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ON OUTER-COMMUTATOR WORDS
JEREMY WILSON

Introduction. Let F be the group freely generated by the countably
infinite set X = {x1, %9, ..., %y ...}. Let w(xy, %9, . . ., x,) be a reduced word
representing an element of F and let G be an arbitrary group. Then V(w, G)
will denote the set

{w(glr g2+« gn)lgl € G}

whose elements will be called values of w in G. The subgroup of G generated by
V(w, G) will be called the verbal subgroup of G with respect to w and be denoted
by w(G).

A conjecture attributed by Turner-Smith [7] to P. Hall states that if V(w, G)
is finite, then w(G) is finite. A word w for which the conjecture holds for all
groups G is called concise. It is an unsettled problem whether all words are
concise. For a survey of present knowledge on this problem the reader is
referred to D. Robinson [5]. In [7] Turner-Smith made a detailed study
of conciseness for a special class of commutator words, namely the outer-
commutator words (henceforth OC-words,) which we now define.

Take T to be the set of all commutator subgroup functions ¢ (see P. Hall
[1]) obtainable from the identity function v (define by v(G) = G for all
groups G) by a finite succession of commutator operations. For ¢, ¢ € T,
define

(¢¥) (G) = [6(G), ¥(G)],

so that T' is a commutative groupoid generated by the single element . For
each ¢ € T we may now define the length I(¢), by taking /(y) = 1 and
HeB) = I(a) + I(B) for a, B € T. We now associate with each element of T a
word as follows:

(i) with v is associated the word xi;

(i) if u(xy, x2 ..., %,) and v(xy, ..., x,) are associated with p and ¢ € T
respectively, then

[u(xl, Koy o v ey Xy), Z’(xH-l; .. xH—s)]

is associated with ¢y.

The collection of all words associated with elements of T' are called outer-
commautator words. In future, if w is a word associated with ¢ € T, then V(w, G)
will be denoted ¢*(G). (It should be noted that, though two different words
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can be associated with the same subgroup-function, they will always give rise
to the same value set.)
In this paper it will be proved that

THEOREM 1. All outer-commutator words are concise.

A related problem to that of conciseness is verbal ellipticity. Let w as before
be an element of F and G be an arbitrary group. If x is an element of w(G), then

X = wi'we?. .. w, " where w; € V(w,G) and ¢; = +1.

The smallest natural number 7 for which such a set of w;'s exists is called the
w-length of x. If there is a finite bound on the w-length of the elements of w(G),
then G is called w-elliptic. If a group G is w-elliptic for all words w, then it is
called verbally elliptic. In [6] P. Stroud was able to prove the following.

TurEOREM (Stroud). If F is finitely-generated Abelian-by-nilpotent group, then
G 1is verbally elliptic.

However there are plenty of groups which fail to be verbally elliptic, as is
shown by a result of A. H. Rhemtulla [3].

TueoreMm (Rhemtulla). Let A and B be non-trivial groups and let w be a non-
trivial proper word. Then the free product A x B is not w-elliptic unless A and B
both have order two.

In his thesis P. Stroud asked whether polycyclic groups are verbally elliptic,
the answer to which is still unknown. However for OC-words we can prove

TuroREM 2. 4 polycyclic group is w-elliptic for every OC-word w.

In the case when w = [x1, x.],a far more general result has been obtained by
A. H. Rhemtulla [4], namely.

TueorEM (Rhemtulla). If G is Abelian-by-(soluble with the maximal condi-
tion on normal subgroups), then G is w-elliptic.

(Some of the techniques used to establish Theorem 2 are essentially general-
izations of techniques used in [4].)

Theorems 1 and 2 are both proved by being reduced to the same question
about a free commutative groupoid with one generator. Then the groupoid
problem is solved.

The contents of this paper are an abridged version of the major part of my
Ph.D. thesis at the University of London. I would like to thank Professor
O. H. Kegel for his help and encouragement, Dr. R. Dark for many useful
comments and the referee, whose suggestions helped to reshape the paper in a
more readily comprehensible form. Thanks are also due to the Science Re-
search Council for financial support and to the University of Lancaster from
whom I was receiving a Tutorial Fellowship when this paper was written.
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1. Conciseness. In this section the conciseness of OC-words is reduced to
a question about a free commutative groupoid on one generator. (An element
¢ € T will be called concise if an associated word is concise, i.e. if ¢(G) is finite
whenever ¢*(G) is finite.)

