
Ergod. Th. & Dynam. Sys. (1984), 4, 499-507
Printed in Great Britain

Minimal sets on tori
DANIEL BEREND

Department of Mathematics, University of California, Los Angeles, CA 90024, USA

(Received 12 January 1984)

Abstract. Let 2 be a commutative semigroup of continuous endomorphisms of the
r-dimensional torus. Generalizing a result of Furstenberg dealing with the circle
group, necessary and sufficient conditions are given here for X to possess the
following property: Any S-minimal set consists of torsion elements. Semigroups not
having this property are shown to admit minimal sets of positive Hausdorff
dimension.

1. Introduction
In topological dynamics one usually studies a flow (ft, 5), composed of a compact
Hausdorff space ft and a semigroup S of continuous transformations thereof.
Closed 5-invariant subsets of ft give rise to subflows of (ft, S). Of particular
importance are the minimal subflows of ft.

Flows formed of semigroups of endomorphisms of compact abelian groups play
a special role and were analyzed from various points of view. Such a flow cannot
be minimal, but may have weaker properties of a similar nature. For example, it
may be ergodic, which amounts to every invariant proper subset of the group being
of the first category. In [3] Furstenberg examined, for the case of the circle group
T, several properties which lie between ergodicity and minimality. Semigroups of
endomorphisms of T correspond to multiplicative semigroups of integers. Calling
such a semigroup lacunary if all its positive elements are powers of a single integer
and non-lacunary otherwise, some of Furstenberg's results [3, prop. III. 1, th. III.2,
prop. IV.2, th. IV. 1] can be combined to yield the following:

THEOREM. Let X be a semigroup of epimorphisms of T. The following conditions are
equivalent:

(1) Every closed ̂ -invariant proper subset of T is a finite set of torsion elements.
(2) Every 1-minimal set consists of torsion elements.
(3) 2 is ergodic and every ̂ .-minimal set is finite.
(4) 2 is ergodic and every 1-minimal set is of Hausdorff dimension 0.
(5) £ is non-lacunary.

We mention that the theorem is interesting from the point of view of the theory of
diophantine approximations also. It implies in particular a well-known theorem of
Hardy and Littlewood [6] according to which if a is an irrational number and k a
positive integer then the set {nfca|« e N} is dense modulo 1. This aspect is discussed
in detail in [3] and [4].

https://doi.org/10.1017/S0143385700002601 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002601


500 D. Berend

It can now be asked under what conditions a commutative semigroup 2 of
epimorphisms of Tr has any of the properties (l)-(4) of the theorem. In [1] this
question was settled for property (1). It is easy to see that the following three
properties are strictly weaker if r > 1. The main result of this paper is the equivalence
of these properties and a full characterization of those semigroups possessing them.
The conditions under which a semigroup has this property are presented in § 2.

§ 3 deals with proving the necessity of the conditions. Namely, given any commuta-
tive semigroup for which those conditions are violated, we construct a minimal set
of positive Hausdorfl dimension.

In § 4 we prove the sufficiency of the conditions, i.e. that if a given semigroup
satisfies the conditions in question then any minimal set is composed of torsion
elements. First the results of [3] and [1] are employed to handle a special, 'totally
irreducible' case. The general case is then reduced to this one by means of appropriate
decompositions of Tr and corresponding decompositions of the acting semigroup.

2. The principal theorem
Tr will denote the r-dimensional torus, considered as an additive group: Tr = W/Zr.
Points of Tr are column r-vectors. Continuous endomorphisms of Tr are represented
by r x r matrices with integer entries. Points and endomorphisms of Tr can be lifted
to points and to linear transformations of Kr, respectively.

Let 2 be a semigroup of endomorphisms of Tr. Put 2A = LJcres o"(-A) for AcT ' .
A set E is ~Z-inva.ria.nt if 1.E c E. A closed 2-invariant set M is ^.-minimal if it
contains no closed 2-invariant proper subset.

