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ABSTRACT. After the very suggestive results of the early days, the theory of the solar
dynamo has now entered a period of re-evaluation. It is clear that our initial expectations
have been too high. I shall review some of the recent attempts to formulate nonlinear and
stochastic mode excitation theoretically. We now have evidence from synoptic observations
that the solar dynamo features many periods. Periods both shorter and longer than the
fundamental 22 yr cycle have been claimed. The phase stability of any of these periods
is uncertain. The phase memory of the 22 yr period may be as short as ~ 10 cycles, but
could also be much longer. Linear mean field theories permit only one marginally stable
mode; they predict one period with an infinitely long phase memory. Attempts to explain
multiperiodicity and finite phase memory effects fall in two categories:

(1). Nonlinear models. These feature a few nonlinearly coupled variables and may exhibit
a multiperiodic or chaotic behaviour; (2). If the number of relevant variables is very high,
then the dynamo behaves stochastically. It has been argued that this takes the form of
stochastic excitation of many dynamo modes (overtones).

1. Introduction

Dynamo theory of the solar cycle has made a very rapid progress in the period,
say, 1965 - 1980. Many mean field dynamo models have been constructed during
that time which reproduced a number of the basic features of the large-scale solar
magnetic field. A number of problems had been recognised at an early stage, too
(magnitude a coefficient, role of nonlinearities, E-W orientation of bipolar sunspot
groups, etc.), but there appeared to be a genuine optimism in those days that these
would be solved in due course. In the meantime, (linear) mean field model building
is out of fashion. And in retrospect it is clear that much of the successes of mean
field theory, if very suggestive, were only apparent, and that our initial expectations
had been pitched too high. As a result, dynamo theory of the solar magnetic field
finds itself in a period of reappraisal. Two causes can be pinpointed for the crisis:
(1). The required increase of the angular speed Q with decreasing r is neither found
in selfconsistent simulations (Gilman and Miller 1981; Gilman 1983; Glatzmaier
1985a), nor measured by helioseismology (for a review see Harvey 1988).

(2). The validity of mean field theory is subject to a number of restrictions which
have always been somewhat obscure. As a result, mean field modeling is often
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handled as an exercice in applied mathematics, with little regard for the physical
restrictions and selfconsistency (the ’cookbook approach’).

In recent years, attention has shifted from the convection zone to the boundary
layer between convection zone and radiative interior as a more likely loeation for
the solar dynamo (Spiegel and Weiss 1980; Galloway and Weiss 1981; Spruit and
Van Ballegooijen 1982). A number of problems that beset a dynamo operating in
the convection zone, among which in particular the wrong rotation curve mentioned
under (1), may be defused in this way, see e.g. Glatzmaier (1985b). The arguments
have been reviewed by Schiissler (1984), Stix (1987) and by Gilman et al. (1989).
Dziembowski et al. (1989) report an inward decrease in Q of about 20 nHz in a
50000 km layer at r/R = 0.73. If confirmed, this would provide a strong support
for the idea of a boundary layer dynamo.

It is not my intention to discuss in detail the relative merits of specific dynamo
models (see e.g. Parker 1987). The topic of dynamo mode excitation is more closely
connected with the problems indicated under the heading (2) above. Kinematic af2
dynamos are strictly periodic in time. The magnetic field behaves as the Phoenix,
arising from the ashes of the previous cycle, continually rehearsing the very same act
as before. Mode excitation in such dynamos is trivial. There is one eigenmode with
an infinite phase memory. Many authors have remarked that this is unsatisfactory,
and one way out is to consider nonlinear theory. Another possibility is to no longer
neglect the ’rest terms’ in the dynamo equation, which act as random forcing terms.
In this way, too, other modes may be excited. This topic is closely related to the
question whether <B> is a two-scale average or an ensemble average.