The following reduction lemma holds for an arbitrary word, but we will only
prove it for OC-words.

LemMA 1. If ¢ € T is not concise, then there exists a group G for which ¢*(G)
is finite and ¢ (G) is non-trivial, torsion-free and Abelian.

Proof. If ¢ € T is not concise, then there exists a group H for which ¢ (H) is
infinite and ¢* (H) finite. Let x € ¢*(H). Then it is clear that all conjugates of
x are also in ¢*(H) and since ¢*(H) is finite it follows that Cyy)(x) has finite
index in ¢(H). But Z(¢(H)) is the intersection of a finite number of such
centralizers and hence has finite index in ¢(H), so that by Schur’s Theorem
(see for example [2, Theorem 8.1, p. 59]) ¢(H)’ is finite. Now ¢ (H)/¢(H)' is
finitely generated and Abelian, so there exists 77 < H such that

o(H) 2T d ¢(H)

with 7'/¢(H)' infinite and ¢(H)/T non-trivial and torsion-free. Since ¢ (H)’
and I"/¢ (H)' are finite, T is finite, and since ¢ (H) is infinite, ¢ (F1)/7" is infinite.
Let G = H/T. Then ¢*(G) is finite and ¢(G) = ¢(H)/T, which is infinite,
torsion-free and Abelian.

Before we proceed to reduce the problem to one about groupoids, we need
a few preliminary definitions concerning free commutative groupoids.

When writing products in a commutative groupoid a left-normed notation
will be adopted. This is to say if ai, @2, . . ., a, are elements of the groupoid,
then ajas . . . o, will mean ((... (@i@2)as) ... )a,).

In future L(y) will denote a free commutative groupoid with generator v.
We define the length function /:L(y) — N as for T.

Definition 1. Let @, 8 € L(y). The sentence “‘a is B-valued’ is defined by
induction on I(a). If I(e) = 1; then a is B-valued if 8 = v. Let > 1 and
suppose the sentence ‘“‘a is §-valued’’ has been defined for /(a) < n. Then if
I(a) = n, a is B-valued if either 8 = ¥ or there exist a1, as, B1, B2 € L(y) such
that a; and a; are 8;- and Bs-valued respectively, where o = a;az and 8 = B18..

Note that “a is B-valued’’ is a transitive relation. We can define a groupoid
homomorphism f:L(y) — T by defining f(y) to be the identity subgroup func-
tion v. (In future f will always refer to this homomorphism.)

Definition 2. If a, B € T, then we will say that « is B-valued if there exist
o, B’ € L(y) such that &’ is §’-valued, f(o’) = @ and f(8’) = B.

The motivation behind the last definition is that if « is 8-valued fora, 8 € T,
then o* (F) C B*(F).
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We now define a set of quasi-orders (i.e. reflexive, transitive relations) on
S(A4), the collection of all finite subsets of 4, where 4 is either L(y) or T.

Definition 3. Let A = L(y) or T'. Then we introduce the following relations
on S(4).

(I) Let Sy, Sy € S(4). Then we will write S; < .S, for each a € .Sy, if one of
the following holds:

(i) there exist elements a;(¢ = 1,2,...,#n) in 4 such thate = ajas . . . a,
and such that @ ... a, is a member of S,,

(ii) there exist elements a;(z = 1, 2, ..., n) with » = 3 in 4 such that
a = ajas . . . o, and such that asaiasay . . . @, and asasaias . . . @, are in S; (i.e.
the elements obtained from a by cyclically permuting the first three «/'s are
in Sz),

(iii) there exists an element 8 € S, such that « is 8-valued.

(IT) Let Sy, S; € S(4) and B8 € 4. Then we will write S; < 8S; if for each
a € .5 either

(i) a € Sy or

(ii) there exist a;(z =1, 2, ..., n), #n = 2, such that o = ajas. .. a,,
Yyas . . ., is B-valued, and the set

T(a, asy...,a,) = {on(@ie)as . . . oy 10z (0i@eas)os . ooty « o oy

aq . ..ai_l(al. ..ai)aﬂ.l. e Oy oo vy, 01 . .an_1<a1a2. an)}

is contained in S,.
If S1, S, € S(4), 8 € A and either S; < Sy or S; < 8 Se, then we will write
S; < (B) Se.

