of the 
powers of P/Pf is (0), we see that 

n pnc P\ 

Now suppose that there is a positive integer n such that P' C Pn and P' (£ Pn+1. 
Then since rad(P ' + Pn+l) = P , P' + Pn+l = Pn, i.e., (P/Pf)n+1 = (P/P')\ 
which cannot happen since R/P' is an AD-domain. Therefore 

P' CC\Pn 

7 1 = 1 

so that 

p' = n pra. 

But if P* is any minimal prime of R contained in P , the same argument 
shows that 

oo 

p* = n f 
M = l 
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and P' is unique. Therefore, in RP, Pe and (P')e are the only primes, and every 
ideal has prime radical and is thus a prime power. This proves that RP is a 
ZPI ring. 

From Theorems 2.2 through 2.5 we see that the following theorem is true. 

THEOREM 2.6. A ring R is an AM-ring if and only if each ideal of R with 
prime radical is a prime power. 

LEMMA 2.4. A multiplication ring is an AM-ring. 

Proof. Mori (6) has shown that in a multiplication ring primary ideals 
are prime powers and each ideal is the intersection of its isolated primary 
components. Therefore, any ideal with prime radical is primary, since it has 
only one isolated primary component; so any ideal with prime radical is a 
prime power and the lemma follows from Theorem 2.6. 

THEOREM 2.7. A ring R is an AM-ring if and only if each proper RP is a 
multiplication ring. 

Proof. The necessity follows from the fact that every ZPI ring is a multipli­
cation ring. Conversely, if each RP is a multiplication ring, each RP is an 
AM-ring by Lemma 2.4; but being its own quotient ring with respect to its 
maximal ideal, RP is a ZPI ring. 

THEOREM 2.8. A ring R is an AM-ring if and only if for each proper primary 
ideal Q of R there exists a maximal ideal M of R such that Q is either N(M) or 
a power of M. 

Proof. The necessity is clear from Theorems 2.2 and 2.3. On the other hand, 
if each proper primary of R is either N(M) or a power of M, then each RP is 
either a field (in case P = N (M) ), a dvr (in case P is maximal bu t not minimal), 
or an spr (in case P is maximal and minimal). 

We define, for an ideal A of R, the ideal ker(^4), the kernel of A (4, p. 119), 
to be the intersection of the isolated primary components of A, i.e., the inter­
section of all Aec with respect to the minimal primes of A. 

THEOREM 2.9. In an AM-ring, each ideal is identical with its kernel. 

Proof. Using Lemma 2.2 we need only to show that Aec with respect to a 
proper prime is the same as Aec with respect to some minimal prime of A. 
Suppose M is a prime containing A, but not a minimal prime of A. Then if 
A C P < M, P a prime of R, P is minimal containing A and N(P) = N (M) = P 
by Theorems 2.2 and 2.3. But then Aec with respect to M is the same as Aec 

with respect to P , namely N(P). 

COROLLARY 2.1. / / R is an AM-ring and P a prime of R, A an ideal of R 
properly containing P, then PA = P. 
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Proof. Since rad(P^4) = P , P is the only minimal prime of PA, and by 
Theorem 2.9, (PA)ec = PA ((PA)ec with respect to P). Since P < A,Ae = RP 

and 

(PA)ec = {{PA)eY = (PeAe)c = P e c = P ; 

hence P 4 = P . 

THEOREM 2.10. 4̂ ring R is an AM-ring if and only if whenever A is an ideal 
of R such that rad(^4) = P i -P 2 - . . . -Pn (the product of n distinct primes), then 

A = P! e i-P2
6 2- . . . -Pn

e» 

for some collection e\, . . . , en of n positive integers. 

Proof. The sufficiency is clear from Theorem 2.5. Conversely, suppose R is 
an AM-ring and A is an ideal of R with rad(^4) = P i - P 2 - . . . -Pn. Taking 
note of Corollary 2.1 we can assume that the Pt are relatively prime and 
minimal for A. Then by Theorem 2.9, A is the intersection of its isolated prim­
ary components. Using Lemma 2.3, we see that the isolated primary com­
ponents of A are powers of the minimal primes containing A, namely 
Pi , P2 , . . . , Pn- Then since P i , P 2 , . . . , Pn are relatively prime, these isolated 
primary components are relatively prime and A is their product. We can now 
reinsert any deleted non-minimal primes without changing the product and 
the theorem is proved. 

LEMMA 2.5. Let R be a ring and A, B ideals of R. Then A — B if and only 
if Ae = Be in every proper RP. 

Proof. If A6 = Be, Aec = Bec and the lemma follows from Lemma 2.2. 

THEOREM 2.11. If R is an AM-ring, and A, B, and C are ideals of R with A 
regular (i.e., A contains at least one non zero-divisor), then AB = AC only if 
B = C. 

Proof. For each proper prime P of R, AeBe = AeCe and A6 is regular, and 
since RP is a dvr or an spr, this implies that Be = Ce. Thus the theorem 
follows from Lemma 2.5. 

In concluding this section, we summarize from Theorems 2.2 through 2.5 
the classification of the proper primes of an AM-ring. 

THEOREM 2.12. In an AM-ring, a proper prime P is either 
(1) maximal and minimal, in which case N(P) = Pn and RP is an spr, 
(2) maximal and not minimal, in which case N{P) is the only prime below P , 

N(P) = n pn, 

and RP is a dvr, or 
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(3) minimal and not maximal, in which case 

CO 

p = N(P) = N(M) = C\Mn 

for M any maximal ideal containing P, P is the only P-primary ideal of R and 
is afield, the quotient field of JR. M • 

(4) If P is a minimal prime which is not maximal, then P is the only ideal 
with radical equal to P—in particular, P = P2. If P and P* are any two prime 
ideals, then P C P* or P* C P or P + P* = R. 
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