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Abstract

We prove the conjectural relations between Mahler measures and L-values of elliptic
curves of conductors 20 and 24. We also present new hypergeometric expressions for
L-values of elliptic curves of conductors 27 and 36. Furthermore, we prove a
new functional equation for the Mahler measure of the polynomial family (1 +X)
(1 + Y )(X + Y )− αXY , α ∈ R.

1. Introduction

The Mahler measure of a two-variate Laurent polynomial P (X, Y ) is defined by

m(P ) :=
∫ ∫

[0,1]2
log |P (e2πit, e2πis)| dt ds.

In this paper we are mostly concerned with the Mahler measures of three polynomial families,

m(α) := m
(
α+X +

1
X

+ Y +
1
Y

)
,

g(α) := m((1 +X)(1 + Y )(X + Y )− αXY ),
n(α) := m(X3 + Y 3 + 1− αXY ).

Based on numerical experiments, Boyd observed that these functions can be related to the values
of L-series of elliptic curves [Boy98]. For example, he hypothesized that

m(8) = 4m(2) =
24
π2
L(E24, 2), (1)

g(4) =
3
4
n( 3
√

32) =
10
π2
L(E20, 2), (2)

where E24 and E20 are elliptic curves of conductors 24 and 20, respectively. The primary goal of
this article is to present rigorous proofs of (1) and (2). In the remainder of the introduction we
briefly describe our method, define notation, review facts about Mahler measures, and present
additional theorems.

The modularity theorem shows that the L-functions of elliptic curves can be equated
to Mellin transforms of weight-two modular forms. For a generic elliptic curve E, we can
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write

L(E, 2) =−
∫ 1

0
f(q) log q

dq

q
, (3)

where f(e2πiτ ) is a newform of weight 2 on a congruence subgroup of SL2(Z). The choice of f(q)
is dictated by the elliptic curve E. For instance, if E has conductor 20, then f(q) = η2(q2)η2(q10);
if E has conductor 24, then f(q) = η(q2)η(q4)η(q6)η(q12). For convenience we consider the eta
function with respect to q:

η(q) := q1/24
∞∏
k=1

(1− qk) =
∞∑

n=−∞
(−1)nq(6n+1)2/24.

Our first step is to find modular functions x(q), y(q), and z(q) which depend on f(q), such that

−
∫ 1

0
f(q) log q

dq

q
=
∫ 1

0
x(q) log y(q) dz(q). (4)

Next express x and y as algebraic functions of z. If we write x(q) =X(z(q)), and y(q) = Y (z(q)),
then the substitution reduces L(E, 2) to a complicated(!) integral of elementary functions:

L(E, 2) =
∫ z(1)

z(0)
X(z) log Y (z) dz.

Formulas for L-values of elliptic curves of conductor 27, 24, and 20 are given in equations (27),
(35), and (51), respectively. The final step is to relate the integrals to Mahler measures. We
accomplish this reduction by using properties of hypergeometric functions.

The only known approach [Bru06, Mel11] for reducing (3) to the form (4) is as follows.
The quantity L(E, 2) is related to a Mahler measure, by first considering the convolution
L-function obtained from multiplying L(E, 1) and L(E, 2). The convolution L-function is then
related to a certain integral over the fundamental domain of E, involving f and two Eisenstein
series of weight 2. The integrals are evaluated by Rankin’s method, and the value of L(E, 1)
cancels from either side of the equation. Our method is different and works by decomposing the
cusp form f(e2πiτ ) into a product of two weight 1 Eisenstein series. We perform the modular
involution τ 7→ −1/τ in one of the Eisenstein series, and then make a simple analytic change of
variables in the integral (3). As a result of these manipulations, L(E, 2) reduces to an elementary
integral. The details of this computation are given in our proofs of Propositions 1, 3 and 5
below.

Let us note that m(α), n(α) and g(α) can all be expressed in terms of hypergeometric
functions. These formulas provide an efficient way to compute the Mahler measures numerically.
It was shown by Rodriguez-Villegas [Rod99] that for every α ∈ C,

m(α) = Re
(

log α− 2
α2 4F3

(
3
2 ,

3
2 , 1, 1

2, 2, 2

∣∣∣∣ 16
α2

))
; (5)

furthermore [KO05] if α> 0, then

m(α) =
α

4
Re 3F2

(1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣ α2

16

)
. (6)
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From L-series of elliptic curves to Mahler measures

More involved hypergeometric expressions are known for g(α) and n(α) [Rog11, Theorem 3.1];
in particular, the formulas

g(α) =
1
3

Re
(

log
(α+ 4)(α− 2)4

α2
− 2α2

(α+ 4)3 4F3

(
4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣ 27α2

(α+ 4)3

)
− 8α

(α− 2)3 4F3

(
4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣ 27α
(α− 2)3

))
(7)

and

n(α) = Re
(

log α− 2
α3 4F3

(
4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣ 27
α3

))
(8)

are valid for |α| sufficiently large. Formula (7) can also be shown to hold on the real line if
α ∈ R\[−4, 2].

It is a subtle but important point that our proofs are essentially elementary. The modularity
theorem shows that L(E, 2) = L(f, 2), however the formulas we prove for L(f, 2) are true
unconditionally. For example, many of Boyd’s conjectures can be restated as relations between
Mahler measures and the quadruple lattice sum [Rog11]

F (b, c) := (b+ 1)2(c+ 1)2
∞∑

ni=−∞
i=1,2,3,4

(−1)n1+n2+n3+n4

((6n1 + 1)2 + b(6n2 + 1)2 + c(6n3 + 1)2 + bc(6n4 + 1)2)2
, (9)

where the default method of summation, is ‘summation by cubes’ [BBT85]. Since L(E20, 2) =
F (1, 5), and L(E24, 2) = F (2, 3), the above examples can be written as

m(8) = 4m(2) =
24
π2
F (2, 3), (10)

g(4) =
3
4
n( 3
√

32) =
10
π2
F (1, 5). (11)

Formulas (10) and (11) are true even without the modularity theorem. In fact, one significant
aspect of Boyd’s work, is that it provides a recipe to relate slowly converging lattice sums to
hypergeometric functions. For more details and many other conjectural examples, as well as for
the state of art in the area, the reader may consult [Boy98, Rod99, Rog11].

We prove many additional theorems with the strategy we have described. For instance, we
construct new hypergeometric evaluations

L(E27, 2) =
Γ3(1

3)
27 3F2

(1
3 ,

1
3 , 1

2
3 ,

4
3

∣∣∣∣ 1
)
−

Γ3(2
3)

18 3F2

(2
3 ,

2
3 , 1

4
3 ,

5
3

∣∣∣∣ 1
)
,

L(E36, 2) = −2π2 log 2
27

+
Γ3(1

3)
3 · 27/3 3F2

(1
3 ,

1
3 , 1

5
6 ,

4
3

∣∣∣∣−1
8

)
+

Γ3(2
3)

211/3 3F2

(2
3 ,

2
3 , 1

7
6 ,

5
3

∣∣∣∣−1
8

)
for the L-series of elliptic curves of conductors 27 and 36, which are elliptic curves with complex
multiplication (CM). We also prove elementary integrals for lattice sums which are not associated
to elliptic curves: F (3, 7), F (6, 7) and F (3/2, 7). Finally, we derive a new functional equation

g(4p(1 + p)) + g

(
4(1 + p)
p2

)
= 2g

(
2(1 + p)2

p

)
,

√
3− 1
2

6 p6 1,

for the Mahler measure g(α). This last formula resembles some of the functional equations due
to Laĺın and Rogers [LR07].
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We conclude the introduction with a word about notation. This paper involves a large number
of q-series manipulations, and draws heavily from Berndt’s versions of Ramanujan’s notebooks
[Ber91, Ber94, Ber98], and from Ramanujan’s lost notebook [AB05]. For this reason, we have
chosen to preserve Ramanujan’s theta function notation

ϕ(q) :=
∞∑

n=−∞
qn

2
, ψ(q) :=

∞∑
n=0

qn(n+1)/2. (12)

We also define the notation for signature 3 theta functions in the next section.

2. Conductor 27

In this section we look at the CM elliptic curves of conductors 27 and 36, as well as at some
non-elliptic curve lattice sums. Recall that elliptic curves of conductor 27 are associated to
η2(q3)η2(q9), and elliptic curves of conductor 36 are associated to η4(q6) (see [MO97]). It follows
that L(E27, 2) = F (1, 3) and L(E36, 2) = F (1, 1). Define

H(x) :=
∫ 1

0

η3(q3)
η(q)

η3(qx)
η(q3x)

log q
dq

q

=
1
3

∫ 1

0
b(qx)c(q) log q

dq

q
,

where the signature-3 theta functions are given by

a(q) :=
∞∑

m,n=−∞
qm

2+mn+n2
,

b(q) :=
1
2

(3a(q3)− a(q)) =
η3(q)
η(q3)

,

c(q) :=
1
2

(a(q1/3)− a(q)) = 3
η3(q3)
η(q)

.

The functions a(q), b(q) and c(q) were studied in great detail by Ramanujan and the Borweins
[Ber98, BB91]. They form the basis of the theory of signature 3 theta functions. The following
lemma shows that certain values of (9) are expressed in terms of H(x).