Using (I) and (II) we now define two quasi-orderings on S(4).
(III) If S1 < Si+1 for Sz € S(A)(i = 1, 2, ceo, R — 1), then Sl < Sn.
IV IfS; < (8)Siy1forS; € SA)(E=1,2,...,n —1),and 8 € A, then

Definition 4. The derived elements §, € L(y) (r = 0) are defined by induction
onr If »r =0, 68 =+v. If §, is defined for 0 < » < n, then §,,1 = 6,0, The
image of §, in T under the homomorphism f will also be written §, and be
referred to as a derived element, but no confusion will occur since it will

always be clear which groupoid we are working in.
The following lemma turns our problem into one about the groupoid T'.

LEMMA 2. Let 7 be a fixed positive integer such that for some ¢ € T we have
¢ <K (¢)b; for all k = r. Then ¢ is concise.

To facilitate the proof we need the following additional

LeMMA 3. Suppose that ¢ € T is not concise and G is a group such that ¢(G) is
torsion-free Abelina and ¢*(G) is finite. Then if a; € Tt =1, 2, ..., 7),
yas . .. a, is ¢-valued and B(G) =1 for all B € T(e, - .., a,), it follows that
(a1a2 “ e a,) (G) = 1.
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Proof. Let a; € a*(G) fori =1, 2, ..., r. It is easily verified that for all
m =1,
[a{", ag] = [(ll, (lz}m mod (a1a2a1) (G),

[ar™, az, as] = [[a1, az]™, a3] mod (a1 (iasz)as) (G)

= [a1, as, a3]™ mod (a1 (ia2)as) (G) (rees (naers) ) (G),

and by induction
[a’lmy A2y« .. ,CLT]
= [ay, as, . .., a;]" mod I_Iz (@1...am1(@r...az)...a;)(G)

[ m
= la1, az ..., a,|",

because 8(G) = 1 forall 8 € T (a1, s, ,...,a,). Now a;™ € G, so the left-hand
side is always an element of (yas...a,;)*(G). But ya:z...a, is ¢-valued,
hence (yas...a,)*(G) C ¢*(G). By hypothesis ¢*(G) is finite. Therefore the
set {[ay, as, . .., a."|m = 1} is finite. It follows that there exists an integer
such that [a1, as, . . ., a,]™ = 1. Since ¢ (G) is torsion-free [ay, as, . .., ¢,] = 1.
Therefore (a2 . ..a,;)(G) = 1. (This lemma was motivated by a study of
Proposition 6 in [7].)

Proof of Lemma 2. Suppose by way of contradiction that there exists ¢ € T,
satisfying the conditions of the lemma yet failing to be concise. By Lemma 1
there exists a group G with ¢(G) torsion-free Abelian and non-trivial and
¢* (G) finite. Since G/¢(G) is soluble and ¢(G) is Abelian, G is soluble. Hence
8:(G) = 1 for all sufficiently large k.

Since ¢ K (¢)d; for all sufficiently large &, it is enough to prove that o (G) =1
for all @ € S, whenever S; < (¢)S: and a(G) = 1 for all @« € S,. From this it
would follow that ¢(G) = 1.

Let us suppose thata = ajas ..., € Sy and B(G) = 1 for all B € Ss.

Case (a) S1 < Sp and 1(i) holds: Here az . . ., € Sa. Thus

a(G) = [a1(G), a2(G), . .. ,,(G)] C [@2(G),...,0,(G)] = 1.

Case (b) Sy < S2and 1(ii) holds: Here asasaias . . . a,, and asooses . . . a, € So.

Thus
a(G) = [a1(G), a2(G), . .., a,(G)] C [a2(G), a3(G), a1(G), as(G), . . .,
a,(G)[as(G), a1(G), a2(G), as(G), . . ., a,(G)] = 1.

Case (c) S1 < S» and 1(iii) holds: Here 8 € S; and « is B-valued. Thus
a*(G) C B*(G) = 1. Therefore a(G) = 1.

Case (d) S; < @S2 and 11(i) holds: Here « € S,. Thusa(G) = 1.

Case (e) S1 < ¢Sy and 11(ii) holds. Here ~a:...a, is ¢-valued and
T (o, sy . .., ) € So. Thus by Lemma 3, «(G) = 1.

COROLLARY If a € L(y) and a < (a)d; for all k = r for some fixed integer r,
then f(a) € T s concise.

https://doi.org/10.4153/CJM-1974-058-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-058-1

OUTER-COMMUTATOR WORDS 613

Proof. A routine check will establish that whenS; < (¢)S,for some ¢ € L(v),
it follows that f(S1) < (f(¢))f(S2). The details are omitted.