Let me give one example in support of my allegation that the restrictions of
mean field theory are not always appreciated, and then move on to mode excitation
proper. For locally isotropic turbulence v, the dynamo coefficients a and 3 are

a=—Llejp [P dr <o)Vt —1)> ~— <v-Vxv>1/3; (11
B =1 [7dr <vi(t)vi(t — 7)> ~ <v?> 7/3, (1.2)

where 7. is the correlation time of v. The gradient V; 8 contains two correlation
functions of the type <a;V; b;> which vanish, being isotropic tensors of rank 1. It
follows that V3 = 0 and that a position-dependent 8 must necessarily be tensorial.
A similar observation goes for a. The physical reason is that isotropic, inhomoge-
neous turbulence does not exist. The role of anisotropies in the turbulence has been
emphasised by Réadler (1980; 1983); see also Moffatt (1983) and Schiissler (1984).
An analysis of what errors ensue if we nevertheless employ a position-dependent
scalar a and S is to my knowledge not available. A better known difficulty is that
the validity of (1.1), (1.2) and the dynamo equation (2.1) below requires v7./A; < 1
(First Order Smoothing Approximation or FOSA; A, = correlation length of v),
while in reality vr./A; ~ 1. I shall have no opportunity to discuss attempts to go
beyond FOSA, and refer to Stix (1987) for a review. It is conceivable that problems
such as these have added to the failure of mean field models, in the sense that there
may exist as yet totally unknown and unexplored corners in parameter space.
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2. Mode Excitation in Mean Field Theory

The transport properties of the mean field <B> are determined by the dynamo
equation. Its basic form is (Moffatt 1978; Krause and Radler 1980):

0;<B>=D-<B>+F; D=Vx(vox +a — Vx). (2.1)

Here, vy is the mean flow, and a and S are related to the statistical properties of
the turbulent flow v superposed on vg as in (1.1) and (1.2). The meaning of <B>
is not clear. In the traditional two-scale approach (Moffatt 1978, 1983; Krause and
Radler 1980) <B> is a spatial or time average over an unspecified scale in between
the largest (size or period dynamo) and the smallest one (eddy size or turn-over
time). The term F collects all unwanted terms due to the fact that the averaging
operator <-> usually does not commute with V, 9, etc. F is generally neglected
on the ground that it is formally of order A/R < 1 (R = radius of the dynamo),
but there are now indications that F can be large, see sections 5.1 and 6.
Separating the time, <B> = bexp(At), we find from (2.1):

D-b=)b. (2.2)

Eq. (2.2) has a discrete spectrum of eigenvalues \,, and eigenfunctions or (eigen)-
modes b,, determined by the geometry of the system and the boundary conditions
via the machinery of classical mathematical physics. The solution of eq. (2.1) is

<B>=3Y" cnba(r) exp(Ant) . (2.3)

The constants ¢, are determined by the initial condition. The mode concept is
somewhat ambiguous as one may always choose another basis set {b/,}. The eigen-
value problem (2.2) has been solved for a great variety of different models (Roberts

1972; Stix 1978, 1981; Moffatt 1978; Krause and Ridler 1980; Radler 1986a; Parker
1979, 1987 and references therein). For an infinite, homogeneous dynamo

Re\ ~ (akAQ/2)/? — Bk? (2.4)
Im\ o (akAQ/2)/? . (2.5)

The most important change for a finite, inhomogeneous dynamo is that the wave
vector k is quantised and approximately equal to 27 /(wavelength eigenmode). Fur-
thermore, a and § are understood to be typical values and AQ = |Vug| ~ difference
in angular speed in the convection zone; AQ > ak is assumed (a2 approximation).
According to (2.4) differential rotation and a-effect amplify, while turbulent mixing
(B) damps the mode. Re ) is a decreasing series, see Fig. 1; its relative position
with respect to Re A = 0 is determined by the dynamo number D:

D = aAQRY /257 . (2.6)

Re)X = 0 implies (kRp)® ~ D. Modes with smaller (larger) k are unstable
(damped); the smallest k is about 2r/Rg. The critical value of D is therefore of
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FIG. 1. Growth rates of the eigenmodes b, of <B>. Increasing n means larger k or smaller
'wavelength’. The zero level is determined by D. When D =D,, the largest growth rate of
<B> is zero (marginally stable dynamo). However, <BB> still has a linear instability
section 5.1). Right vertical axis: <BB> can be made marginally stable by decreasing D
typically by a factor of order 1) so that D <D.. In practice this means that 8 is increased,
as aAf2 is fixed by (2.5). (after Hoyng 1988).