Lemma 1. The following relations are true:

9L(E27, 2) = 9F (1, 3) =−H(1), (13)

36L(E36, 2) = 36F (1, 1) =−4H
(

4
3

)
+

1
4
H

(
1
12

)
, (14)

27
16
F (3, 7) =

8
7
H(1)−H(7)− 1

49
H

(
1
7

)
, (15)

27
49
F (6, 7) =

1
49
H

(
2
7

)
+H(14)− 8

7
H(2), (16)

27
25
F

(
3
2
, 7
)

=
2
7
H

(
1
2

)
− 1

4
H

(
7
2

)
− 1

142
H

(
1
14

)
. (17)
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Proof. Equation (13) follows from the definition of H(x). Formula (14) follows from integrating
a modular equation equivalent to Somos [Som, Entry t36,9,39]:

3η4(q6) =−b(q)c(q12) + b(q4)c(q3).

We can recover (15) by integrating a modular equation equivalent to Ramanujan [Ber94, p. 236,
Entry 68]:

9η(q)η(q3)η(q7)η(q21) =−b(q)c(q)− 7b(q7)c(q7) + b(q7)c(q) + b(q)c(q7).

Equation (17) follows from a modular equation equivalent to Somos [Som, Entry x42,8,56]:

9η(q2)η(q3)η(q14)η(q21) = b(q)c(q14) + b(q7)c(q2)− b(q)c(q2)− 7b(q7)c(q14),

and (16) follows from a modular equation equivalent to Somos [Som, Entry x42,8,64]:

9η(q)η(q6)η(q7)η(q42) =−b(q2)c(q7)− b(q14)c(q) + b(q2)c(q) + 7b(q14)c(q7). 2

Next we prove a second integral for H(x) which involves signature 3 theta functions. This is
the fundamental result needed to relate values of H(x) to elementary integrals.

Proposition 1. Suppose that x > 0, then

H(x) =
2π√
3x

∫ 1

0
b(q)c(q3) log

(
3
c(q9x)
c(q3x)

)
dq

q
. (18)

Proof. Begin by setting q = e−2πu, then

H(x) =−(2π)2

3

∫ ∞
0

ub(e−2πxu)c(e−2πu) du.

Since b(q) = η3(q)/η(q3) and c(q) = 3η3(q3)/η(q), it follows that b(q) and c(q) are linked by an
involution:

c(e−2π/(3u)) =
√

3ub(e−2πu).

We will use the following Eisenstein series expansion [AB05, p. 406]:

c(q) = 3
∞∑
n=1

χ−3(n)
(

qn/3

1− qn/3
− qn

1− qn

)
.

Rearranging the series, and then applying the involution, we find that

c(e−2πu) = 3
∞∑

n,k=1

χ−3(n)(e−2πnku/3 − e−2πnku), (19)

b(e−2πxu) =
√

3
xu

∞∑
r,s=1

χ−3(r)(e−2πrs/(9xu) − e−2πrs/(3xu)). (20)

Therefore, the integral becomes

H(x) = −(2π)2
√

3
x

∑
n,k,r,s>1

χ−3(nr)
∫ ∞

0
(e−2πnku/3 − e−2πnku)

× (e−2πrs/(9xu) − e−2πrs/(3xu)) du.
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Use linearity and a u-substitution to regroup the integral:

H(x) = −(2π)2
√

3
x

∑
n,k,r,s>1

χ−3(nr)
∫ ∞

0
e−2πnku(e−2πrs/(3xu)

− 4e−2πrs/(9xu) + 3e−2πrs/(27xu)) du.

Finally make the u-substitution u 7→ ru/k. This permutes the indices of summation inside the
integral, and we obtain

H(x) = −(2π)2
√

3
x

∑
n,k,r,s>1

rχ−3(rn)
k

∫ ∞
0

e−2πnru(e−2πks/(3xu)

− 4e−2πks/(9xu) + 3e−2πks/(27xu)) du.

Simplifying reduces things to

H(x) = −(2π)2
√

3
x

∫ ∞
0

( ∞∑
n,r=1

rχ−3(rn)e−2πrnu

)

× log
∞∏
s=1

(1− e−2πs/(9xu))4

(1− e−2πs/(27xu))3(1− e−2πs/(3xu))
du.

Notice that the product equals a ratio of Dedekind eta functions where all of the q1/24 terms
have cancelled out. Applying the involution for the eta function, we obtain

H(x) = −(2π)2
√

3
x

∫ ∞
0

( ∞∑
n,r=1

rχ−3(rn)e−2πrnu

)

× log
(
e4πxu

3

∞∏
s=1

(1− e−2πs(9xu))4

(1− e−2πs(27xu))3(1− e−2πs(3xu))

)
du.

Set q = e−2πu, and then use the product expansion c(q) = 3η3(q3)/η(q) (see [Ber98, p. 109]),
to obtain

H(x) =
(2π)
√

3
x

∫ 1

0

( ∞∑
n,r=1

rχ−3(rn)qrn
)

log
(

3
c(q9x)
c(q3x)

)
dq

q
. (21)

To simplify the Eisenstein series, notice that

χ−3(n) =
2√
3

Im(e2πin/3),

and therefore
∞∑

n,r=1

rχ−3(rn)qrn =− 1
12
√

3
Im L(e2πi/3q),

where

L(q) := 1− 24
∞∑
n=1

nqn

1− qn
. (22)

By Ramanujan’s Eisenstein series for a2(q) (see [Ber98, p. 100]), we have

2a2(q) = 3L(q3)− L(q),
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so it follows that
∞∑

n,r=1

rχ−3(rn)qrn =
1

6
√

3
Im a2(e2πi/3q).

Finally, if we use

a(e2πi/3q) = b(q) + i
√

3c(q3),

then

Im a2(e2πi/3q) = 2
√

3b(q)c(q3),

which implies
∞∑

n,r=1

rχ−3(rn)qrn =
1
3
b(q)c(q3). (23)

Substituting (23) into (21) concludes the proof of (18). 2

In the next proposition, we pass from an integral involving modular functions, to a purely
elementary integral. In order to accomplish this, we use the inversion formulas for signature 3
theta functions.

Proposition 2. Suppose that x > 0, and assume that β has degree 3x over α in the theory of
signature 3. Then

H(x) =
2π

3
√

3x

∫ 1

0

(1− α)1/3(1− (1− α)1/3)
α(1− α)

log
1− (1− β)1/3

β1/3
dα. (24)

Now suppose that β has degree x over α in the theory of signature 3. Then

H(x) =
2π

3
√

3x

∫ 1

0

α1/3(1− α1/3)
α(1− α)

log
1− (1− β)1/3

β1/3
dα. (25)

Proof. Let us prove (24) first. By formulas (2.8) and (2.9) in [Ber98, pp. 93–94], we know that

3c(q3) = a(q)− b(q).

Therefore (18) reduces to

H(x) =
2π

3
√

3x

∫ 1

0
b(q)(a(q)− b(q)) log

a(q3x)− b(q3x)
c(q3x)

dq

q
.

Now set

q = exp
(
−2π√

3
2F1(1

3 ,
2
3 ; 1; 1− α)

2F1(1
3 ,

2
3 ; 1; α)

)
and notice that

a2(q)
dq

q
=

dα

α(1− α)
.

It is also known [Ber98, p. 103] that b(q)/a(q) = (1− α)1/3 and c(q)/a(q) = α1/3. Substituting
these relations completes the proof of (24). Equation (25) follows if we first let q 7→ q1/3 in (18),
then use

b(q1/3) = a(q)− c(q),

and finally make the same substitution for q. 2
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While it is known that algebraic relations exist between α and β for all rational values of x,
it is very difficult to apply those relations except in a few cases.

Theorem 1. We have

L(E27, 2) =
Γ3(1

3)
27 3F2

(1
3 ,

1
3 , 1

2
3 ,

4
3

∣∣∣∣ 1
)
−

Γ3(2
3)

18 3F2

(2
3 ,

2
3 , 1

4
3 ,

5
3

∣∣∣∣ 1
)
. (26)

Proof. If x= 1 in (25), then α= β, and we obtain a formula for L(E27, 2):

L(E27, 2) =− 2π
27
√

3

∫ 1

0

α1/3(1− α1/3)
α(1− α)

log
1− (1− α)1/3

α1/3
dα. (27)

It is possible to simplify (27) with Mathematica. The easiest method is to make the substitution

log
1− (1− α)1/3

α1/3
=
∞∑
n=1

(1− α)n − 3(1− α)n/3

3n
,

and then perform term-by-term integration using beta integrals. 2

The new formula for F (1, 3) should be compared to the well-known 4F3 evaluation [Rog11,
Equation (43)]:

81
4π2

L(E27, 2) = log 6 +
1

108 4F3

(
4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣−1
8

)
. (28)

It seems to be a tricky task to demonstrate the equivalence of (26) and (28) by purely
hypergeometric techniques.

Note that an identity can be derived for H(1/3), by setting x= 1/3 in (24).

3. Conductor 24

It is known that an elliptic curve E24 of conductor 24 is associated to the eta product
η(q2)η(q4)η(q6)η(q12) (see [MO97]). Thus L(E24, 2) = F (2, 3), where F (b, c) is the four-
dimensional lattice sum (9). Let us define G(x) as follows:

G(x) :=
∫ 1

0

η2(q2)
η(q)

η2(q6)
η(q3)

η2(qx)
η(q2x)

η2(q3x)
η(q6x)

log q
dq

q
,

=
∫ 1

0
q1/2 ψ(q)ψ(q3)ϕ(−qx)ϕ(−q3x) log q

dq

q
.

The second identity is a consequence of the product expansions

q1/8ψ(q) =
η2(q2)
η(q)

, ϕ(−q) =
η2(q)
η(q2)

,

where ψ(q) and ϕ(q) are defined in (12). It is easy to see that G(1) =−4L(E24, 2). It follows that
we can solve Boyd’s conductor 24 conjectures by reducing G(1) to hypergeometric functions.