Some of the more important properties of the relations defined in Definition 3
are now established.

LemmA 4. If o, 8, ¢ and ¢ € L(y), with ¢ being Y-valued and oo <K (¢)B, then
a < (Y)B.

Proof. This follows almost immediately from the definitions.

In the rest of this paper if U and V € S(L(y)) then UV will denote the set
{uvlu € U,v € V}.

LEMMA 5. If «, B € L(y) with U, V € S(L(v)), and U K («)V, then
B K (aB) VB \YJ afe.

Proof. Let U =51 < (@)S: < (o) ... < (@)S, =V, where S; € S(L(v))
(i1=1,2,...,r). It will be shown that
(*) Slﬂ <K (a,B)SHqB Uaﬁa forz = 1, 2, ce e, T — 1.

Since afa appears on the right-hand side, we may by either (I)(iii) or (II)(i)
add aBa to the left-hand side, obtaining
**) SBUaBa K (@B) SiyiBYeapa fori=1,2,...,7r — 1.
It follows from (*) and (**) that
B K (aB) VB \J afa
and all that remains is to prove (*).

Let ussuppose that X =S5; < (@)S;y1 = V. If ¢ € X with ¢ = a1z . .. oy,
wherea; € L(y)and (I) (i) or (ii) holds, then ¢8 € XBanda;...a,8 € Y8 U afa
Or asas0idy . . . o, and agonasay . .., B(n = 3) € YB\U afa. If (I)(ii1) holds,
then there exists § € Y such that ¢ is 6-valued. Hence there exists 63 € Y8
such that ¢8 is 68-valued. Therefore X8 < YB U afa.

Suppose that (II) holds. It is now shown that if ¢ = a1z . .., € X for
a; € L(y), and vas . . . a, is a-valued, then yas . . . a,8 is aB-valued, and that
if T{ay, az,...,a,) €V, then T(as, @z, . . ., o, y) K YB U afa. The former
statement follows from our definition of valuedness. To prove the latter we
calculate T (s, a2, . . ., a,, 8) which is equal to

{ag(aiee)as . .oy ooy cag(@r. o @pmr)aire . 0By ...,
ay .. apa(@r...ay)Byar...ay(ar...aB)}
= {al(alaz)ag e Opy o oo yO1 .. .ai<011 .. .ai+1)a,-+2 e s Opy oo vy

ar. ..oy (1. ..0,)}B8 U ¢B¢.

Now ¢ is yas . . . a,-valued and yas . . . @, is a-valued. So by the transitivity
of valuedness ¢ is a-valued. Hence by (I) (iii)

¢6 < (aﬁ)T(aly A2y ¢ o oy Oy, B) < Yﬁ \V CZBOZ.
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Therefore ¢8 < (a8) Y8 \U afa for all ¢ € X. In other words X3 < (af)
Y8 U afa and (*) is proved.

The next lemma could be thought of as a proof of the conciseness of the
derived words (a fact originally proved by Turner-Smith [7].)

(If @ € L(v), a” will denote aa . . .a with 7 a’s.)
LEMMA 6. Forr =2 1,8, < (8,)8,41.

Proof. Proceed by inductionon r. If » = 1, 8; = v? and since vy is y2-valued,
VL) () =¥ K (ATHY) <y
Therefore 8§, << (81)02.

Suppose that §, << (8,)8,4+1 for some 7 = 1. Then §,2 < (§,41) {3,% 6,41%} by
Lemma 5, and by induction one can prove that

(*)s  6,° K (641) {6,°1, 6,147}

Next note that 8,13 = 8§¢6¢0102. .., and that 6,3 = §,,15,...8, where 4,
occurs r 4+ 1 times. Since 4, ... §,, with » 4+ 14,’s, is §,.1-valued,
8,718 KL (6,41)T (Brr1y8sy v vy 0p).

Now the term on the right is equal to
(8741087118087« oo 8py v vy Brg1r oo 6, (Brprdy - o . 81))
K 8,012 by (I)(3). S0 6,73 K (8,41)0,11%2 = O,12.
By the repeated use of (*);fors = 2,3,...,7 4+ 2, one obtains
Srp1 = 08,2 <K (8,41) {6,743, 8,112}
Therefore
Orp1 <K (By41)0742.
Consider the set
% = {a € L(y)la < (@), for all r}.