the order of D, ~ (27)®. For simplicity I ignore the negative branch of D. Just as
in any system described by a differential equation, also here two mode excitation
mechanisms may be distinguished:

(a). Instability (D > D.). One or more modes have ReA > 0. These then grow
spontaneously from noise, until the validity of (2.1) breaks down. An idea often
invoked in the context of mean field theories is that 'nonlinear effects’ change the
parameters until D = D, (e.g. B may reduce the helicity and hence a). The fun-
damental mode is then marginally stable and may be excited at a constant am-
plitude. The period is P = 2r/Im ) ~ (4TRo/aAR)!/2. Hence, aAQ is fixed by
requiring P = 22 yr, and f follows from Re A = 0. Overtones have shorter periods
and are not excited as they have Re A < 0. Such a dynamo would have a single fre-
quency and an infinite quality factor Q = w/Aw, as the frequency uncertainty Aw
is zero. However, the fine tuning of D need not be stable. Many authors assume
that D > D, so that overtones are excited. Complicated nonlinear interactions
between modes and the velocity field may occur which restrict the amplitudes. In
that case the dynamo has several frequencies, each with a finite Q.

(b). Ezternal forcing (D < D.). In that case all ReA < 0 so that according to
(2.3), <B>— 0. Subcritical mode excitation may occur if F in (2.1) is sufficiently
large. F depends on v and thus has in principle the character of a random forcing
term. Writing F = Xf,(t)b, and <B> = X ¢x(t) b, and supposing for simplicity
the eigenfunctions b, to be orthonormal, we find from (2.1) and (2.2):

https://doi.org/10.1017/5S007418090004434X Published online by Cambridge University Press


https://doi.org/10.1017/S007418090004434X

363

be=idx+fi — <B>= 3k b f0°° dr exp(Ax7) fi(t — 1) . 2.7

Hence those modes for which fi # 0 (possibly all modes) are excited and each
would have a finite @ (finite phase memory). Note that D < D, provides merely
a lower limit for 3; the numerical value of 8 is no longer fixed. Note further that
D < D, does not imply that nonlinear interactions are unimportant.

Another external forcing mechanism would be a relic field in the radiative
core, which imposes a nonzero boundary condition on eq. (2.1) at the base of the
convection zone. This boundary condition could be periodic, in which case the
phase stability of the dynamo at that frequency may be very high.

3. Observations

Many solar parameters are now known to vary with the magnetic cycle: luminosity
(Hudson 1988; Willson and Hudson 1988), the differential rotation (torsional oscilla-
tions; Howard 1984), modulations in the meridional circulation (Ribes and Laclare
1988), the size distribution of surface magnetic flux (Zwaan 1987), and maybe the
frequencies of solar oscillations (Gough 1988a; Gelly et al. 1988). I shall restrict
myself below to observations which pertain directly to dynamo mode excitation.

3.1. VARIATIONS IN THE 22-YEAR PERIOD

The 22 yr magnetic cycle shows fairly large variations in the period lengths. From
the epochs of sunspot extrema (Allen 1973) one finds 6 Prpms /P ~ 0.1, where P =
mean half cycle period. Are subsequent period variations § P independent, or is the
cycle rather a passive and noisy reflection of a high @ oscillator in the solar core? In
the former case there would be a progressive loss of phase memory; in the latter case
the phase is locked and never far away from the phase of the core oscillation. Little
progress has been made on this old question. Yule (1927) suggested that the phase
memory is finite. Dicke (1978) analysed the epochs of sunspot number extrema
and concluded that the data indicate phase locking. In a recent study, Dicke (1988)
upheld his position. He also found that the transit time for magnetic flux through
the convection zone is ~ 12 yr, which is indeed of the order of the turbulent diffusion
time d?/8 over the depth d of the convection zone. However, Gough (1978, 1981,
1987) made a very similar analysis of the same data and concluded he could not
decide either way. If anything, he found a preference for a random walk in phase.
Whitehouse (1985) argues that both models are too simple, as he finds evidence for
systematic variations in the cycle period.