Definition 2.1. A semigroup of endomorphisms 2 of a compact abelian metric group
G is a (i) MH0, (ii) MF, (iii) MT semigroup if any 2-minimal set is (i) of Hausdorfl
dimension 0, (ii) finite, (iii) composed of torsion elements, respectively.

Our interest in this paper is in characterizing the commutative MT semigroups of
epimorphisms of Tr. To present this characterization several notations and definitions
are required. evec 2 denotes the set of common eigenvectors of 2 lying in Cr. If
v G evec 2 then spec,, 2 is the set of eigenvalues corresponding to v of all the
endomorphisms in 2. C, denotes the group of complex numbers of modulus 1. 2
is called hyperbolic if spec,, 2 ^ C, for each v e evec 2. Two elements a and /? of a
ring R are rationally dependent if a1 = (im for some integers / and m, not both of
which are 0, and rationally independent otherwise. A subset of R is one-parameter
if all of its elements are powers of a single element and weakly one-parameter if
any two of its elements are rationally dependent. 2 is weakly one-parameter in some
direction if spec,, 2 is weakly one-parameter for some v e evec 2 and multi-parameter
otherwise. 2 is ergodic if every 2-invariant measurable set is of (Haar) measure 0
or 1. Now we can state the main theorem.

THEOREM 2.1. Let 2 be a commutative semigroup of epimorphisms ofJr. The following
conditions are equivalent:

(1) 2 is an MT semigroup.
(2) 2 is an ergodic MF semigroup.
(3) 2 is an ergodic MH0 semigroup.

https://doi.org/10.1017/S0143385700002601 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002601


Minimal sets on tori 501

(4) 2 is hyperbolic and multi-parameter.

Remark 2.1. Slight modifications in the proof of the theorem enable one to obtain
a full characterization of commutative MT semigroups of arbitrary endomorphisms
of Tr. It turns out that 2 is MT iff for every v e evec 2 either (i) Oe spec,, 2, or (ii)
spec,, 2 is not contained in C ̂  and is not weakly one-parameter. We shall not engage
in proving this version.

The implication (2)=>(3) is clear. Let us show that (1)=>(2). Suppose 2 is MT.
In view of [2, th. 6.1] it is sufficient to show that every finite 2-invariant set consists
of torsion elements. Let F be a finite 2-invariant set and x an arbitrary element of
F. Take a 2-minimal set M s 2x. Since 2 is MT every element of M is a torsion
element. It follows that <r(x) is a torsion element for some ere 2. Thus a(lx) =
/o-(x) = 0 for some leN, whence by [1, lemma 5.1] foe is a torsion element, and so
x is a torsion element as well, which proves the required implication.

It remains to prove the implications (3)=>(4) and (4)=»(1). These will be termed
'the necessity of the conditions' and 'the sufficiency of the conditions', respectively.
The first will be proved in the next section and the second in § 4.

3. The necessity of the cdnditions
Throughout this section 2 denotes a commutative ergodic MH0 semigroup of
epimorphisms. We have to show that 2 is hyperbolic and multi-parameter. This
amounts to some assertions regarding the sets spec,, 2, v e evec 2. Denoting by Q( A)
the field extension of Q obtained by adjoining the set A to it, we may restrict our
attention to vectors v with v e Q(spec,, 2)r. In fact, if v e evec 2. then there exists a
vector v'eQ(specv1.y such that <rv = \v implies crv' = \v', and in particular
spec^ 1. = specr 2. Consequently from now on, given a vector v e evec 2, it will be
implicitly assumed that r€Q(specu 2)r.

LEMMA 3.1. 3. is hyperbolic.