If 8 € %, then by the corollary to Lemma 2, f(8) is concise. It will now be
shown that % has a certain property & and in the third section of the paper
we will discover that & is possessed only by L(y) and possibly L(y)\{v}.
This will establish Theorem 1. In order to define &’ we need another quasi-
ordering.

Definition 5. Let Z be a subset (not necessarily finite) of L(y), and let
U, V ¢ S(L(y)) with ¢ € L(y). Then we shall write U < (¢, Z") V if for each
a € U one of the following holds:

V) DecV;
(ii) there exist 8, ¥ € L(vy) such that a = 8¢, a is ¢-valued, ¢ € £~ and
WY =ayp € V.
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If there exist S;(z = 1,2,..., %) € S(L(y)) such that for each ¢ < # either
S, K Siyr0rS; < (¢, 2 )Si1 then we will write S; < (¢, 2 )S,. (The X ’s
will usually be omitted except where there might be confusion.)

Definition 6.A subsetZ of L(y) (not necessarily finite) will be said to possess
& if the following conditions hold:
()8, €Z forr = 1;
(ii) if ¢ < (¢, Z )8, for all 7, then ¢ € Z.

LEMMA 7. % = {a € L(y)|a < ()8, for all v} possesses P.

Proof. Certainly §, < (6,)d,. By Lemma 6, é§, << (§,)8,41 and by induction
one can show that §, < (6,)d, for all s = ». If r > s, then §, is §,-valued and
8, K 8:.S008, € ¥ forallr = 1.

Now suppose that U, V € S(L(y)), ¢ € L(y) and U X (¢)V. We prove
that U < (¢) V. Now if ¢ < (¢)8, for all », then we have a sequence

{SilS: € SL(v)), i =1,2,...,n

such thatS; = ¢and S, = §,,andforz =1,2,...,n — 1either S; K Sy or
S; < (¢)Si+1- Hence either S; < Siy1 or S; K (¢)Si41, from which it follows
that ¢ < (¢)8, for all 7, i.e., ¢ € ¥

Suppose that U < (¢)V. Let a € U. Then either a € V or there exist 6,
Y € L(y) such that « is ¢-valued, ¢ € % and ey = Gy € V. Since ¢ € ¥/, it
follows that ¢ << (¥)é, for all ¢. Let s be an integer such that §; is Y-valued.
Then since ¢ < (¥)d,41 = 8,2 it follows, from the fact that &> < ¢?2, that
¥ < (Y)y¢2. Hence by Lemma 5,

Yo << (¥0) {¢°0, yoy}.
By (I) (i), {¢%0, ¢6y} < 0yy. Therefore o = ¢ < (a)ay, and since a is
¢-valued, o < (¢p)ay by Lemma 4. So U < (¢)V and our lemma is proved.

2. Ellipticity in polycyclic groups. If ¢ € I' then a group G will be
called ¢-elliptic if G is w-elliptic for some word w associated with ¢. It will be
shown that the set

2 = {a € L(y)| every polycyclic group is f(a)-elliptic}

has the property &. Applying the result of the final section we will obtain
Theorem 2.

Given a group G and ¢ € T, l;(x, G) will denote the ¢-length of x € ¢(G)
(i.e. the w-length of x where w is some word associated with ¢), and /,(V, G)
will denote the maximum of the set {I;(x, G)|x € N} where N C ¢(G).

The next result is probably well-known though I can find no reference for it.

LEMMA 8. If G isa group, ¢ € T, N C S C ¢(G) and N 4 G, then
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Proof. Letx € S,I,(S/N,G/N) =r and I, (N, G) = 5. Thenls(xN, G/N) < r.
Hence xN = x1'Nxy2N ... x,;N, where x; € ¢*(G), j <7 and ¢; = +1.
Sincex andx; € ¢*(G) fori = 1,2,...,7, 0 = 222, . . x;%y, wherey € N.
Since I4(N, G) =s, v = yfiy.82 g8 where y; € ¢*(G), & = £1 and
k =< s, and it follows that ly(x, G) = j+ k = r + s.

LemMmA 9. If G 1s polycyclic, o, 8, ' and 8’ € T, G is B'-elliptic, 8 1is B'-valued,
af’ 1s o’ -valued and (@BB)(G) = 1, then Ly ((aB)(G), G) is finite.