Barnes et al. (1980) have simulated yearly sunspot numbers from narrowband
Gaussian noise and obtained a remarkable similarity with the true cycle. On a
longer timescale they also see protracted sunspot minima as during the Maunder
Minimum (Eddy 1976, 1983). It appears that the data set (AD 1610 - present)
is not sufficient to draw a conclusion regarding the phase stability. Unfortunately
(for solar physics), the Precambrian Elatina sediment data are no longer believed
to contain an extended solar cycle chronology (Williams 1981, 1985; Sonett and
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Williams 1987), but are now attributed to lunar-induced variations in tidal deposits
(Williams 1989; Sonett et al. 1988). The phase stability of the 22 yr cycle may
ultimately be determined by a careful analysis of the *C data and of the 1°Be
record discovered in Greenlandic ice cores (Beer et al. 1988).

Advanced techniques exist today to determine whether an irregular time se-
ries is stochastic or contains a chaotic attractor of low dimension (Schuster 1988;
Atmanspacher et al. 1988). For example, Voges et al. (1987) have analysed the
X-ray variability of Her X-1 and found an attractor of dimension 2 < D, < 3 in
the lightcurve. This suggests that the underlying accretion process may be modeled
with only 3 nonlinearly coupled variables (it does not tell which, though). Attractor
dimensions have been determined from the sunspot and *C records (Gissatullina
et al. 1989; Ostryakov and Usoskin 1989) but these are not yet very reliable. The
problem is again the length and quality of the data set (Smith 1988).

3.2. OTHER PERIODICITIES

The sunspot data suggest a ~ 90 year amplitude modulation (Cohen and Lintz
1974). Tree-ring !*C data and !°Be records indicate irregular modulations in the
level of solar activity with a typical timescale of a few hundred years (Sonett 1983a,;
Stuiver and Braziunas 1988; Raisbeck and Yiou 1988). Interesting new results have
been reported on short periods. Stenflo and Vogel (1986) and Stenflo and Weisen-
horn (1987) have decomposed the radial surface field B, in spherical harmonics
using 25 years of synoptic daily magnetograph data of Mt. Wilson and Kitt Peak.
The advantage of this technique is that the results permit a direct comparison with
theoretical predictions. The power spectra of the axisymmetric spherical harmonic
coefficients (m = 0), Fig. 2, show a decoupling between even and odd I. The 22
yr dynamo wave is apparently a linear combination of odd-! components. The ab-
sence of higher harmonics indicates that the (surface effect of the) wave is almost
sinusoidal in time. Decoupling between even and odd ! occurs when a is an odd
function of colatitude 6; often a o cos is assumed (Moffatt 1978). The data thus
confirm this to be basically correct. Further confirmation might come from com-
paring the observed amplitudes and phases with theoretical odd-! expansions of the
fundamental mode. An unexplained feature is that the power distribution becomes
abruptly irregular above | = 14. Stenflo and Vogel (1986) suggest that the power
at even ! in Fig. 2 indicates a resonant modal structure reminiscent of solar p-mode
ridges. Hoyng (1987b, 1988) has interpreted this in terms of excitation of dynamo
wave overtones. Taking k ~ [/Rg one finds with (2.5):

w ~ (aAQ/2R)V? M2 | (3.1)

which describes the power ridge in Fig. 2 fairly well for aAQ ~ 1.7 x 10~ cm s72.
This is a rather large value and one might therefore speculate that the power at
even [ reflects dynamo waves of a diffuse dynamo in the convection zone (where a
is large), as opposed to dynamo waves of a boundary layer dynamo which we would
then see at odd ! and in the butterfly diagram. Such an idea had been advanced
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FIG. 2. Power spectrum of the axisymmetric component of the solar radial surface field.
Each column is independenty normalised; the average power in even ! is about 5 times
larger than in odd Il. (from Stenflo and Weisenhorn 1987).

earlier by Spruit et al. (1987); see also Golub et al. (1981) and Durney (1988).
Stenflo and Giidel (1988) report that there is in fact weak power at odd ! which
interpolates fairly well with the power at even ! in Fig. 2, albeit at a systematically
lower frequency. Recently, Gokhale and Javaraiah (1989a,b) have confirmed the
conclusions of Stenflo and coworkers using magnetic cycle data simulated from the
Greenwich sunspot data, which cover a much longer period.