Proof. Assume, to the contrary, that spec,, S c C , for some veevec2. Then also
v e evec 2 and if crv = kv then o-v = \v, where the bar denotes complex conjugation.
The projection in Tr of the ellipse

gp = {av + ~av\a e pC,} c Rr

is a closed 2-invariant set of dimension 1 for any p > 0. Since 2 is ergodic there
exists an ergodic ere2 [2, th. 5.1]. Suppose av = \v. Since a is ergodic A is not
a root of unity, so that the sequence (A")^=o is dense in Cr. It follows that
%p is (T-minimal and therefore certainly 2-minimal. The contradiction proves
the lemma. •

The Hausdorff dimension of a subset A of a given metric space (X, d) will be
denoted by dim A.

LEMMA 3.2. Let {X, d) and (Y, d) be metric spaces and ifr a mapping of X onto Y
satisfying

d(i/»(x,), Hx2))^ Cd(xu x2), xi, x2eX,

for some C. Then dim Y < dim X
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The proof is straightforward.

LEMMA 3.3. 2 is not a one-parameter semigroup.

Proof. Given a matrix a we denote by S(cr) the semigroup consisting of all non-
negative powers of cr and by G(cr) the group of all integral powers of cr. If cr is an
automorphism of Tr then any S(cr)-minimal set is G(cr)-invariant, so that it suffices
to show that 2 is not a semigroup of the form S(a). Assume, to the contrary, that
l,= S{cr) for some epimorphism cr. To arrive at a contradiction, an S(o-)-minimal
set of positive Hausdorff dimension has to be constructed. In view of lemma 3.1
we may assume that cr is hyperbolic.

Select an eigenvalue A, of a and a corresponding eigenvector «(1)eQ(A,)r. We
may assume all the components of u(" to be algebraic integers. The conjugations
of Q(Ai) give rise to eigenvalues A 2 , . . . , As of cr and corresponding eigenvectors

(2\ is) . The vector e = Zf=i u < ) ' s a non-zero element of Zr.
Suppose first that |A,|> 1, 1 < i"< s. We may assume minlsj==s |Af| to be arbitrarily

large. In fact, if M is o-'-minimal then U'=o cr'(M) is o--minimal. Take a positive
integer with 4 < a < m i n l s i s s |A,| and put A = {0, 1 , . . . , a- 1}N. Let T denote the
shift on A. As in the proof of theorem III.2 in [3] we can construct a T-minimal set
M c A having the following property: The number Bn of distinct blocks of length
n occurring in any point of M grows exponentially with n. Define a function
t/»:A-»IRr by:

J / C

Set M, = 4>(M). The projection of M, in Tr, to be denoted by M2, is obviously
cr-minimal. We claim that d i m M 2 > 0 . Since in general d imUf= iA =

maxis i s f c dim A, we have dimM 2 = dimM,. Let M, be the set of vectors of
coefficients of all points in M, with respect to any basis of C whose s initial elements
are vu\ vm, v(s). By lemma 3.2 we have dim M, = dim M,, so that it has only
to be shown that dim Mx > 0. Invoking the same lemma again we find that it suffices
to prove that dim •n-1(M))>0, where TT, :Cr-»C is given by TT\{Z\, Z2, . . . , zr)

T = zx.
Put:

= { X a > a.

With this notation ir , (M,)= <#Ai. For | / } | > | a | > a consider the map i:'
given by:

Employing lemma 3.2 one finds that dim (€a depends only on \a\ and that it forms
a non-increasing function of \a\. If a is a positive integer> a then in view of [3,
prop. III.I] dim %a > 0. It follows that dim ^ > 0, and hence dim M2 > 0 also.

Turning to the general case let us suppose, for example, that |A,| < I for I < i < k
and |Aj| > I for k+ I < i< s. Similarly to the previous case we may assume each |A,|
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to be either arbitrarily large or arbitrarily close to 0. Select a positive integer a with
4<a<minlsjss{max{|A,|,|A1|"1}} and set A = {0, l , . . . , a - l } z . Let T be the shift
on A. Making use of the set M mentioned earlier one can construct a T-minimal
set M ' g A having an exponential rate of growth of the blocks number. Put u =
I-=fc+1 i/°. Define </<:A->Rr by:

n = — oo

The projection of i//(M') in Tr is cr-minimal and is shown to be of positive Hausdorff
dimension precisely as in the former case. Thus the proof is complete. •

LEMMA 3.4. 2 is multi-parameter.