Proposition 3. Let ω = e2πi/3. The following formulas hold for x > 0:

G(x) =
2π
3x

Im
∫ 1

0
ωqψ4(ω2q2) log

(
4q3x

ψ4(q12x)
ψ4(q6x)

)
dq

q
(29)

=
π

2
√

3x

∫ 1

0
(A−B)(A− 3B)(A2 − 3B2) log

(
4q3x/2

ψ4(q6x)
ψ4(q3x)

)
dq

q
, (30)

where A= q1/8ψ(q) and B = q9/8ψ(q9).
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Proof. Begin by setting q = e−2πu; then the integral becomes

G(x) =−(2π)2
∫ ∞

0
ue−πu ψ(e−2πu)ψ(e−6πu)ϕ(−e−2πxu)ϕ(−e6πxu) du.

Now consider a Lambert series due to Ramanujan [Ber91, p. 223, Entry 3.1]:

q1/2ψ(q)ψ(q3) =
∞∑
n=1

χ(n)qn/2

1− qn
,

where χ(n) has conductor 6, with χ(5) =−1. Rearranging Ramanujan’s result, and then using
the involution for the eta function, we have

e−πuψ(e−2πu)ψ(e−6πu) =
∞∑

n,k=1

χ(n)(e−πnku − e−2πnku), (31)

ϕ(−e−2πxu)ϕ(−e−6πxu) =
2√
3xu

∞∑
r,s=1

χ(r)(e−2πrs/(12xu) − e−2πrs/(6xu)). (32)

Noting that χ(n) is totally multiplicative, the integral becomes

G(x) = − 8π2

√
3x

∑
n,k,r,s>1

χ(rn)
∫ ∞

0
(e−πnku − e−2πnku)(e−2πrs/(12xu) − e−2πrs/(6xu)) du

= − 8π2

√
3x

∑
n,k,r,s>1

χ(rn)
∫ ∞

0
e−2πnku(2e−2πrs/(24xu) − 3e−2πrs/(12xu) + e−2πrs/(6xu)) du.

Now make the substitution u 7→ ru/k. This step is crucially important, because it groups the r
and n indices together:

G(x) =− 8π2

√
3x

∑
n,k,r,s>1

rχ(rn)
k

∫ ∞
0

e−2πrnu(2e−2πks/(24xu) − 3e−2πks/(12xu) + e−2πks/(6xu)) du.

Simplifying the k and s sums, brings the integral to

G(x) =− 8π2

√
3x

∫ ∞
0

(∑
n,r>1

rχ(rn)e−2πrnu

)
log

∞∏
s=1

(1− e−2πs/(12xu))3

(1− e−2πs/(24xu))2(1− e−2πs/(6xu))
du.

The product equals a ratio of eta functions (the q1/24 terms have cancelled out). Applying the
involution again, we have

G(x) =− 8π2

√
3x

∫ ∞
0

(∑
n,r>1

rχ(rn)e−2πrnu

)
log
(
e−3πux/2

√
2

∞∏
s=1

(1− e−24πsxu)3

(1− e−48πsxu)2(1− e−12πsxu)

)
du.

Now use the product expansion q1/8ψ(q) = η2(q2)/η(q), and simplify:

G(x) = − 4π√
3x

∫ 1

0

(∑
n,r>1

rχ(rn)qrn
)

log
(
q−3x/4

√
2

ψ(q6x)
ψ(q12x)

)
dq

q

=
π√
3x

∫ 1

0

(∑
n,r>1

rχ(rn)qrn
)

log
(

4q3x
ψ4(q12x)
ψ4(q6x)

)
dq

q
. (33)

The calculation is nearly complete. To simplify the Eisenstein series, we use

χ(n) =
1√
3

Im(e2πin/3 − (−1)ne2πin/3),
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and therefore ∑
n,r>1

rχ(rn)qrn =− 1
24
√

3
Im(L(e2πi/3q)− L(−e2πi/3q)),

where L(q) is the Eisenstein series (22). Ramanujan proved [Ber91, p. 114, Entry 8.2] that

3ϕ4(q) = 4L(q4)− L(q),

hence ∑
n,r>1

rχ(rn)qrn =
1

8
√

3
Im(ϕ4(e2πi/3q)− ϕ4(−e2πi/3q));

finally by [Ber91, p. 40], we have∑
n,r>1

rχ(rn)qrn =
2√
3

Im(e2πi/3qψ4(e4πi/3q2)). (34)

Substituting (34) into (33) completes the proof of (29). To reduce (29) to (30), we can substitute
the following identity into (29):

2ψ(ω2q2) = 2ψ(q2)− 3q2ψ(q18)− i
√

3q2ψ(q18). 2

Lemma 2. We have

−4L(E24, 2) =G(1) =
π

12

∫ 1/2

0

√
(1− 2p)(2− p) log

p3(2− p)
1− 2p

(1− p2)
√
p

dp. (35)

Proof. Set x= 1 and then manipulate (29), to obtain

G(1) =
π

6
Im
∫ 1

0
ωq1/2ψ4(ω2q) log

(
16q3

ψ8(q6)
ψ8(q3)

)
dq

q
.

Now apply complex conjugation, then use ω2 =−eπi/3 =−ω1/2, and let ωq 7→ q, to arrive at

G(1) =
π

6
Im
∫ ω

0
q1/2ψ4(q) log

(
16q3

ψ8(q6)
ψ8(q3)

)
dq

q
.

Now set α(q) := 1− ϕ4(−q)/ϕ4(q), and z(q) := ϕ2(q). Then by formula [Ber91, p. 123, Entry 11.1]
and [Ber91, p. 120, Entry 9.1],

q1/2ψ4(q) =

√
α(q)
4

z2(q),

dα(q)
dq

=
α(q)(1− α(q))z2(q)

q
.

By formulas [Ber91, p. 123, Entry 11.1] and [Ber91, p. 123, Entry 11.3] we also have

16q3
ψ8(q6)
ψ8(q3)

= α(q3).

Thus,

G(1) =
π

24
Im
∫ ω

0

log α(q3)√
α(q)(1− α(q))

dα(q)

=
π

24
Im
∫ 1

0

log α(q3)√
α(ωq)(1− α(ωq))

dα(ωq).
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Note that both α(ωq) and α(q3) vary from 0 to 1 as q changes in the range from 0 to 1, and that
the path for the latter is purely real.

The functions α(q) and β(q) = α(q3) are related by the modular polynomial

(α2 + β2 + 6αβ)2 − 16αβ(4(1 + αβ)− 3(α+ β))2 = 0

and admit the rational parametrization

α=
p(2 + p)3

(1 + 2p)3
, β =

p3(2 + p)
1 + 2p

(36)

with p ranging from 0 to 1 as q changes in the range. The same modular relation and
parametrization, of course, remain true when we take ωq for q, except that in this case the
parameter p ranges along the complex curve

P =
{
p : 0<

p3(2 + p)
1 + 2p

< 1
}

in the upper half-plane Im p > 0 joining the points 0 and −1. This gives rise to writing G(1) as

G(1) =
π

24
Im
∫
P

log β√
α(1− α)

dα.

First note that the integrand, as function of p, is analytic in the half-plane Im p > 0, so that
we can change the path of integration to the straight interval from 0 to −1 understood as the
interval along the upper cut of the real axis:

G(1) =
π

24
Im
∫ −1

0

log β√
α(1− α)

dα=
π

24

∫ −1

0
Im
(

log β√
α(1− α)

)
dα.

Secondly, along the interval −1< p <−1/2 the integrand is purely real, so that

G(1) =
π

24

∫ −1/2

0
Im
(

log β√
α(1− α)

)
dα.

Developing now the substitution (36), computing the imaginary part and putting −p for p, we
thus arrive at (35). 2

Remark. A similar recipe expresses G(1/2) in the form

G(1/2) =
π

24
Im
∫
P

log β
1− α

dα (37)

for the path P given above. The substitution (36) produces an expression whose anti-derivative
could be expressed in terms of the logarithmic and dilogarithmic functions, and we finally
arrive at

G(1/2) =−π
2 log 2

3
.

3.1 The hypergeometric reduction

In (35), G(1) splits into two integrals of the form

F1(λ) =
∫ 1/λ

0

√
(1− λp)(λ− p) log(1/p)

(1− p2)
√
p

dp
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and

F2(λ) =
∫ 1/λ

0

√
(1− λp)(λ− p) log((λ− p)/(1− λp))

(1− p2)
√
p

dp,

where λ= 2.

Lemma 3. The identity

F1(λ)− F2(λ) = π · 3F2

(1
2 ,

1
2 ,

1
2

3
2 , 1

∣∣∣∣ 1
λ2

)
is true for all λ> 1.

Proof. Making the change p̂= (1− λp)/(λ− p) in the integral defining F2(λ) we obtain p=
(1− λp̂)/(λ− p̂) and

F2(λ) = (λ2 − 1)
∫ 1/λ

0

√
p̂ log(1/p̂)

(1− p̂2)
√

(1− λp̂)(λ− p̂)
dp̂.

