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Abstract

The biharmonic Green's function of a simply supported plate is generalized to Riemannian
manifolds and shown to exist if and only if the harmonic measure of the ideal boundary is square
integrable.

The harmonic Green's function was originally introduced as the electrosta-
tic potential of a point charge in a grounded system. Its characterization by the
fundamental singularity and vanishing boundary values permitted its generaliza-
tion to regular subregions il of an abstract Riemann surface or Riemannian
manifold R. The Green's function g o n R was then defined as the directed limit,
if it exists, of the Green's function gn on il as {il} exhausts R. The distinction of
Riemann surfaces and Riemannian manifolds into hyperbolic and parabolic
types according as g does or does not exist is still a cornerstone of the harmonic
classification theory.

The biharmonic Green's function y also has an important physical meaning:
it is the deflection of a thin elastic plate under a point load. However, in sharp
contrast with the harmonic case, nothing seems to be known about its existence
on noncompact spaces. The purpose of the present paper is to initiate research
on this fundamental problem of biharmonic classification theory.

Biharmonicity being not meaningful on abstract Riemann surfaces, our aim
is to generalize the definition of the biharmonic Green's function to Riemannian
manifolds R and to explore its existence on them. On a regular subregion il of
R, there exist two biharmonic Green's functions, to be denoted by /3 and y, with
a biharmonic fundamental singularity, and with boundary data ;8 = d(i/dn = 0
and y = Ay = 0. For dimension 2, both functions give the deflection under a
point load of a thin plate which is clamped or simply supported at the edges,
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respectively. Our present investigation deals exclusively with y. The correspond-
ing function yn on ft increases with fi, and we set y = limn-^Ryn on R.

We first study the existence of y on the Euclidean N-space R N. The result is
fascinatingly simple: y exists if and only if N > 4. By way of preparation we
recall the peculiar behavior of the biharmonic fundamental singularity at the
origin: r2 log r for N = 2, r for N = 3, log r for N = 4, and r*~N for N > 4.

No parabolic Riemannian manifold carries y. For a hyperbolic Riemannian
manifold i? we deduce a natural criterion: If RoCft C R, and wn is harmonic on
ft - Ro with boundary values 1 on dR0, 0 on 5 ft, and we denote by w = limn^Rwn

the harmonic measure of dR0 on R - Ro, then y exists on R if and only if
u> G L2(R — Ro). An essential step of the reasoning is the proof of the indepen-
dence of the existence of y on the choice of the fundamental singularity. This
property allows us to introduce the class Or of Riemannian manifolds which do
not carry y, in analogy with the class OG of parabolic manifolds.

As a simple illustration of our criterion we generalize the above result that
RN E. Or if and only if N s 4. We ask whether one could induce y to exist even
for these low dimensions hy replacing the Euclidean metric ds = \dx\ by
ds = (1 4- r2)" | dx |, with the constant a sufficiently large. The answer is intrigu-
ing: the resulting space is in Or for N S 4 regardless of what a is chosen. For
N > 4, y continues to exist if and only if a > — \.

The usefulness of the criterion a» £ L2 for R & Or lies in the fact that it also
applies if there is no way of obtaining an expression for the approximating
Green's functions yn, and even if nothing is known about the metric of an
arbitrarily small neighborhood of the ideal boundary of the Riemannian
manifold.

Applications of our criterion to relations between Or and other biharmonic
null classes will be discussed in later studies [see Ralston and Sario (to appear),
Sario (to appear), Wang (1974), Wang (to appear), in the attached Bibliography
of recent work in the field].

1

Throughout this paper, A will stand for the Laplace-Beltrami operator
d8 + Sd, biharmonicity being defined by A2 • = 0. Let fi be a regular subregion of
a Riemannian manifold R, carrying the biharmonic Green's function yn(x, y) on
ft, with the biharmonic fundamental singularity at y G ft and with the boundary
data
(1) yn |dft = 0, Ayn|<9ft = 0.

In terms of the harmonic Green's function gn(x, y) on ft with singularity y, the
function yn(jc, y) has the well known integral representation

yn(x, y) = gn(x, z )gn(z, y )dz,
Jn
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with dz the Riemannian volume element at z. To see this, it suffices to verify

(3) A / gn(x, z)ga(z, y)dz = gn(x, y),
Jn

where A is taken with respect to x. For every <f> G Co,

L A ( i S4x,z)gn(z,y)dzy<f,(x)dx=jn (Jn gn(x,z)gn(z,y)dz}A<t>(x)dx

) / gn(z,y)<Hz)dz.

Therefore (3) is true in the sense of distributions and a fortiori in the
conventional sense.