Proof. Let lg(B(G), G) = r. Since (aBB)(G) =1 and («B)(G) C (G),
(aB) (G) is Abelian, and since G is polycyclic (a8)(G) is finitely generated.
Therefore (aB)(G) is generated by elements of the form |a; b;], where
a; € o*(G) and b; € B*(G) for 1 =1, 2, ..., n. Now [a;, b:]™ = la;, 0"
because [ (@B) (G), B(G)] = 1, but b € B(G) and Iz (8(G), G) = r. Therefore,
since B(G) C B (G), b = c1ca...c for ¢; € B*(G) and ¢ < 7. It will now be
shown by induction on s that Iy ([ay, ¢i62...¢5], G) < s. If s =1, [ay, ¢1] €
(@B8’)*(G) and hence [a4 ¢1] € &'*(G). So Iy ([ay, 1], G) = 1. Suppose the
statement is true for all s less than some fixed s;. Now

[(11, C1... 681:[ = [(li, 681][(11'1 C1... 551—1]081~

By the induction hypothesis, [a;, ¢i¢a . . . €51—1] = witts . . . up where u, € o'*(G)
(B=1,...,h) and & = sy — 1. Thus L ([aq, ci162...¢], G) £ s1. We now
see that I, ([as, 0™], G) = r and hence I, ((«8) (G), G) £ nr.

CoroOLLARY. If G s B-elliptic and polycyclic, a 1s o -valued and (aBB)(G) =
1, then Lo ((@B) (G), G) is finite.

The next lemma shows that all the derived elements are in Z .
LEMMA 10. Let 2" be as defined above. Then 6, ¢ X forr = 1.

Proof. We have to show that every polycyclic group is §,-elliptic for » = 1.
The proof proceeds by double induction on r and the derived length d of a
polycyclic group G. By Corollary 1 of A. H. Rhemtulla [4] the group G is
§1-elliptic. Suppose that all polycyclic groups are é§,,-elliptic for r; < r, for some
fixed » > 1. If G is Abelian, then §,(G) = 1 and there is nothing to prove.
Suppose that all polycyclic groups of derived length less than s > 1 are 6,-
elliptic, and that G has derived length s. Then /;, (G+Y, G') is finite, since G’
has derived length less than s and /5, (G, G) is finite. If it can be shown that
1, (G /GT*D | G/GUHD) is finite, then by Lemma 8, the length [;, (G, G) is
finite and G is §,-elliptic. If GU*D £ 1, then s > 7 4+ 1 and the required result
follows from the induction hypothesis, so we may assume that GO+ = 1.
Therefore

(Br——lérar) (G) - (6767) (G) = 6r+1(G) = 1.

Leta = 6,.4,8 = 6,ya' = d,, 8 = §,—1. Then by Lemma 9, /5, ((6,-15,) (G), G)
is finite. Let H = (§,-16,)(G). By Lemma 8 it is sufficient to show that
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15, (G /H, G/H) is finite, and without loss of generality we may assume that
H = 1. Therefore

(67—167—151‘—1)((;) = [G(T—l)yG(”] =H= 1.

Now in the Corollary to Lemma9put a« =8 = §,_; and o’ = §,. The conditions
of the lemma are satisfied. Hence /;, (G, G) is finite. Therefore G is §,-elliptic.

We can now prove the main result of this section.
LemMA 11. The set 2~ as defined above has the property 2.

Proof. By Lemma 10,6, € & forallr = 1.Let¢ € L(y) such that¢ < (¢)s,
for all ». Then we have to prove that ¢ € Z .

Let f(¢) = a and let G be a polycyclic group which is not a-elliptic. Let Q
be the set of all normal subgroups N € «(G) such that [, (N, G) is finite. Since
G is polycyclic, @ will have maximal elements. Let N; and N; be two such
maximal elements. If x € N1Ns, x = yz for y € Ny, 3 € No. Let L,(N,, G) =
7:(¢ = 1, 2). Then it follows that

la(xr G) = la(yy G) + la(zy G) =7+ .
Hence
Za(N1N2y G) é la<le G) + sz(N2y G)'

So N; = N,. Thus Q has a unique maximal element N.

Nowif M <G, M € a(G) and l,(M/N,G/N) is finite, by Lemma$8, [, (M, G)
is finite so that M € N. Since G is not a-elliptic, /,(a(G), G) is infinite and by
the above argument we see that /,(a(G/N), G/N) is infinite. Therefore G/N is
not a-elliptic. Thus we may assume without loss of generality that if Ny < G,
Ny € a(G) and I, (N, G) is finite, then N = 1.