Then we set z = 1/λ2 and perform the changes p= t
√
z and p̂= t

√
z, so that the required identity

becomes equivalent to

(1− z)
∫ 1

0

√
t log(t

√
z)

(1− zt2)
√

(1− t)(1− zt)
dt−

∫ 1

0

√
(1− t)(1− zt) log(t

√
z)

(1− zt2)
√
t

dt

= π · 3F2

(1
2 ,

1
2 ,

1
2

3
2 , 1

∣∣∣∣ z) (38)

for 0 6 z 6 1. The left-hand side here is∫ 1

0

((1− z)t− (1− t)(1− zt)) log(t
√
z)

(1− zt2)
√
t(1− t)(1− zt)

dt=
∫ 1

0

((1− zt2)− 2(1− t)) log(t
√
z)

(1− zt2)
√
t(1− t)(1− zt)

dt

=
∫ 1

0

log(t
√
z)√

t(1− t)(1− zt)
dt− 2

∫ 1

0

√
1− t log(t

√
z)

(1− zt2)
√
t(1− zt)

dt. (39)

Our strategy is to write the series expansions of

Gε(z) =
∫ 1

0

tε dt√
t(1− t)(1− zt)

=
Γ(1

2)Γ(1
2 + ε)

Γ(1 + ε) 2F1

(
1
2 ,

1
2 + ε

1 + ε

∣∣∣∣ z)
=
∞∑
n=0

Γ(n+ 1
2)Γ(n+ 1

2 + ε)
Γ(n+ 1)Γ(n+ 1 + ε)

zn

and

G̃ε(z) =
∞∑
n=0

gnz
n =

∫ 1

0

tε
√

1− t
(1− zt2)

√
t(1− zt)

dt.

Because

1√
1− zt

=
∞∑
k=0

(1
2)k
k!

tkzk,
1

1− zt2
=
∞∑
m=0

t2mzm,
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we have

gn =
n∑
k=0

(1
2)k
k!

∫ 1

0
t2n−k−1/2+ε(1− t)1/2 dt=

n∑
k=0

(1
2)k
k!

Γ(2n− k + 1
2 + ε)Γ(3

2)
Γ(2n− k + 2 + ε)

=
Γ(3

2)Γ(2n+ 1
2 + ε)

Γ(2n+ 2 + ε)

n∑
k=0

(1
2)k
k!

(−2n− 1− ε)k
(−2n+ 1

2 − ε)k

(we apply [Sla66, (2.6.3)] to the partial sum of the 2F1 series to n+ 1 terms)

=
Γ(3

2)Γ(2n+ 1
2 + ε)

Γ(2n+ 2 + ε)
Γ(n+ 3

2)Γ(−n− ε)
Γ(n+ 1)Γ(−n+ 1

2 − ε)
3F2

(1
2 ,−2n− 1− ε,−n+ 1

2 − ε
−n+ 1

2 − ε,−2n+ 1
2 − ε

∣∣∣∣ 1
)

=
Γ(3

2)Γ(2n+ 1
2 + ε)

Γ(2n+ 2 + ε)
Γ(n+ 3

2)Γ(−n− ε)
Γ(n+ 1)Γ(−n+ 1

2 − ε)
2F1

(
1
2 ,−2n− 1− ε
−2n+ 1

2 − ε

∣∣∣∣ 1
)

(we apply the Gauss summation to the 2F1 series)

=
Γ(3

2)Γ(2n+ 1
2 + ε)

Γ(2n+ 2 + ε)
Γ(n+ 3

2)Γ(−n− ε)
Γ(n+ 1)Γ(−n+ 1

2 − ε)
Γ(−2n+ 1

2 − ε)Γ(1)
Γ(−2n− ε)Γ(3

2)

(finally we use the functional equations for the Gamma function)

=
Γ(n+ 3

2)Γ(n+ 1
2 + ε)

(2n+ 1 + ε)Γ(n+ 1)Γ(n+ 1 + ε)
.

Therefore,

Gε(z)− 2G̃ε(z) =
∞∑
n=0

(
Γ(n+ 1

2)Γ(n+ 1
2 + ε)

Γ(n+ 1)Γ(n+ 1 + ε)
−

Γ(n+ 3
2)Γ(n+ 1

2 + ε)
(n+ 1

2 + 1
2ε)Γ(n+ 1)Γ(n+ 1 + ε)

)
zn

=
∞∑
n=0

Γ(n+ 1
2)Γ(n+ 1

2 + ε)
Γ(n+ 1)Γ(n+ 1 + ε)

(
1−

n+ 1
2

n+ 1
2 + 1

2ε

)
zn

= ε
∞∑
n=0

Γ(n+ 1
2)Γ(n+ 1

2 + ε)
Γ(n+ 1)Γ(n+ 1 + ε)(2n+ 1 + ε)

zn.

This implies for (39) that∫ 1

0

((1− zt2)− 2(1− t)) log(
√
z)

(1− zt2)
√
t(1− t)(1− zt)

dt= log
√
z · (Gε(z)− 2G̃ε(z))

∣∣
ε=0

= 0

and ∫ 1

0

((1− zt2)− 2(1− t)) log t
(1− zt2)

√
t(1− t)(1− zt)

dt =
d

dε
(Gε(z)− 2G̃ε(z))

∣∣∣∣
ε=0

=
∞∑
n=0

Γ(n+ 1
2)2

Γ(n+ 1)2(2n+ 1)
zn

= Γ(1
2)2

∞∑
n=0

(1
2)2n

n!2(2n+ 1)
zn

= π · 3F2

(
1
2 ,

1
2 ,

1
2

3
2 , 1

∣∣∣∣ z),
thus establishing the required identity (38). 2
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The method also allows us to give closed forms individually for F1(λ) and F2(λ).

Lemma 4. For λ> 1,

F1(λ) =
π

2
log(4λ) +

π

2
· 3F2

(1
2 ,

1
2 ,

1
2

3
2 , 1

∣∣∣∣ 1
λ2

)
− π

16λ2
· 4F3

(
3
2 ,

3
2 , 1, 1

2, 2, 2

∣∣∣∣ 1
λ2

)
. (40)

Proof. As we have shown in the proof of Lemma 3,

F1(1/
√
z) = −

∫ 1

0

(1− t)(1− zt) log(t
√
z)

(1− zt2)
√
t(1− t)(1− zt)

dt

= −
∫ 1

0

((1− t)− zt(1− t)) log(t
√
z)

(1− zt2)
√
t(1− t)(1− zt)

dt,

and this integral can be computed by examining the constant and linear terms in the ε-expansion
of

G̃ε(z)− zG̃1+ε(z) =
∞∑
n=0

Γ(n+ 3
2)Γ(n+ 1

2 + ε)
(2n+ 1 + ε)Γ(n+ 1)Γ(n+ 1 + ε)

zn

−
∞∑
n=0

Γ(n+ 3
2)Γ(n+ 3

2 + ε)
(2n+ 2 + ε)Γ(n+ 1)Γ(n+ 2 + ε)

zn+1

=
Γ(3

2)Γ(1
2 + ε)

Γ(2 + ε)
+
∞∑
n=1

Γ(n+ 1
2)Γ(n+ 1

2 + ε)
Γ(n+ 1)Γ(n+ 1 + ε)

(
n+ 1

2

2n+ 1 + ε
− n

2n+ ε

)
zn

=
Γ(3

2)Γ(1
2 + ε)

Γ(2 + ε)
+
ε

2

∞∑
n=1

Γ(n+ 1
2)Γ(n+ 1

2 + ε)
Γ(n+ 1)Γ(n+ 1 + ε)(2n+ ε)(2n+ 1 + ε)

zn.

Then ∫ 1

0

(1− t)(1− zt) log(
√
z)

(1− zt2)
√
t(1− t)(1− zt)

dt = log
√
z · (G̃ε(z)− zG̃1+ε(z))|ε=0

=
Γ(3

2)Γ(1
2)

Γ(2)
log
√
z =

π log
√
z

2

and∫ 1

0

(1− t)(1− zt) log t
(1− zt2)

√
t(1− t)(1− zt)

dt =
d

dε
(G̃ε(z)− zG̃1+ε(z))

∣∣∣∣
ε=0

=
π

2

(
Γ′(1

2)
Γ(1

2)
− 1 + γ

)
+

1
2

∞∑
n=1

Γ(n+ 1
2)2

Γ(n+ 1)2(2n)(2n+ 1)
zn

=
π

2
(−2 log 2− 1) +

π

2

∞∑
n=1

(1
2)2n
n!2

(
1

2n
− 1

2n+ 1

)
zn

= −π log 2 +
πz

16
· 4F3

(
3
2 ,

3
2 , 1, 1

2, 2, 2

∣∣∣∣ z)− π

2
· 3F2

(1
2 ,

1
2 ,

1
2

3
2 , 1

∣∣∣∣ z).
Joining the latter results we obtain (40). 2

Using Lemmas 2–4 and the equality m(8) = 4m(2), as well as the hypergeometric
evaluations (5) and (6) of m(8) and m(2), we finally arrive at the following theorem.
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Theorem 2. The following evaluation is true:

L(E24, 2) =−1
4
G(1) =

π2

6
m(2).

3.2 The elliptic reduction

In this subsection we give an alternative derivation of Theorem 2. In order to accomplish this,
we use properties of the Jacobian elliptic functions. Recall that sn u depends implicitly on α,
and that it is doubly periodic, with periods 4K and 2iK ′, where

K =
π

2 2F1

(
1
2 ,

1
2

1

∣∣∣∣ α), K ′ =
π

2 2F1

(
1
2 ,

1
2

1

∣∣∣∣ 1− α
)
.

We also take the usual definition of the elliptic nome, namely

q = exp
(
−πK

′

K

)
= exp

(
−π 2F1(1

2 ,
1
2 ; 1; 1− α)

2F1(1
2 ,

1
2 ; 1; α)

)
.