We introduce the biharmonic Green's function -y(x, y) on a Riemannian
manifold R by setting

(4) = lim yn(x, y)

provided the limit exists for some exhaustion {£!}. We shall show in No. 4 that the
existence is independent of the exhaustion {il} and the choice of the singularity
y-

2

We start by examining the existence of y(x, y) in an illuminating special
case, the Euclidean N-space RN. Here the computation is elementary. A
function h(r) is harmonic if A/i(r) = 0, i.e., - r~N*\rN-lh'(r))' = 0. We obtain

(5)
a log r + b,

ar

N = 2,

N>2,

where a, b are arbitrary constants. If u(r) belongs to the class H2 of nonhar-
monic biharmonic functions on RN, then 4«(r)=/:(r) . A straightforward
integration yields the biharmonic, quasiharmonic, harmonic, and constant
components of u(r):

(6) u(r)=-
a log r + br2 + cr 2 + d,

ar

with a, b, c, d arbitrary constants.

ar2 log r + br2 + c log r + d,

ar + br2 + cr l + d,

"+4+br2+cr-N+2+d,

N = 2,

N = 4,

N>4,
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Let Bp be a ball {r < p} and take x £ Bp, | x | = r. In view of (6) and
Ar2 = - 2N, the biharmonic Green's function on Bp with singularity 0 is

= 2,

(7) yP(x,0) =
= 4,

where the signs have been so chosen that yp >0. As p —»°°, {Bp} exhausts RN,
and we obtain

(8) y(x,O)=r-N+4, N > 4 ,

whereas limp_ooyP = °° for N = 2,3,4.
We have proved:

THEOREM 1. The biharmonic Green's function exists on the Euclidean
N-space if and only if N > 4.

For further illustration we recall the simple computation showing the
significance of the biharmonic Green's function in expressing values of a
biharmonic function u in terms of the boundary values of u and AM. Given a
regular subregion ft of a Riemannian manifold, let y G ft, u G H2(ft), and
y £ H2(ft - {y}) Pi C3(ft - {y}). Take a compact hypersurface a enclosing y and
suppose that as a shrinks to y,

(9)

Then

I • Ay * du ->0, I ' AM * dy-*0, [ y
Ja Ja Ja

0.

(10) M(y) = "S7I—\ « * dAy *- Ay * du + AM * dy - y :

t\l^y) Jan

with F(Ay) — /„ * dAy the flux of Ay. In fact, by Stokes' formula the integral on
the right taken along dil—a is

(du, dAy)- (M, A2y)- (dAy, du) + (Ay, AM)

+ (dAu, dy)- (AM, A y ) - (dy, d\u) + (y, A2M) = 0,
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where the inner products are taken over the region bounded by dfl U a. If ( e ) 
stands for a quantity which -^>0 as a —* y, then 

J u*dAy=j (٦(σ) + ( ε ) ) * dAy—> u(y)F(Ay), 

and (10) follows. 
In the Euclidean case of No. 2, Cl is the ball {r < p}, σ the origin, and у = yp. 

Accordingly, 

(11) u(0)=pj^jf u*dbyp+&u*dyin 

provided (9) holds. 
Denote by dS the surface element on the sphere Sp = {r = p} and let a be 

the sphere {r = 8 < p}. For N = 2, (7) gives 

*dyp = (2r l o g ^ - rj dS, Δσ π = - 4 1 o g ^ - , 

*dAyp = - 4 r " ' d S , F ( A y p ) = - 4 J r - ' d S = - j * " 4d<t> = - 8ςγ. 

On the other hand, | u |, | ди/дп |, | Δθ | are bounded on B p , and as 5 —>0, 

J • Ay p * du 

j - Δμ * dy p 

j yp * dAu 

< M 

< M 

S l o g ^ •0 , 

28 \og^-8 S - > 0 , 

c ( S ) F ( A u ) = 0. 

Equation (11) follows, with F ( A y p ) = - 8TT. 
For N = 3, (7) gives 

*dyp=(-l+lrp-1)dS, Ayp = 2 r - - 2 p - * , 

* d A y p = -2r2dS, F ( A y p ) = - 2 | r V d w = - 8TT, 

where doj is the area element of the unit sphere. As 8—*0, 

j Ayp*du < M(28,-2p-l)-4n82^0, 

j Au * dyp 

j y„*dAu 

< Μ | - 1 + ? 5 π - Χ - 4 ς γ 5 2 ^ 0 , 

c(8)F(Au) = 0, 

and (11) follows, with F ( A y p ) = - 8 7 γ . 
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For N = 4, (7) gives

*dyp = ( - rl + {rP'2)dS, Ayp = 2r'2-2p-\

* dAyp = -AT~3dS, F(Ayp) = - 4 [ r"Vdw = -4a»,,

where &>3 is the area of the unit 3-sphere. As 5 —»0,

Ayp

AM * < M | - 8'1

= c(5)F(Au) =

and (11) follows, with F(A-yp)= -
Finally, for N > 4, (7) gives

* dAyp = - 2(N -• 2) (N - 4)r-~+1dS,

F(Ayp)= - 2 ( N - 2 ) ( N - 4 V N _ , ,

where <uN-i is the area of the unit ( N - l)-sphere. As S ->0,

II Au * <iyP

yp * dAu

M |

= c(S)F(Au) =

and (11) follows, with F(Ayp)= - 2(N - 2)(N - 4)o>N_,.