Proof. Suppose, to the contrary, that for some v e evec 2 the semigroup specu 2
is weakly one-parameter. Set K =Q(specv1). Consider the conjugates vU)=v,
D<2), . . . , i/s) of v over Q. These vectors are linearly independent. In fact, select
a A e K with K =Q(A). There exists a matrix T in the algebra 2 ' generated by 2
over Q such that TV = Xv. The vectors u(1), u< 2 ) , . . . , u(s) form common eigenvectors
of 2, whence of 2 ' as well. The eigenvalues A, = A, A2, . . . , \s of T corresponding to
these eigenvectors are distinct, so that the latter are linearly independent. Put
V = sp{u(l)|l < i<s} and e = Yfi=x v('\ V is a 2-invariant subspace of C , and there-
fore VR= VnlRr and Vz= V n Z r are 2-invariant also. The vectors e, re,..., Ts~ie
are linearly independent, which implies that VR is an s-dimensional subspace of Ur

and Vz is a free abelian group of rank s. It follows that VR/ Vz is a 2-invariant
closed subgroup of Tr isomorphic with "P. Limiting our attention to this subgroup
we observe that it may be assumed, to begin with, that the conjugates of v span Cr,
that is v°\ i / 2 ) , . . . , u(r) are the conjugates of v.

Since 2 is ergodic there exists an ergodic cr e 2 [2, th. 5.1 ]. Given any T e 2 denote
by •*!„ A2„ . . . , ArT its eigenvalues corresponding to the basis u(1), i / 2 ) , . . . , v(r). Our
assumption concerning speCj, 2 means that for any r e 2 we have Al

lT = A™a. for
appropriately chosen non-zero /, meZ. By conjugation similar equalities hold for
the other eigenvalues, which leads to T' = o-m. The proof of proposition 3.2 in [1]
implies the existence of finitely many epimorphisms o-,, o-2,..., ak of Tr, each
commuting with 2, such that S c | J f = | G(cr)cr1 or 2 ^ 1 ^ ^ , S{<r)a-h depending on
o- being invertible or not, respectively. Take a tr-minimal set M with dim M > 0 .
Let M, be any 2-minimal subset of 2M. For a suitable i we have o-j(M)cM,.
Since ker cr, is finite [1, lemma 5.1], lemma 3.2 gives dim cr^M) > 0, and so certainly
dim M, > 0. This proves the lemma. •

The implication (3)=»(4) in theorem 2.1 is thus proved.

4. 77»e sufficiency of the conditions
This section is devoted to proving the implication (4)=>(1) in theorem 2.1. A special
case will be established first. Given a matrix <r, its characteristic polynomial is
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denoted by f^. A commutative semigroup 2 is called totally irreducible if there exists
a a-ei. with/„•> irreducible over Z for every positive integer n.

PROPOSITION 4.1. A totally irreducible hyperbolic multi-parameter commutative semi-
group is MT.

Proof. Let X be a semigroup having the described properties. In view of [1, lemma
3.4] there exists a basis of Cr consisting of common eigenvectors of 2. It is easy to
see that X contains a finitely-generated subsemigroup satisfying the conditions of
the proposition, so X itself may be assumed to be finitely-generated. These conditions
also secure the existence of an ergodic a e X. Proposition IV. 1 of [3] can therefore
be applied to conclude that if M is any X-minimal set then M — M is a proper
subset of Tr.

Decompose Cr in the form Cr= Vsl®V>u where Vs, is the subspace of Cr

spanned by those v e evec 2 with spec,, X c {z e C| \z\ < 1}, and V>, is the subspace
spanned by all the other common eigenvectors of 2.