The idea that the magnetic sector structure and coronal holes (Zirker 1977;
Hundhausen 1977) may correspond to nonaxisymmetric dynamo modes is relatively
old (Stix 1971). These modes, being overtones, are difficult to excite in the linear
theory (Stix 1971; Radler 1986b; Ruzmaikin et al. 1988), but nonlinearities or
external forcing can in principle do the job. Other lower main sequence stars are
now believed to possess cycles analogous to the solar 11 yr cycle (Vaughan 1983;
Baliunas and Vaughan 1985), with periods ranging from 2.6 yr to > 20 yr. Very
active stars may have more than one period or behave erratically.

In summary, we have several indications that the solar dynamo is multiperiodic.
In principle, both nonlinear effects and stochastic excitation may account for that.
The phase stability of the 22 yr period is not well known. Its quality factor may be
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as small as Q = P/§P,,, ~ 10, but could also be much higher. That would be a
strong indication for an oscillating core. Little is known about the phase stability
at the other frequencies, except near periods of 1.5 yr which have @ ~ 10 (Fig. 2).
The long-term amplitude modulations might be interference effects of other dynamo
modes with periods near 22 yr, but this is uncertain. Solar cycle-like phenomena
are clearly seen in other lower main sequence stars.

4. Nonlinear mode excitation

Nonlinear dynamo theory is a large topic in its own right. In order of increas-
ing complexity we may distinguish (a) ’simple’ models, such as disc dynamos, (b)
nonlinear mean field models, and (¢) numerical MHD simulations.

I shall restrict myself to (b), and refer to Galloway (1986) for a review of (c).
The earliest nonlinear mean field model (Leighton 1969) exploited the idea of losses
through magnetic buoyancy. Stix (1972), Jepps (1975), Ivanova and Ruzmaikin
(1977), Bréuer (1979) and Kleeorin and Ruzmaikin (1981) all studied models in
which the a-effect is quenched by the magnetic field, by assuming that « in (1.1)
is a decreasing function of | <B>|. These studies showed the existence of stable
nonlinear (anharmonic) oscillations for D > D.. At D = D, the solution bifur-
cates from the null solution either supercritically or subcritically (Brauer 1980).
Yoshimura (1978a) investigated the quenching of both a-effect and differential ro-
tation and found again only one period. It is not clear whether these models admit
indeed only one period since the exploration of their parameter spaces may have
been rather incomplete. Yoshimura (1978b) obtained the first multimodal mean
field model by introducing a time delay in the nonlinear coupling. A single delay
time produced a regular modulation of the 22 yr cycle, and with two or more dif-
ferent delay times a more chaotic long-term modulation resulted. The reason for
the delay is that the Lorentz force produces an acceleration and it will take some
time before v and vy, on which all field regeneration depends, have changed. A
time delay therefore effectively increases the order of the equations (= number of
independent variables). The early nonlinear work has been reviewed by Stix (1981).

Mean field theory got itself entangled in the net of nonlinear dynamics after
Zeldovich and Ruzmaikin had shown how an axisymmetric a2 dynamo with nonlin-
ear a-effect quenching can be crudely modeled by the Lorenz equations (Ruzmaikin
1981; Jones 1983; see also Krause and Roberts 1981). These equations are well-
known for possessing chaotic solutions (Martens 1984; Schuster 1988). The solu-
tion is quasiperiodic but occasionally the trajectory in phase space lingers for a long
time near the origin. Accordingly, it was suggested that the Maunder minimum and
other ’grand minima’ might correspond to a strange attractor (Ruzmaikin 1981), as
Yoshimura (1978b) had done implicitly before. This idea was elaborated by Weiss
et al. (1984) who included buoyant losses and quenching of differential rotation in
addition to a-effect suppression. They derived a Tth order system of equations
with two field variables and two variables wy and w representing the constant part
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Time

FIG. 3. Butterfly diagram of the nonlinear dynamo model of Belvedere et al. (1989). On

the horizontal axis time in units of R?/3 (154 year). The magnetic Prandtl number is 0.1
and D/D. = 21.3.

of the differential rotation and the part « exp(2:kz), respectively. Both wy and w
have phenomenological damping coefficients vy and v. Weiss et al. (1984) obtained
their most interesting results for the 6th order system with vy = oo (wo = 0), and
buoyant losses and a-effect quenching switched off. They then observe a series of
bifurcations as D increases from D., and at each a new frequency appears in the
solution. Beyond D/D. = 3.84 the solution is chaotic (for v/Bk? = 0.5), featuring
irregularly modulated cycles, and episodes with almost zero field. For D/D, = 4
the interval between such ’grand minima’ is about 11.5 average cycle periods.