In the first lemma we give a Fourier series expansion for a ratio of Jacobian elliptic functions.
Formula (41) is absent from most references, however it can be derived from results in [WL88].

Lemma 5. The following identity is true:

cn2 u dn2 u

1− α sn4 u
=

π

4K
+
π

K

∞∑
n=1

qn

1 + q2n
cos

2πnu
K

+
π√
αK

∞∑
n=0

qn+1/2

1 + q2n+1
cos

π(2n+ 1)u
K

. (41)

Proof. Equation (42) is a superposition of results in [WL88]. Let us begin by decomposing the
function using partial fractions

cn2 u dn2 u

1− α sn4 u
=

(1− sn2 u)(1− α sn2 u)
1− α sn4 u

= −1− (1−
√
α)2

2
√
α

1
1−
√
α sn2 u

+
(1 +

√
α)2

2
√
α

1
1 +
√
α sn2 u

.

By equation (1.1) in [WL88, p. 543], we can show that

1
1−
√
α sn2 u

=
Π(
√
α, α)
K

+
π

(1−
√
α)K

∞∑
n=1

(−1)nqn/2

1 + qn
cos

πnu

K
, (42)

1
1 +
√
α sn2 u

=
Π(−
√
α, α)

K
+

π

(1 +
√
α)K

∞∑
n=1

qn/2

1 + qn
cos

πnu

K
, (43)

where Π(α, β) is the complete elliptic integral of the third kind. Substituting (42) and (43), we
obtain

cn2 u dn2 u

1− α sn4 u
=
h(α)
K

+
π

K

∞∑
n=1

qn

1 + q2n
cos

2πnu
K

+
π√
αK

∞∑
n=0

qn+1/2

1 + q2n+1
cos

π(2n+ 1)u
K

,
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where

h(α) :=−K − (1−
√
α)2

2
√
α

Π(
√
α, α) +

(1 +
√
α)2

2
√
α

Π(−
√
α, α).

Finally, we are grateful to James Wan for pointing out that a more general formula for Π(m, n)
implies that h(α) = π/4 (see [Wol07]). We leave this final calculation as an exercise for the
reader. 2

Proposition 4. Suppose that 0 6 α6 1. The following identities are true:

− 8
π

∫ 1

0

√
(1− v2)(1− αv2)

1− αv4
log v dv =m

(
4√
α

)
+

1√
α
m(4
√
α) + log

√
α, (44)

− 8
π

∫ 1

0

√
(1− v2)(1− αv2)

1− αv4
log(1− v2) dv = 2m

(
4√
α

)
+ log

α

1− α
+

1√
α

log
1−
√
α

1 +
√
α
, (45)

− 8
π

∫ 1

0

√
(1− v2)(1− αv2)

1− αv4
log(1− αv2) dv

=
2√
α
m(4
√
α)− log(1− α) +

1√
α

log
1−
√
α

1 +
√
α
. (46)

Proof. First notice that if we set v = sn u, then (44) becomes∫ 1

0

√
(1− v2)(1− αv2)

1− αv4
log v dv =

∫ K

0

cn2 u dn2 u

1− α sn4 u
log sn u du.

We now substitute Fourier expansions for Jacobian elliptic functions. The following series holds
for u ∈ (0, K) (see [GR94, p. 917]):

log sn u= log
2K
π

+ log sin
πu

2K
− 2

∞∑
n=1

1
n

qn

1 + qn

(
1− cos

πnu

K

)
. (47)

Substitute (41) and (47) into the integral, and then integrate term by term. It is necessary to
use the following formula several times:∫ K

0
cos

πnu

K
log sin

πu

2K
du=

{
−K log 2 if n= 0,
−K/(2n) if n> 1.

A substantial amount of work reduces the integral to∫ K

0

cn2 u dn2 u

1− α sn4 u
log sn u du =

π

4

(
log

K

π
− 2

∞∑
n=1

1
n

qn

1 + qn

)

+
π

2

∞∑
n=1

1
n

qn

1 + q2n

(
q2n

1 + q2n
− 1

2

)

+
π√
α

∞∑
n=0

1
2n+ 1

qn+1/2

1 + q2n+1

(
q2n+1

1 + q2n+1
− 1

2

)
.

Now substitute the geometric series

x

1 + x2

(
x2

1 + x2
− 1

2

)
=−1

2

∞∑
k=1

kχ−4(k)xk,
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and then swap the order of summation, to obtain∫ K

0

cn2 u dn2 u

1− α sn4 u
log sn u du = − π

16
log
(
π4

K4
· q
∞∏
k=1

(1− q2k)16

(1− qk)8

)

+
π

8

(
log q

2
+ 2

∞∑
k=1

kχ−4(k) log(1− qk)
)

− π

4
√
α

∞∑
k=1

kχ−4(k) log
1− qk

(1− qk/2)2
.

Finally, by the q-series expansion for m(4/
√
α) [LR07, Formula (2-9)], and by [Ber91, p. 124,

Entries 12.2 and 12.3], this becomes∫ K

0

cn2 u dn2 u

1− α sn4 u
log sn u du = − π

16
log α− π

8
m

(
4√
α

)
+

π

8
√
α

(
m

(
4√
α

)
− 2m

(
4√
α′

))
,

where α has degree two over α′. By the second degree modular equation of Ramanujan [Ber91,
p. 215], we know that

α′ =
4
√
α

(1 +
√
α)2

.

Since 0 6 α6 1, we can apply a functional equation of Kurokawa and Ochiai [KO05], to obtain

2m
(

4√
α′

)
= 2m(2(α1/4 + α−1/4)) =m(4

√
α) +m

(
4√
α

)
.

This last observation completes the proof of (44). Formulas (45) and (46) can be proved with
an identical method, except that they require Fourier expansions for log cn u and log dn u,
respectively, [GR94, p. 917]. 2

Alternative proof of Theorem 2. If we let p 7→ v2/2 in (35), then

G(1) =
π

6

∫ 1

0

√
(1− v2)(1− 1

4v
2)

(1− 1
4v

4)
log

v6(1− 1
4v

2)
4(1− v2)

dv.

Theorem 2 follows immediately from combining an elementary result

π

4
=
∫ 1

0

√
(1− v2)(1− αv2)

(1− αv4)
dv

(consider a Taylor series in α), with all three formulas in Proposition 4, and the known identity
m(8) = 4m(2) (see [LR07]). 2

4. Conductor 20

In this section we prove Boyd’s conjectures for elliptic curves of conductor 20. Recall from [MO97]
that such curves are associated to the modular form η2(q2)η2(q10), so it follows that L(E20, 2) =
F (1, 5). The first step is to use Ramanujan’s modular equations to relate L(E20, 2) to an
elementary integral. The elementary integral can then be reduced to Mahler measures by
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substituting doubly periodic elliptic functions, or by using hypergeometric functions. Define
S(x) as follows:

S(x) :=
∫ 1

0
q(1+x)/4ψ2(qx)(ψ2(q)− 5qψ2(q5)) log q

dq

q
.

We begin by expressing L(E20, 2) in terms of S(x).

Lemma 6. The following relation is true:

−4L(E20, 2) = S(1)− S(5). (48)

Proof. First notice that

S(1)− S(5) =
∫ 1

0
q1/2(ψ2(q)− qψ2(q5))(ψ2(q)− 5qψ2(q5)) log q

dq

q
.

Ramanujan showed [AB05, p. 28] that

η2(q)η2(q5) = q1/2(ψ2(q)− qψ2(q5))(ψ2(q)− 5qψ2(q5)),

which implies

S(1)− S(5) =
∫ 1

0
η2(q)η2(q5) log q

dq

q
=−4L(E20, 2). 2

Next we apply our trick to obtain a transformation for S(x).

Proposition 5. Suppose that x > 0. Then

S(x) =−π
∫ 1

0
qx/2ψ4(−qx) log

(
5
ϕ2(q5)
ϕ2(q)

)
dq

q
. (49)

Proof. Begin by setting q = e−2πu, then

S(x) =−(2π)2
∫ ∞

0
ue−πxu/2ψ2(e−2πxu)(e−πu/2ψ2(e−2πu)− 5e−5πu/2ψ2(e−10πu)) du.

We use the following Lambert series expansion (which follows from [Ber91, p. 139, Example 4]):

e−πxu/2ψ2(e−2πxu) =
∞∑

n,k=1

χ−4(n)(e−πnkxu/2 − e−πnkxu).

By the involution for the psi function and by [Ber91, p. 114, Entry 8.1], we have

e−πu/2ψ2(e−2πu)− 5e−5πu/2ψ2(e−10πu) =
1

4u
(ϕ2(−e−π/u)− ϕ2(−e−π/(5u)))

=
1
u

∞∑
r,s=1

(−1)sχ−4(r)(e−πrs/u − e−πrs/(5u)).

Therefore, the integral becomes

S(x) = −(2π)2
∑

n,k,r,s>1

(−1)sχ−4(nr)
∫ ∞

0
(e−πnkxu/2 − e−πnkxu)

× (e−πrs/(u) − e−πrs/(5u)) du.
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Use linearity and a u-substitution to regroup the integral:

S(x) = −(2π)2
∑

n,k,r,s>1

(−1)sχ−4(nr)
∫ ∞

0
e−πnkxu(2e−πrs/(2u) − 2e−πrs/(10u)

− e−πrs/u + e−πrs/(5u)) du.