Assume that 2 is not an MT semigroup. Let M be a 2-minimal set composed of
non-torsion elements. Since S is ergodic M is infinite. The set M - M (or rather
its lifting to Ur, considered as a subset of Cr) is a closed 2-invariant set containing
0 as a non-isolated point. Assume first that M - M contains a sequence converging
to 0 of points with non-zero components in V>,. The same construction as the one
carried out in [1, lemma 4.2] supplies a sequence of non-zero points of M - M lying
in V>,. Careful inspection of § 4 of [1], from (4.1) on, reveals that these assumptions
lead to M — M = Tr, which is a contradiction.

It follows consequently that in a sufficiently small neighbourhood of 0 every point
of M - M lies in Vsl. Select an ergodic <re l and a o--minimal set M , c M. Take
any x e M , . For an appropriately chosen sequence (wfc)£L| of positive integers
er"kx -»fĉ coX (in Tr). Hence there exists an n such that

a"x-x = y+v, yeZr,veVsl. (4.1)

The definition of Kg, and the hyperbolicity of 2 imply the existence of a r e l each
of whose eigenvalues corresponding to common eigenvectors of 2 lying in V-=i is
of norm strictly less than 1. Take a sequence (nk)f=i with (Tn*x)fcLi convergent in
Tr. Letting r"k act on both sides of (4.1) and passing to the limit in Tr we obtain
a"x' = x' for some x' e M. By [1, lemma 5.2] x' is a torsion element of Tr, which
completes the proof. •

It has to be shown that the assumption concerning total irreducibility in the
proposition can be dropped. The following lemma forms the key to this.

LEMMA 4.1. Let £ be a semigroup of endomorphisms of Tr. Suppose H is a closed
^.-invariant subgroup of Tr. 2 is an MT semigroup iff the semigroups induced by X
on H and on Tr / H are both MT semigroups.

The proof is straightforward.
The reduction of the proof from the general case to that of totally irreducible

semigroups will be carried out in two steps. Denote by A the field of algebraic
numbers.
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Step 1. It may be assumed that Ar has a basis i / ° , v(2),..., u(r) composed of common
eigenvectors of 2 which are conjugate over Q.

To accomplish this reduction it is needed, given any commutative semigroup 2,
to construct a basis of Ar with respect to which the action of 2 is as simple as
possible. For any function A : 2 -» A set:

k

U = J,V c r 1 , a - 2 , . . . , o - k 6 s J , lc = 0, 1,2
= i

The sequence {0} = UAOc UA1 c • • • is formed of 2-invariant subspaces of Ar and
is constant from the rth place on. Using the Jordan decomposition it is easy to
verify that Ar = 0A 6 A* t/Ar. Take an arbitrary A,:2-»A such that t/A,r^{0}. Let
KA| = Q(Ai(2)). Select a basis of l/A|, consisting of vectors in Kr

Xi, complete it to a
basis of t/A|2, complete this to a basis of l/A]3 and so forth. We now have a basis of
C/A|r formed of vectors in K[t. The conjugations of KA| give rise to conjugates of
A( and corresponding conjugates of the basis vectors of £/A]r. If the union of all
these bases contains less than r vectors then we continue by picking another function
A2:2 -* A and following an analogous procedure. The process terminates after finitely
many steps, giving a basis of Ar. This basis is of the form

{vijkl\l < / < s , , 1 s j s j j d 1 ) , 1 s k s $ , ( i ) , 1 < /<s4(«, k)},

where Si is the number of distinct non-conjugate functions Al5 A2, . . . , AS| e A2 with
U\,r^{®}, S2(i) is the number of conjugates of A,, s3(i) is the least positive integer
m such that t/A.,m+, = t/A(,m and sA(i, fc) = dim l/A | k-dim C/A|k_,.