Model equations such as those of Ruzmaikin (1981) and Weiss et al. (1984)
can merely give some indication of the behaviour of real dynamos, since the spatial
structure has been severely truncated. As Weiss et al. realised, they have only
marginally succeeded in this regard. Chaos and ’'grand minima’ appear only for
v < v while physically v > v is expected. Moreover, the more complete 7th order
system exhibits just aperiodic oscillations without protracted minima. In hindsight
it is tempting to regard such studies as a concession to fashion. In those days every
respectable field of research had to have its own strange attractor. However, it took
almost 5 years before more complete studies were carried out.

Deluca and Gilman (1986, 1988) formulated the first mean field boundary layer
dynamo, featuring a selfconsistent mean flow vy, but phenomenological a-effect
quenching and flux losses. They found steady and time-varying solutions (depend-
ing very sensitively on the parameter values), but no periodic dynamo waves. They
concluded that the magnetic field is unable to generate sufficient shear to drive an
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o) dynamo. Schmitt and Schiissler (1989) studied a mean field boundary layer
dynamo with either a-effect suppression or flux loss, and concluded that the latter
is likely to be the more important of the two. They noted that the mode in which
a dynamo finds itself may well depend on its history, since there are sometimes
several possible modes for a given D. This is also reported by Brandenburg et al.
(1989) and Belvedere et al. (1989), who argue that this implies that there could
be large differences in the dynamo parameters (period, activity level) of otherwise
very similar stars. This is indeed observed in late type stars. However, it is not
clear if these coexisting solutions are all stable. This point has been investigated
by Jennings and Weiss (1989).

Brandenburg et al. (1989) analysed a mean field af2 dynamo in the convection
zone, incorporating only a-effect quenching, a = ag cos §/{1+ <B>2}. They found
periodic single mode solutions, but unlike the earlier works of Jepps (1975) and
Yoshimura (1978a) which contain much the same physics, an overall amplitude
modulation was observed in certain narrow intervals of ag. The field structure is
then largely dipolar, but changes into a quadrupole when the amplitude is minimal.
Belvedere et al. (1989) extended the work of Weiss et al. (1984) and investigated a
mean field dynamo in which the only nonlinearity is a selfconsistent variation in the
mean flow on top of a given differential rotation. The equations are truncated in
r, but full  dependence is retained. The ensuing gain in computing time enabled
a systematic investigation of the transition between the various types of solution.
For D/D. < 4.3 there is a singly periodic solution, for D/D. > 4.3 multiperiodic
solutions appear on stage, while for D/D. > 8.5 the solution features ’relatively
long periods of stasis, interrupted by interludes of cyclical behaviour’, see Fig. 3.

It is clear that nonlinear mean field theory is still in a very early stage of
development. The various studies do not yet show a clear pattern of commonality.
It is not known which of the nonlinearities are the more important ones, and the
solutions are very sensitive to the functional form of the nonlinear coupling and/or
the values of parameters. The main defect is that the nonlinearities are introduced
phenomenologically, since dynamically consistent expressions for their dependence
on <B> are not available. Investigations to derive these functional forms from first
principles are presently of the utmost importance (cf. Malkus and Proctor 1975;
Moffatt 1978; Zeldovich et al. 1983). The following illustrates some of the problems
lying ahead. All authors considering a selfconsistent mean flow vy write the mean
Lorentz force as <fi>= {(V x <B>) x <B>}; /4w, while actually

<fi>=<(VxB)xB>; /47r =V;(2T;; — Tkk5ij)/87r . (4.1)

Hence, <f;> depends on a higher average T;; = <B;B;>. Both expressions coincide
if the fluctuating field B’ = B — <B> is small, but that is not the case in the Sun.
Only when hurdles such as these have been taken, may we begin to investigate in
detail the relations between truncated mode equations and the full nonlinear partial
differential equations, as has been done for example by Moore et al. (1983) and
Knobloch et al. (1986) in their study of two-dimensional thermosolutal convection.
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5. Mode excitation by external forcing