Finally make the u-substitution u 7→ ru/k. This permutes the indices of summation inside the
integral. We have

S(x) = −(2π)2
∑

n,k,r,s>1

rχ−4(nr)
(−1)s

k

∫ ∞
0

e−πnrxu(2e−πks/(2u) − 2e−πks/(10u)

− e−πks/u + e−πks/(5u)) du.

Simplify the k and s sums, then use the involution for the Dedekind eta function and the product
expansion ϕ(q) = η5(q2)/(η2(q)η2(q4)), to reduce the integral to

S(x) =−2π2

∫ ∞
0

( ∞∑
n,r=1

rχ−4(rn)e−πrnxu
)

log
(

5
ϕ2(e−10πu)
ϕ2(e−2πu)

)
du. (50)

Finally, the nested sum is easy to simplify. By [Ber91, p. 139, Example 3],
∞∑

n,r=1

rχ−4(rn)qrn =
∞∑
r=1

rχ−4(r)qr

1 + q2r
= qψ4(−q2).

Substituting this last result into (50) completes the proof of (49). 2

Now we can derive an elementary integral for L(E20, 2). In order to accomplish the reduction,
we need several additional modular equations.

Lemma 7. We have

L(E20, 2) =− π

20

∫ 1

0

(1− 6t) log(1 + 4t)√
t(1− t)(1 + 4t2)

dt. (51)

Proof. By formulas (49) and (48), we find that

L(E20, 2) =
π

4

∫ 1

0

q1/2ψ4(−q)− q5/2ψ4(−q5)
q

log
(

5
ϕ2(q5)
ϕ2(q)

)
dq.

Now set m= ϕ2(q)/ϕ2(q5). Then by [AB05, p. 26, Formula (1.6.4)], we obtain

1− q2ψ
4(−q5)
ψ4(−q)

=
8(3−m)
(5−m)2

.

Therefore, the integral becomes

L(E20, 2) = 2π
∫ 1

0

3−m
(5−m)2

log
(

5
m

)
q1/2ψ4(−q)

q
dq.

Now set α= 1− ϕ4(−q)/ϕ4(q); then it is known that

q1/2ψ4(−q)
q

=
1

2
√

4α(1− α)
dα

dq

=
1

8
√

4α(1− α)(1− 4α(1− α))
d

dq
(4α(1− α)).
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Finally, we have the following relation between α and m:

4α(1− α) =
(m− 1)(5−m)5

64m5
.

This relation between α and m follows from [Ber91, p. 288, Entry 14]. Notice that the entry
holds for |q|< 1 by the principle of analytic continuation. Eliminating α, and exercising caution
about the square root, reduces the integral to

L(E20, 2) =
π

4

∫ 1

0
log
(

5
m

)
3−m

m
√

(5−m)(m− 1)(5− 2m+m2)
dm

dq
dq

=
π

4

∫ 5

1
log
(

5
m

)
3−m

m
√

(5−m)(m− 1)(5− 2m+m2)
dm.

The change of variables from q to m is justified because m ranges monotonically between m= 1
and m= 5 when q ∈ [0, 1]. Finally, the substitution m 7→ 5/(1 + 4t) completes the proof of (51). 2

Below we use two methods to reduce (51) to Mahler measures. The first method is to
substitute doubly periodic elliptic functions into the integral. The main draw-back to this method
is that we first have to construct non-standard elliptic functions. The second method is to prove
the identity directly via hypergeometric manipulations. In both approaches we investigate an
integral which generalizes (51). Notice that

J(y) :=
1

2π

∫ 1

0

(2− y + 3yt) log(1 + yt)√
t(1− t)(4 + (4− y)yt+ y2t2)

dt (52)

reduces to the integral in (51) when y = 4.

4.1 The elliptic reduction

Throughout this subsection we assume that k > 4/3. Notice that when y = 2k/(k − 1), we have

J

(
2k
k − 1

)
=− 1

π

∫ 1

0

(1− 3kt) log(1− (2kt/(1− k)))√
4t((1− k)2 − t(1− kt)2)

dt. (53)

The overarching goal of the following discussion is to obtain formula (60). To prove that identity,
it is necessary to use Fourier series expansions for elliptic functions which parameterize the curve

Fk : y2 = 4x((1− k)2 − x(1− kx)2).

Since (regrettably) we could not find such formulas in the literature, we first prove Proposition 6
and Lemma 8.

Notice that Fk is a genus-one curve, with non-zero discriminant when k > 4/3. Therefore, Fk
can be parameterized by doubly periodic functions. Suppose that w(x) satisfies the differential
equation

(w′(x))2 = 4w(x)((1− k)2 − w(x)(1− kw(x))2). (54)

In order to explicitly identify w(x) we can map Fk to Y 2 = 4X3 − g2X − g3. It follows easily
that

w(x) =
3(1− k)2

1 + 3℘(x)
, (55)
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where ℘(x) := ℘(x, {g2, g3}) is the Weierstrass function, and

g2 = −4
3(6k3 − 12k2 + 6k − 1),

g3 = 4
27(2− 6k + 3k2)(1− 6k + 12k2 − 18k3 + 9k4).

This identification is quite useful for computational purposes.

Proposition 6. Let 2K and 2K ′ denote the real and purely imaginary periods of w(x). Then
w(x) has the following values:

x w(x) Order of zero/pole Residue

0 0 2 –
K 1 – –
K ′ 1 – –

K +K ′ 0 2 –
K ′/3 (1− k)/(2k) – –
2K ′/3 ∞ 1 i/(2k)
4K ′/3 ∞ 1 −i/(2k)
5K ′/3 (1− k)/(2k) – –

K +K ′/3 ∞ 1 −i/(2k)
K + 2K ′/3 (1− k)/(2k) – –
K + 4K ′/3 (1− k)/(2k) – –
K + 5K ′/3 ∞ 1 i/(2k)

Proof. It is well known that ℘(x) has a second-order pole at x= 0, so w(x) has a second-order
zero at that point. Since ℘(x) is even, w(2aK + 2bK ′ − x) = w(x) for all (a, b) ∈ Z2. Therefore
we only need to evaluate w(x) for x ∈ {K, K ′, K +K ′, K ′/3, 2K ′/3, K + 4K ′/3, K + 5K ′/3}.

We will require additional properties of the Weierstrass ℘-function. If 4X3 − g2X − g3 =
4(x− r1)(x− r2)(x− r3), then the half-periods of ℘(x) are given by

ω =
∫ r1

∞

1√
4y3 − g2y − g3

dy, ω′ =
∫ r2

r1

1√
4y3 − g2y − g3

dy.

Select r1 = (1− k)2 − 1
3 to be the real zero of 4X3 − g2X − g3 = 0, and r2 to be the imaginary

zero which lies in the upper half plane. Now set K := ω, and K ′ := 2ω − ω′. While it is possible
to show ReK ′ = 0, we will not pursue that calculation here. It follows that K +K ′ is a period
of w(x), so we have the following identities:

w(K +K ′) = w(0) = 0,
w(K) = w(2K +K ′) = w(K ′),

w(K ′/3) = w(K + 4K ′/3),
w(2K ′/3) = w(K + 5K ′/3).

Since ℘(ω) = r1 = (1− k)2 − 1
3 , we can use (55) to conclude that w(K) = 1. The values of

w(K ′/3) and w(2K ′/3) can be verified from a polynomial relation between w(x) and w(3x),
which follows from the Weierstrass addition formula. Now we calculate the values of the residues.
Since w(2K ′/3) =∞, it follows that ℘((4ω′ − 2ω)/3) =−(1/3), thus (℘′((4ω′ − 2ω)/3))2 =
−4k2(1− k)4. Extracting a square root we obtain ℘′((4ω′ − 2ω)/3) =−2ik(1− k)2. The choice
of square root can be justified by checking the formula numerically at k = 2, and then appealing
to the fact that ω, ω′, and ℘′((4ω′ − 2ω)/3) are analytic functions of k for k > 4/3. Finally, by
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formula (55)

Resx=2K′/3 w(x) =
(1− k)2

℘′((4ω′ − 2ω)/3)
=

i

2k
.

The other residues can be verified in a similar fashion. 2

Notice that we can integrate (54), and use w(K) = 1, to obtain a second formula for K:

K =
∫ 1

0

dt√
4t((1− k)2 − t(1− kt)2)

.

We need two Fourier series expansions to finish the elliptic reduction.

Lemma 8. Suppose that x > 0. Then

w(x) =
2π
kK

∞∑
n=1

(−1)n+1qn

1 + (−1)nqn + q2n
sin2 πnx

2K
(56)

and

log
(

1− 2k
1− k

w(x)
)

= 8
∞∑
n=1
n odd

1
n

qn − q2n

1 + q3n
sin2 πnx

2K
, (57)

where q = e2πiK
′/6K . An alternative formula for q is given by

q = exp
(
− 2π√

3
2F1(1

3 ,
2
3 ; 1; 1− α)

2F1(1
3 ,

2
3 ; 1; α)

)
, (58)

where

α=
27p(1 + p)4

2(1 + 4p+ p2)3
, p=

−1 +
√

(3k − 1)/(k − 1)
2

.