In summary, (11) is true for all N. For our present purpose of illustrating the
use of y this will suffice. Equation (11) generalizes, however, in various
directions. First, since the fundamental singularity is locally defined, the above
reasoning continues to hold when «(0) is replaced by u(y) with y £ Bp, and
yP(x,0) by yP(jc, y). On a Riemannian manifold R, the geodesic distance d is, in a
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sufficiently small neighborhood of y, a constant multiple of the Euclidean r in a
parametric ball, added by a function which together with its derivatives is
bounded. Therefore, the above elementary reasoning, mutatis mutandis, re-
mains valid and (11) holds for u(y) when Sp is replaced by the boundary dil of a
regular subregion of R, and yp by the biharmonic Green's function yn(x, y) on

n.

We return to our existence problem. The proof of the following inter-
mediate result is essential.

PROPOSITION. The existence of a biharmonic Green's function y on a
Riemannian manifold is independent of the exhaustion and the choice of the
singularity.

PROOF. Let {ft} be some exhaustion of R as in No. 1. By (2) and Lebesgue's
Dominated Convergence Theorem, if a biharmonic Green's function y on R
with singularity y exists, it can be written as

(12) y(*,y)= f g(x,z)g(z,y)dz,
JR

where g is the harmonic Green's function on R, and the integral is the directed
limit of ftign(x, z)gn(z, y)dz as ft—» R. Thus we have immediately the indepen-
dence of the exhaustion. It remains to show that if y exists for some (jd, yi), then
it exists for any (x2, y2).

From (12), we see that y can exist only on hyperbolic manifolds, and

(13) f g(xuz)g(z,yi)dz<cc.
J R

Choose a regular subregion Ro of R containing Xi, x2, yi, and y2, with boundary
a. Clearly (13) is equivalent to

g(xi,z)g(z,yl)dz
Ro

which in turn is equivalent to

g(jrI,z)g(y,,z)dz<°°,

by virtue of the symmetry of the harmonic Green's function. Since g(x, z),
g(y, z ) > 0 on Ro for each z E R — Ro, Harnack's inequality gives

g(y,z)<Kg(x,z)
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for all x, y in Ro, with the constant K depending only on R and Ro. Therefore,

K~l\ g{x,zfdz<\ g(x,z)g(y,z)dz<K( g(x,z)2dz,

and we conclude that y(xu y,) exists if and only if fR ROg(xu zfdz <°°, that is,

Next we shall show that g(-,xt)E. L2(R - Ro) if and only if the harmonic
measure la of a on R - Ro belongs to L2(R - Ro). Recall that u> is the limit of
the harmonic function &>n on f l - Ro with boundary values 1 on a,0 on dil, for
some and hence every exhaustion {fl} of R with R0Cfl. The function co always
exists, and w = 1 if and only if R is parabolic. Set

mn = tningn(-,A:1), Mn = max gn( •,*,).

By the maximum principle for harmonic functions,

mnwn S gn( •,, x,) S

on fl-Ro- On letting fl—>i?, we obtain

(14) m&)^g(-,x,)

on R — Ro, with

m =mmg(-,xi), M = maxg(-,x,).

Thus g ( - ,x l )GL 2 (R-R 0 ) if and only if co E L2(R - Ro). Since g(-,x2)e
L2(R — Ro) is characterized by the same condition, we have proved the existence
of y(x2, y2) as a consequence of that of y(xuy,).

We also conclude from the above reasoning that limn^Ryn is either
identically infinite or a biharmonic function y on R ~{y} with the fundamental
singularity y.

5

In view of the Proposition, we may introduce the class of Riemannian
manifolds

(15) Or = {R | y does not exist}.

Let Or be the class of manifolds which do carry y. From the proof of the
Proposition, we have the following criterion:

THEOREM 2. Every parabolic Riemannian manifold R belongs to Or. A
hyperbolic R belongs to Or if and only if a) G L2(R - Ro) for some and hence every
Ro.
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6

Using Theorem 2, we can extend Theorem 1. We ask whether y exists even
for the low dimensions if RN is generalized to the Riemannian manifold RN

a

with the same base manifold {r < <»} but with the metric

(16) ds = (1 + r2)"\ dx |,

a a constant. For a harmonic h(r) we have by direct computation

h(r) = a [' rN+\l + r2)-iN-z>-dr + b

as r —* oo. If a S - % this is unbounded, hence R " £ OG C Or- For a > - \, the
harmonic measure u> satisfies

and the L2-norm of &>(r) over the annulus (l,r) is

II . I P « I ,-2(N-2)(2o+l)+N-l+2N<« i _ „ I _-2(N-4)<»-(N-3) J .
o> h ~ c I r ar = c I r dr.

This is bounded if and only if N >4 and a > — |. We have proved that i?£ fails
to carry y for N ^ 4 regardless of how rapidly or slowly the metric
(\ + r2)"\dx | grows:

THEOREM 3. R" £ Or »/ and on/y if N>4 and a> - \ .

The author is indebted to Professor Cecilia Wang for a careful checking of
the manuscript.
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