External forcing comes in two varieties: through boundary conditions or fluctua-
tions in the turbulent convection. I shall briefly discuss the former and then deal
with the second topic. It has long been speculated that the radiative core of the
Sun may contain a relic magnetic field. If such a field exists, it imposes a boundary
condition B = B, at the base of the convection zone. The field will be smeared
out by the turbulent dynamo, but there will be a net polarity and intensity asym-
metry in the activity cycle: alternate halves of the full 22 yr cycle have different
amplitudes. Sonett (1983b) analysed the sunspot record from this point of view and
found a ~ 4% intensity asymmetry. If caused by a fossil dipole field, its strength
was estimated to be less than 0.6 G. Levy and Boyer (1982) and Boyer and Levy
(1984) analysed kinematic mean field models with a dipolar or quadrupolar field
imposed at the base of the convection zone. The dynamo reduces the externally
visible magnetic moment by about a factor 3. They also concluded that the poloidal
component of the relic field can be no more than a few gauss. Pudovkin and Benev-
olenska (1985) attribute the occurrence of ’grand minima’ to a periodic Beore at
the bottom of the convection zone (P = 180 yr).

Piddington (1971, 1976) and Layzer et al. (1979) have sketched oscillator the-
ories for the solar cycle. Piddington visualizes a 22 yr torsional oscillation of the
entire core with the poloidal component of the field acting as a spring, while Layzer
et al. suggest that the oscillation is restricted to the transition layer between core
and convection zone. A 22 yr period requires fields of ~ 100 G. Unfortunately, an
acceptable model has never been presented (for a detailed critique I refer to Cowling
1981), and it could be worthwile to try and see if this can be done. It is after all
not excluded that the entire Sun performs a 22 yr oscillation of which the magnetic
cycle is only one manifestation (Gough 1988b). The dynamo in the convection
zone could then be locked in to this oscillation (e.g. by a boundary condition) and
produce a somewhat noisy surface effect which has the same @ as the driver.

5.1. STOCHASTIC EXCITATION

External forcing by fluctuations in the turbulence has received minimal attention.
Parker (1969) and Levy (1972) suggest that a sudden burst in the cyclonic convec-
tion causes a jump in «, and showed that this may induce a reversal of the (mean)
geomagnetic field. This explanation is essentially ad hoc, and the conventional wis-
dom of today is that such things as reversals in ? dynamos and aperiodicity in a2
dynamos are caused by nonlinearities. However, even in linear theory the periods
of adjacent cycles of an af2 dynamo must differ, as the realisation of the turbulence
is different. It should be possible to formulate linear mean field theory in the same
way as a scalar diffusion process, with a continuous loss of memory.

This problem has been taken up by Hoyng (1987a,b). To be able to evaluate
the effect of the fluctuations hidden in F in eq. (2.1) he interpretes <-> as an
ensemble average. In that case F = 0, since &, V, etc., commute exactly with
<->.t1 The ensemble average is best understood literally, as an average over many
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copy systems, e.g. <¢>r ;= limn{}_; ¢i(r,t)}/N, where g is an arbitrary physical
quantity, cf. Krause (1976). Fluctuations now cause phase mixing: B evolves
independently in each system and, in the case of the Sun, the ’copy suns’ will
distribute themselves evenly over the magnetic cycle (after some time), whence
<B> — 0. Hoyng concludes that (1) only a damped solution of (2.1) is physically
meaningful, and (2) the ensemble average <B> has no relation with observable
fields; in particular, it is not equal to the large-scale field. Accepting a damped
solution for <B> implies decreasing D so that D < D.. The freedom in J is used
to remove the linear instability of <BB> (Parker 1979, §17.6), see Fig. 1. The
damping time of mode b, is interpreted as a measure of its phase stability. For
the dipole mode of a simple a? dynamo with constant a and B this time is only
~ 0.15 R?/f, less than the timescale for turbulent diffusion through the sphere! It
is argued that the dipole component of B must rapidly wander over the sphere,
contrary to the traditional view which suggests that this o> dynamo possesses a
constant field (Krause and Radler 1980, Ch. 14).