Since G is soluble, there exists an s such that 6,(G) = 1. Now ¢ < (¢)s,, so
we can pick S; € S(L(y))z =1, 2, ..., n) such that ¢ = .S;, S, = 6§, and
Si < ¢Si+1 or Sl < Si+1 for 7z < n.

The remainder of the proof is divided into two parts. Let U, V € S(L(v)).

Part 1. If U < ¢V and f(B)(G) = 1 for all B8 € V, then f(8)(G) = 1 for all
gecU.

Part 2. If U < V and f(B)(G) = 1 for all B € V, then f(8)(G) = 1 for all
geU.

From parts 1 and 2 it will follow that, since §,(G) = 1,a(G) = f(¢)(G) = 1.
Thus we will have a contradiction and G must be a-elliptic.

Proof of Part 1. Suppose that, for U, V € S(L(y)), U < (¢)Vand f(8)(G) =
lforallB € V.LetB € U. Then either 8 € V, in which case f(8)(G) = 1, or
there exist 8, ¢ € L(v) with ¢ € & such that 8 is ¢-valued, 8 = 6y and By =
gy € V. Since Yy € V, f(6yy¥)(G) = 1. Furthermore G is polycyclic and
f(¥)-elliptic, because ¢ € Z . Also f(8) is f(¢)-valued and f(8) = f(8)f(¥). So
applying the corollary to Lemma 9, we see that Z,( f(8) (G), G) is finite. Hence

f®)G) =1
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Proof of Part 2. Suppose that, for some U, V € S(L(y)), U < V and
f(8)(G) = 1forall B € V. We have to consider cases (I) (i), (ii) and (iii). Let

B =PBB2...0, € U.
Case 1(i). Here B2 ..., € V. Hence

f(BB2 ... B)(G) = [f(B1)(G),f(B2)(G), ..., f(B)(G)]
[fB2)(G), ..., f(B)(G)] =f(B2...B)(G) = 1.
Case 1(ii). Here {B2838181 . - - Bu, BsB1B2Bs . . . Bu} & V.

[£(B1)(G), f(B2) (G), f(85) (G)] S [f(B2) (G), f(83)(G), f(B1) (G)]
[f(8:)(G), f(B1)(G), f(B2) (G)]

by the three-subgroup lemma (see for example corollary to Lemma 3.2 of [2]).
Hence (818283 ... 8.) (G) & f(B2BsB:. .. Bx) (G)f(BsB1B2 . . . B,) (G) = 1. There-
for f(8)(G) = 1.

Case 1 (iii). Here there exists 8 € V such that g8 is §-valued. So f(8) is f(6)-
valued and f(8) (G) C f(6) (G) = 1.

Hence £ has the property 2.

3. Sets which possess 2. Here we prove the key result thatifa subset L (y)
has & it is either L(y) or L(y)\{v}. Hence Theorems 1 and 2 follow as corol-
laries.

Definition 7. Define functions N\, A:L(y) — N (the natural numbers) as
follows:

if ¢ € L(vy) is 8, for some 7, then X\(§,) = r and A(5,) = 1;
if ¢ is not derived and ¢ = a8, then A(¢) = max {\(a), A(8)} and
A(p) = A(a) + A(B). (Note that A(¢) = 1 if and only if ¢ is derived.)

LemMA 12. If ¢ € L(y) and N¢) = m, then ¢ << oy,

Proof. 1f 1(¢) = 1, then ¢ = v and N(¢) = 0. Thus ¢ < &,. Suppose that,
for 8 ¢ L(vy) such that [(8) < m, 6§ << &\. Let ¢ € L(y) be chosen so that
1(¢) = m. Then there are a, 8 € L(v) such that ¢ = of. Since /(¢) = I(a) +
1(B), I(a) and I1(8) < m. It then follows that o << 8y and 8 <K 8x(s. Therefore
af K B K fwdrg. Hence ¢ K drwbrs)- If ¢ = 6, for some 7, then ¢ < §,.
If ¢ is not derived, A(¢) = max {A(a), N(8)} and Swdre <K drg. Therefore
¢ Lo

LemMma 13. If MNa) = N(B), where a, B € L(v), then af K V for some V €
S(L(v)), where, for each 6 € V, 8 is a-valued, A(0) < Ala) and 1(0) > l(a).