Proof. The proof of (56) is an exercise in the theory of elliptic functions. The poles of w(x) inside
the fundamental parallelogram are 2K ′/3, 4K ′/3, K +K ′/3, and K + 5K ′/3. The function
has residues i/(2k), −i/(2k), −i/(2k), and i/(2k) at each of the poles. We also know that
w(0) = w′(0) = 0. By [BF10, Formula (27)], we have

w(x) =
3i
2k

∞∑
m,n=−∞

(m,n)6=(0,0)

χ−3(n)
(

1
3x− (6mK + 2nK ′)

+
1

(6mK + 2nK ′)
+

3x
(6mK + 2nK ′)2

)

− 3i
2k

∞∑
m,n=−∞

(m,n)6=(0,0)

χ(n)
(

1
3x− ((6m+ 3)K + nK ′)

+
1

((6m+ 3)K + nK ′)
+

3x
((6m+ 3)K + nK ′)2

)
,

where χ(n) is the Legendre symbol modulo 6. It is a lengthy exercise to reduce this last expression
to (56). The fastest (if least rigorous) method for finishing the calculation, is to differentiate the
entire expression twice, and then substitute the following Fourier series:

∞∑
n=−∞

1
(x+ τ + n)3

+
1

(−x+ τ + n)3
= i(2π)3

∞∑
n=1

n2e2πinτ cos(2πnx),
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which holds for Im(τ)> 0. Thus one obtains a formula for w′′(x), which can be integrated to
recover (56).

Proposition 6 shows that (1− k)/(2k) = w(K ′/3). It follows that

1− 2k
1− k

w(x) = 1− w(x)
w(K ′/3)

.

This function has simple zeros at K ′/3, 5K ′/3, K + 2K ′/3 and K + 4K ′/3, and simple poles at
2K ′/3, 4K ′/3, K +K ′/3 and K + 5K ′/3. Since any two elliptic functions with the same zeros
and poles are constant multiples, it is easy to obtain an infinite product. We have

1− 2k
1− k

w(x) = C
θ(x, K ′/3)θ(x, 5K ′/3)θ(x, K + 2K ′/3)θ(x, K + 4K ′/3)
θ(x, 2K ′/3)θ(x, 4K ′/3)θ(x, K +K ′/3)θ(x, K + 5K ′/3)

, (59)

where

θ(x, ρ) = (1− e2πi(x−ρ)/(2K))
∞∏
n=1

(1− e2πi(x−ρ+2nK′)/(2K))(1− e2πi(−x+ρ+2nK′)/(2K)).

The right-hand side of (59) is doubly periodic because θ(x, ρ) has period 2K, and satisfies the
quasi-periodicity relation

θ(x+ 2K ′, ρ) =−e2πi(ρ−x)/(2K)θ(x, ρ).

The right-hand side also has the correct zeros and poles, since θ(x, ρ) vanishes at ρ. The
constant C can be determined by using the fact that w(0) = 0. Finally, (57) follows from taking
logarithms of (59), and then using the Taylor series for the logarithm.

We conclude the proof by simplifying the expression for q. Since w(K) = 1, we can use (57)
to obtain

log
3k − 1
k − 1

= 8
∞∑
n=0

1
2n+ 1

q2n+1 − q4n+2

1 + q6n+3

= 4 log
∞∏
n=1

(1− q2n)5(1− q3n)2(1− q12n)2

(1− qn)2(1− q4n)2(1− q6n)5

= 2 log
ϕ2(q)
ϕ2(q3)

.

If we let 1 + 2p= ϕ2(q)/ϕ2(q3), then it follows easily that

p=
−1 +

√
(3k − 1)/(k − 1)

2
.

Finally, formula (58) is a consequence of standard inversion formulas in the theory of
signature 3. 2

Theorem 3. Suppose that k > 4/3, and let p= 1
2(−1 +

√
(3k − 1)/(k − 1)). The following

formula is true:

J

(
2k
k − 1

)
= 2g

(
2(1 + p)2

p

)
− g
(

4(1 + p)
p2

)
. (60)

Proof. First assume that k > 4/3. If we set t= w(x), then (53) becomes

J

(
2k
k − 1

)
=− 1

π

∫ K

0
(1− 3kw(x)) log

(
1− 2k

1− k
w(x)

)
dx.
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Substituting (57) and (56) reduces the integral to

J

(
2k
k − 1

)
=−

(
4K
π

+ 12
∞∑
j=1

(−q)j

1 + (−q)j + q2j

) ∞∑
n=1
n odd

1
n

qn − q2n

1 + q3n
+ 6

∞∑
n=1
n odd

1
n

q2n(1− q2n)
(1 + q3n)2

.

Now substitute

3
q2(1− q2)
(1 + q3)2

=−q(1− q)
(1 + q3)

−
∞∑
j=1

(−1)jjχ−3(j)qj ,

to obtain

J

(
2k
k − 1

)
=−

(
4K
π

+ 2a(−q)
) ∞∑

n=1
n odd

1
n

qn − q2n

1 + q3n
−
∞∑
j=1

(−1)jjχ−3(j) log
1 + qj

1− qj
.

Notice that we have used a Lambert series for a(−q), which follows from [Ber98, p. 100,
Theorem 2.12]. Now we claim that 2K =−πa(−q). If one substitutes the hypergeometric
representation for a(−q), then this statement is equivalent to Lemma 9 in the next subsection.
It is also possible to prove the equality directly by setting x=K in (56) and (57), and then
performing q-series manipulations. The q-series for J(2k/(k − 1)) reduces to

J

(
2k
k − 1

)
=−

∑∞

j=1
(−1)jjχ−3(j) log

1 + qj

1− qj
.

We can now substitute Stienstra’s q-series for g(k) (see [Sti06]): applying [LR07, Formula (2-11)]
completes the proof of (60) if k > 4/3. Finally, notice that both sides of (60) are continuous at
k = 4/3, hence the formula remains true for the boundary value as well. 2

4.2 The hypergeometric reduction
In this part, we show the coincidence of the derivatives of J(y) and g(y) on the interval 2< y < 8
and conclude with the identity J(y) = g(y) for 2 6 y 6 8 by appealing to the equality at y = 8
deduced in Theorem 3.

Lemma 9. For 2 6 y < 8, we have

1
2π

∫ 1

0

dt√
t(1− t)(4 + (4− y)yt+ y2t2)

=
1

y + 4 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y2

(y + 4)3

)
. (61)

Proof. We apply the transformation [Ber98, p. 112, Theorem 5.6],

1
1 + p+ p2 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27p2(1 + p)2

4(1 + p+ p2)3

)
=

1√
1 + 2p 2F1

(
1
2 ,

1
2

1

∣∣∣∣ p3(2 + p)
1 + 2p

)
(62)

with the choice p= (
√

1 + y − 1)/2 (ranging in (
√

3− 1)/2 6 p < 1), so that y = 4p(1 + p) and
the left-hand side in (62) assumes the form

1
1 + p+ p2 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27p2(1 + p)2

4(1 + p+ p2)3

)
=

4
y + 4 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y2

(y + 4)3

)
. (63)

On the other hand, the substitution y = 4p(1 + p) and the change of variable

t=
1− u

1 + 2pu− p3(2 + p)u2
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in the original integral results in

1
π

∫ 1

0

dt√
t(1− t)(4 + (4− y)yt+ y2t2)

=
1

2π

∫ 1

0

du√
u(1− u)(1 + 2p− p3(2 + p)u)

=
1

2
√

1 + 2p 2F1

(
1
2 ,

1
2

1

∣∣∣∣ p3(2 + p)
1 + 2p

)
, (64)

where on the last step we apply the Euler–Pochhammer integral representation of the
hypergeometric series [Sla66, Equation (1.6.6)]. Combining (62)–(64) we arrive at the desired
claim (61). 2

Note the range of the argument of the hypergeometric series in (61):

1
2

6
27y2

(y + 4)3
< 1 for 2 6 y < 8.

Lemma 10. For 2< y < 8,

dJ

dy
=

1
y + 4 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y2

(y + 4)3

)
.

Proof. Note that for real values of y in the interval 2 6 y 6 8 we have∣∣∣∣√t(1− y

2
(1− t)

)∣∣∣∣6 1 for 0 6 t6 1,

so that the real-valued function

v(t) = v(t; y) = 2 arcsin
(√

t

(
1− y

2
(1− t)

))
is well defined on the interval 0< t < 1. Because

∂v

∂t
=

2− y + 3yt√
t(1− t)(4 + (4− y)yt+ y2t2)

, (65)

we can write the integral (52) as

J(y) =
1

2π

∫ 1

0
log(1 + yt)

∂v

∂t
dt. (66)

Denote u(t) = u(t; y) = log(1 + yt) and use, besides (65),

∂u

∂t
=

y

1 + yt
,

∂u

∂y
=

t

1 + yt
and

∂v

∂y
=−

2
√
t(1− t)√

4 + (4− y)yt+ y2t2
.

It follows from (66) that

d

dy
J(y) =

1
2π

∫ 1

0

∂

∂y

(
u
∂v

∂t

)
dt=

1
2π

∫ 1

0

(
∂u

∂y

∂v

∂t
+ u

∂2v

∂y ∂t

)
dt

=
1

2π

∫ 1

0

∂u

∂y

∂v

∂t
dt+

1
2π

∫ 1

0
u d

(
∂v

∂y

)
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(integrating the second integral by parts)

=
1

2π

∫ 1

0

∂u

∂y

∂v

∂t
dt+

1
2π

u
∂v

∂y

∣∣∣∣t=1

t=0

− 1
2π

∫ 1

0

∂v

∂y

∂u

∂t
dt

=
1

2π

∫ 1

0

(
∂u

∂y

∂v

∂t
− ∂v

∂y

∂u

∂t

)
dt

=
1

2π

∫ 1

0

t(2 + y + yt)
(1 + yt)

√
t(1− t)(4 + (4− y)yt+ y2t2)

dt

=
1

2π

∫ 1

0

t dt√
t(1− t)(4 + (4− y)yt+ y2t2)

+
1

2π

∫ 1

0

(1 + y)t dt
(1 + yt)

√
t(1− t)(4 + (4− y)yt+ y2t2)

(applying the change t 7→ (1− t)/(1 + yt) in the second integral)

=
1

2π

∫ 1

0

t dt√
t(1− t)(4 + (4− y)yt+ y2t2)

+
1

2π

∫ 1

0

(1− t) dt√
t(1− t)(4 + (4− y)yt+ y2t2)

=
1

2π

∫ 1

0

dt√
t(1− t)(4 + (4− y)yt+ y2t2)

.