Since <B> is no longer indicative for the field B of the dynamo, Hoyng (1988)
proposes to expand B in terms of the eigenfunctions by:

B=Y. ca(t)ba(r). (5.1)

The coefficients ¢, (t) determine the evolution of large scale fields (small n) as well
as small scale fields (n large). For an a§? dynamo like the Sun, each c,(t) turns out
to be a quasi-periodic random function whose mean period and coherence time are
roughly given by the eigenvalue A, of b,. The power spectrum of c,(t) is:

1 ! ] (5.2)

671 2
Pa(w) ~ 25 <leal™> [ @—wh+8  wrwhE+82
with

wh~w,=ImA,; 6~ —Rel,.

Hence, all eigenmodes turn out to be excited, with a finite frequency stability
Qn = wl/Aw!, ~ wn/ba, cf. section 2 and Fig. 4. The frequencies w), are shifted
from their unperturbed position w,, because the modes are driven. At present only
an estimate of the frequency stability of the 22 yr cycle is available, @ ~ 1 (Hoyng
1987b), which is so small that there would be hardly a periodic cycle left.

The theory is currently being applied to the solar dynamo and it seems too early
to judge its merits before that has been done. A salient feature is the potentially
very drastic influence of the fluctuations. If this turns out to be true then one may
have to look for nonlinear effects (yet to be included) as a stabilising factor, the
reverse of their traditional role. Another feature is that the eigenfunctions b,, have
lost their pretension of representing the dynamo field; they are just a (very handy)

t This is also true if <-> is a longitudinal average (Braginskii 1965a,b). I conjecture that
in this case the neglect of fluctuations appears in the same way as it does for ensemble
averages: a nonzero and finite <B> implies <BB> — oo (Hoyng 1987b).
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KINEMATIC STOCHASTIC NONLINEAR
Plw) Plw) Plw)
——DAMPED | |} !
Bl &0&\
L1 / ] 1
Wy W W, —Ww Wy Wy W,y —W w(;'w;' w;’ —Ww

FIG. 4. Left: a marginally stable linear af2 dynamo has D = D, and possesses one
frequency and @ = oo. Middle: according to the linear stochastic theory D <D, and all
eigenmodes are excited, each with a finite Q; the frequencies !, are shifted from their
unperturbed positions w,. Right: inclusion of nonlinear effects further changes the line
shapes and positions, and very low frequencies may also appear.

set of basis functions. It remains necessary to identify ensemble averages such as
<cn(t)>, <|ea(t)|?>, with time averages cn(t), |cn(t)|?, but since only scalars are
involved depending on time, this is far less controversial than for B.

6. Discussion

In Fig. 4, I have summarized my view on the evolution of mean field dynamo
theory. In the early days, the notion of marginal stability (D = D.) was implicitly
accepted, for lack of better. Next came nonlinear dynamos operating at D > D,.
These feature in principle many nonlinearly interacting magnetic and fluid modes.
It has been speculated that their large-scale dynamics can be described adequately
with very few modes only and under those circumstances a low dimensional strange
attractor might emerge. But if and when this occurs is unknown, also from the point
of view of observations. Theoretically, the main obstacle is the lack of selfconsistent
nonlinearities. I have pointed out an additional problem, that <BB> diverges due
to the neglect of fluctuations. In the stochastic excitation picture the dynamo would
operate subcritically (D < D.), and <BB> no longer diverges. Many modes are
excited and their evolution is coupled. The dimension of the relevant part of phase
space (and of attractors) is very high. The situation is analogous to the classical
(linear) theory of Brownian motion, and the theory may indeed be regarded as a
linear theory for the random walk of an advected vector field. Of course, this idea
must still be tested in real dynamo models. Also nonlinear effects remain to be
included, and here we face again the problem of selfconsistency.

In moments of complacency one might be inclined to think that dynamo theory
has come a long way since the idea of a hydromagnetic dynamo first arose (Lar-
mor 1919) and the pioneering contributions of Cowling (1934), Parker (1955) and
Steenbeck, Krause and Ridler (Roberts and Stix 1971). But in fact I don’t think
it has. I believe we still have a much longer way to go.
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