Proof. Choose a, 8 € L(vy) such that M(a) = N(8). If A(@) = 1, thena = §,
for some r. Hence off K adrg K 8,00@p. If » < N(B), then aBf < ¢ and
5)\(;9) is o, = a—valued, A((S)\(,g)) =1= A(a) and l(a)\(g)) > l(a) If r = }\(6),
af K 8,41, and 8,41 is §, = a-valued, A(8,11) = 1 = Aa) and 1(5,41) > I(a).
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Letn = A(a) > 1 and suppose that the lemma holds for ; when A (o) < 7.
Then there exist 61, 6; € L(vy) such that @ = 6,6;, and A(a) = A(8;) + A(6,),
because « is not derived. Hence there exist V; ¢ S(L(y)) such that 8,8 < V;
(for ¢ = 1, 2) and such that if ¢ € V;, then ¢ is 6;-valued, A(Y) < A(6;) and
1) > 1(8,). So

aff K {(‘9118)92, 31(025)}-
Hence 01;8 < {Vloz, 01V2}. If 1[/1 E Vl, then
A(Wls) = A1) + A(62) = A(61) + A(62) = Ale),

Y10y is 0185 = a-valued, and
I($102) = L(Y1) + 1(02) > 1(6:) + 1(62) = l(a).

Similarly we see that if ¢ € Vs, 6192 is a-valued, A(61y2) = A(a) and [(61y2) >
I(a). So, putting V = {V16,, 6:V5}, the lemma is proved.

LEMMA 14. If A(0) = m and 1(6) = 2™m, then § < §,.

Proof. If A(8) = 1 and 1(6) = 27, then 6 = §, for some s. Now [(§) = 2° =
27, s0r =< 5,0, 1s 6,~-valued and 0 < §,.

Assume thaty < §,forl(y) = A@¥)2"and1 £ AY) < m. IfA@B) = m > 1
there exist 6;, 8, € L(y) such that 6 = 6,0,. Suppose that 1(§) = 2"m. Let
A(0y) = my, A(0:) = m2, my, mae < m. Then 1(6;) + 1(62) = 2"my + 2"m, and
either /(1) = 2"m; or [(82) = 2"m,. Therefore either §; < 8, or §; < 8, by the
induction hypothesis. Since § < 6; and § < 8, it follows that § < §,.

We now prove our result on sets with the property &.
LemMA 15. If & is a subset of L(y) with P, then L(y)\{v} C % .

Proof. Let 6 € L(v)\{v}, The proof proceeds by induction on A ().

If A(®) = 1, then @ is derived and 6 € Z .

Let 7 > 1. Suppose that ¢ € 2~ whenever A(Y) < n. Let A(8) = n. Then
there exist @ and 8 such that # = af. Since A(#) > 1, 6 is not derived. Hence
A() = A(a) + A(B), A(a) and A(B) < #u, and therefore « and @ are elements
of Z.

We claim that there exists a sequence of sets S; in S(L(y)) such that S; =
0, S; € (0)Siy1 and if ¢ is an element of S;, then ¥ # v, ¢ is 6-valued and
¥ = Y1y where A(Y1) + A(Y2) < nand I(¥) > 1.

If this can be shown, then the rest of the lemma will follow, for if ¢ € .S,2s,
1(¢) > n2* and, by Lemma 14, ¢ < §,. Therefore S,2: << §, and we see that
8 < (8)8, for all 5. Hence 6 € Z'.

Suppose that S; has been defined Lety € S;. Then ¢ = y1ys, where A(Y1) +
A(Ys) = n. Therefore A(Y1), A(s) < n. If follows that ¢y, ¥2 € & by the
induction hypothesis. Take A(¥1) = N(¥2) without loss of generality. Then
by Definition 5, ¢ € (¢)¢1¥2¥2. By Lemma 13 there existsaset V() € S(L(y))
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such that ¢, < V(¥), where V(¥) consists of y;-valued elements and, for
each ¢ € V(¥), A(s) £ A1) and I(s) > I(Y1). Since Yipaps K V()¢s, we
can write ¢ <K (@) V(). If ¢ € V(¥), then oy» is Y1 = ¢-valued and hence

¢-valued. Furthermore

A(o) + AW2) = A1) + A(Y) S 7
and

Hops) = (o) + 1(¥2) > 1(¥1) + L(¥2) = L(¥).
Now I(y) > 1, so I(ay2) > ¢ + 1. Putting

S =U {V(‘P)%l\& € Si},

we see that .S; < (¢)S:+1 and Syy1 has all the required properties. Hence the
lemma is proved.
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