Let V denote the subspace of Cr spanned by {un u | l < /< ^4(1,1)}. Put VR= VnR',
Vz= V n Z r and r, = s4(l, 1). One can show that VR is an /•[-dimensional vector
space over R and Vz is a discrete free abelian group of rank /•,. Now consider
diagram 1. The solid arrows represent naturally defined continuous homomorphisms.
It is easy to check that the rows and columns marked by solid arrows form exact
sequences. According to the 3x3 lemma [7, p. 172] the dashed arrows stand for
uniquely determined homomorphisms which make the fourth row an exact sequence
and the diagram commutative. The semigroup 2 naturally gives rise to commutative
semigroups of epimorphisms of VR/ Vz and of (Kr/ VB)/(Z7 Vz). It is evident from
the construction that if 2 ' is either of these semigroups and v e evec 2 ' then spec,, 2' =
spec,,, 2 for a suitably chosen D, e evec 2. Hence if 2 is a hyperbolic multi-parameter
semigroup then each of these induced semigroups is such. In view of lemma 4.1 it
suffices to prove that each of them is MT. Repeated use of the decomposition process
gives therefore the desired reduction.
Step 2. 2 may be assumed to be totally irreducible.

In fact, let vil\ v<2),..., v(r) be a basis of Ar having the properties described in
the former step. The eigenvalues of any a el with respect to this basis are denoted
by Al(r, A2 o, . . . , Ar<7. Each ere2 is uniquely determined by Alcr. Put K =Q(spectl<i>2).
Assuming that 2 is not totally reducible we find that for every a e 2 there exists an
n for which Q(A"o.) is a proper subfield of K. Now we need

L E M M A 4.2. Let Kbe a number field and S a subsemigroup of the multiplicative group

K* ofK. Suppose that for every seS there exists an n e N such that Q(s") is a proper
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DIAGRAM 1

subfield of K. Then there exists n e l\l and a proper subfield F of K such that s" e F
for every s e S.

Proof. Put F(s) = fX=i Q(s"),seS. Let us show first that if F(s,) = F, and F(s2) = F2

for some 5,, s2e S then F(s) = Q(F, u F2) for an appropriately chosen s e S. In fact,
the correspondence (m, n) -» F(s™s") gives a finite colouring of N xfU By Griinwald's
theorem concerning finite colourings of MxM (see, for example, [5, th. 0.6]) there
exist m,, m2, nu n2eN, mi<m2, n,<n2, with F(sT's2') = F(sT2s"') = F(sT's"2).
Since F(s") = F{s) for every seS and n e N, we may assume that F(s?s") = Q(s?s2)
for (m, M) = (m,, «,), (m2, «,), (m,, «2). This implies sT*2"""1, s"2~"' e FCs^'s"1), which
leads to F(s,), F(s2) c F(57''*2')- Thus s = sf's"1 is an element of S possessing the
required property.

The conditions of the lemma now mean that F = Q(Uses F(s)) is a proper subfield
of K. For any subset A of K let

VA = {a e K|3n e N 9-a" e A}.

With this notation we have 5 c VF. From the proof of proposition 3.1 in [1] we
infer that V F * = U™=i F*a( for suitable a u a2,... ,am eVf5. This implies that for
some neN v/c have a" e F* for every a e V F * , and in particular for every ae S.
This proves the lemma. •

Returning to our reduction step, we find that there exists a positive integer n and
a proper subfield F of K such that A"aeF for every treS. Denote by £' the
subsemigroup of S generated by {o-"\o-e1}. £' is evidently a hyperbolic multipara-
meter semigroup if £ is. To 2' we can now apply the decomposition process carried
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out in the first reduction step. Repeated alternating use of the processes described
in this and the former step lead us at last to a situation where all involved semigroups
are totally irreducible, in addition to being hyperbolic and multi-parameter.

The last reduction step and proposition 4.1 complete the proof of
theorem 2.1. •
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