It remains to apply Lemma 9 to the resulting integral. 2

Theorem 4. For 2 6 y 6 8, the equality

J(y) = g(y) (67)

holds.

Proof. For 2< y < 8, the hypergeometric evaluation (7) of g(y) can be stated in the form

g(y) =
1
3
f

(
y2

(y + 4)3

)
+

4
3

Re f
(

y

(y − 2)3

)
where the function

f(z) =− log z
3
− 2z 4F3

(
4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣ 27z
)

(68)

satisfies the equation
df

dz
=− 1

3z 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27z
)
.

Therefore,

dg

dy
=

y − 8
9y(y + 4) 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y2

(y + 4)3

)
+

8(y + 1)
9y(y − 2)

Re 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y
(y − 2)3

)
and application of the cubic transformation

Re 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y
(y − 2)3

)
=
y − 2
y + 4 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y2

(y + 4)3

)
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result in
dg

dy
=

1
y + 4 2F1

(
1
3 ,

2
3

1

∣∣∣∣ 27y2

(y + 4)3

)
. (69)

Comparing this evaluation with the one from Lemma 10 we conclude that g(y) and J(y) differ
on the interval 2< y < 8 by a constant; because both g(y) and J(y) are continuous at the end
points, the relation J(y)− g(y) = C, a real constant, is true for 2 6 y 6 8. To determine the
constant, take y = 8 and apply Theorem 3 with the choice p= 1; it follows that

g(8) + C = J(8) = 2g(8)− g(8),

hence C = 0. 2

Remark. The derivative (69) can be alternatively obtained by differentiating Stienstra’s q-series
for g(y) [Sti06, Example #6], [LR07, Formula (2-11)].

4.3 Culmination
We conclude this section by listing the major consequences of Theorems 3 and 4.

Theorem 5. The following formulas are true:

10
π2
L(E20, 2) = 2g(4 + 2

√
5)− g(8 + 4

√
5) (70)

= g(4) (71)

=
3
4
n( 3
√

32). (72)

Proof. Equation (70) follows from setting k = 2 in (60) and then comparing it to (51), while (71)
follows from taking y = 4 in (67).

Using the hypergeometric evaluations (7) and (8) in the form

g(k) =
1
3
f

(
k2

(k + 4)3

)
+

4
3
f

(
k

(k − 2)3

)
, n(k) = f

(
1
k3

)
,

whenever the arguments lie between 0 and 1/27, with the hypergeometric function f(z) defined
in (68), we have

2g(4 + 2
√

5)− g(8 + 4
√

5) =
2
3
f

(
4

(7−
√

5)3

)
+

8
3
f

(
1
32

)
− 1

3
f

(
1
32

)
− 4

3
f

(
4

(7 +
√

5)3

)
=

7
3
n( 3
√

32) +
2
3
n

(
7−
√

5
3
√

4

)
− 4

3
n

(
7 +
√

5
3
√

4

)
.

Finally, Bertin’s ‘exotic’ relation [GR10, Theorem 6]

16n
(

7 +
√

5
3
√

4

)
− 8n

(
7−
√

5
3
√

4

)
= 19n( 3

√
32) (73)

reduces the latter sum to 3
4n( 3
√

32). 2

Corollary. The following Boyd’s conjectural evaluations are true:

n( 3
√

2) =
25
6π2

L(E20, 2), g(−2) =
15
π2
L(E20, 2).
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Proof. These readily follow from [LR07, Formula (2-26)],

3g(−2) = n(21/3) + 4n(25/3), 3g(4) = 4n(21/3) + n(25/3),

and Theorem 5. 2

Theorem 6. For (
√

3− 1)/2 6 p6 1, the Mahler measure g(·) satisfies the functional equation

g(4p(1 + p)) + g

(
4(1 + p)
p2

)
= 2g

(
2(1 + p)2

p

)
.

Proof. The result follows by comparing the two different evaluations obtained in Theorems 3
and 4. 2

Remark. In view of the proof of Theorem 5, our Theorem 6 may be thought of as a generalization
of Bertin’s ‘exotic’ relation (73).

Theorem 7. We have

L(E36, 2) =−2π2 log 2
27

+
Γ3(1

3)
3 · 27/3 3F2

(1
3 ,

1
3 , 1

5
6 ,

4
3

∣∣∣∣−1
8

)
+

Γ3(2
3)

211/3 3F2

(
2
3 ,

2
3 , 1

7
6 ,

5
3

∣∣∣∣−1
8

)
.

Proof. Rodriguez-Villegas [Rod99] showed that

L(E36, 2) =
2π2

9
g(2).

Making the change t3 = u in the integral

L(E36, 2) =
2π2

9
J(2) =

π

3

∫ 1

0

√
t log(1 + 2t)√

1− t3
dt

and writing the interior logarithm as hypergeometric series, we arrive at the claim. Note that
both Maple and Mathematica produce the evaluation without human assistance. 2

5. Concluding remarks

We conclude by mentioning the fact that this paper settles the conjectures of Bloch and Grayson
for elliptic curves of conductor 20 [BG86]. Since there is a very simple method to translate
Mahler measures into elliptic dilogarithms [GR10], the main results in this paper are equivalent
to relations between L(E, 2) and values of the elliptic dilogarithm. For instance, given the
conductor 20 elliptic curve E : y2 = 4x3 − 432x+ 1188, and the torsion point P = (−6, 54), by
[GR10, Theorem 4] we have

DE(2P ) =
2π
9
n(25/3) =

80
27π

L(E, 2).

The equality to L(E, 2) follows immediately from (72). Although Bloch and Grayson did not
examine any conductor 24 curves, we can prove similar relations for those cases, by combining
Theorem 5 with [GR10, Theorem 4].

Finally, there are many additional problems which need to be addressed. The most obvious
direction is to try to prove more of Boyd’s conjectures. There are still hundreds of outstanding
conjectures in Boyd’s tables [Boy98]. It would also be interesting to understand what overlap
(if any) exists between our techniques, and those of Brunault [Bru06] and Mellit [Mel11].
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They proved Boyd’s conjectures for elliptic curves of conductors 11 and 14 by using Beilinson’s
theorem. Rodriguez-Villegas was the first to advocate this K-theoretic approach [Rod99];
he originally suggested that the conductor 24 cases could be proved with Beilinson’s theorem.

It would also be interesting to reduce more values of F (b, c) to hypergeometric functions.
An easy corollary to the L(E20, 2) formula of Theorem 5, is a formula for F (5, 9). By [RY11] we
know that 9F (5, 9) = 45F (1, 1)− 50F (1, 5), and hence we obtain

18
5π2

F (5, 9) = g(−4)− 2g(4). (74)

Notice that Lemma 1 and Proposition 2 reduce F (3, 7), F (6, 7), and F (3/2, 7) to complicated
elementary integrals. We expect these lattice sums to also equal values of hypergeometric
functions, although we currently see no way to prove it.
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LR07 M. N. Laĺın and M. D. Rogers, Functional equations for Mahler measures of genus-one curves,
Algebra Number Theory 1 (2007), 87–117.

413

https://doi.org/10.1112/S0010437X11007342 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007342


M. Rogers and W. Zudilin

MO97 Y. Martin and K. Ono, Eta-quotients and elliptic curves, Proc. Amer. Math. Soc. 125 (1997),
3169–3176.

Mel11 A. Mellit, Elliptic dilogarithms and parallel lines, Preprint (2011).
Rod99 F. Rodriguez-Villegas, Modular Mahler measures I, in Topics in number theory (University Park,

PA, 1997), Mathematics and Its Applications, vol. 467 (Kluwer Academic Publishers, Dordrecht,
1999), 17–48.

Rog11 M. Rogers, Hypergeometric formulas for lattice sums and Mahler measures, Int. Math. Res. Not.
IMRN 2011 (2011), 4027–4058.

RY11 M. Rogers and B. Yuttanan, Modular equations and lattice sums, Preprint (2011),
arXiv:1001.4496 [math.NT].

Sla66 L. J. Slater, Generalized hypergeometric functions (Cambridge University Press, Cambridge,
1966).

Som M. Somos, Dedekind eta function product identities, available at
http://eta.math.georgetown.edu/.

Sti06 J. Stienstra, Mahler measure variations, Eisenstein series and instanton expansions, in Mirror
symmetry V, AMS/IP Studies in Advanced Mathematics, vol. 38, eds N. Yui, S.-T. Yau and
J. D. Lewis (International Press & American Mathematical Society, Providence, RI, 2006),
139–150.

WL88 Shi Dong Wan and Ji Bin Li, Fourier series of rational fractions of Jacobian elliptic functions,
Appl. Math. Mech. (English Ed.) 9 (1988), 541–556.

Wol07 The Wolfram function site, Complete elliptic integral of the third kind: identities (formula
08.03.17.0003) (2007), avalaible at http://functions.wolfram.com/08.03.17.0003.01.

Mathew Rogers mathewrogers@gmail.com
Department of Mathematics and Statistics, Université de Montréal, CP 6128 succ. Centre-ville,
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