CORRIGENDA

J.I.A., 114, Part II

A Linear Approach To Loan and Valuation Problems. By A. Brace, B.A.
On page 395 in the Proof of Theorem 2 replace the first twelve lines by:
Proof: Define the upper triangular $k \times k$ valuation matrix V to have entries $v_{\alpha} v_{\alpha+1} \ldots v_{\beta}$ in the (α, β) position when $\alpha \leqslant \beta$, and 0 s elsewhere. The statement of the theorem in matrix form is

$$
D_{U} \boldsymbol{n}^{T}=V \boldsymbol{q}^{T},
$$

and we now prove that. From (2)

$$
V \mathbf{q}^{T}=V(I+F) \boldsymbol{n}^{T} .
$$

The entry in the (α, β) position in $V(I+F)$ is the inner product $\left(0, \ldots, 0, v_{\alpha}\right.$, $\left.v_{\alpha} v_{\alpha+1} \ldots, v_{\alpha} v_{\alpha+1} \ldots v_{k}\right)\left(f_{1}, f_{2}, \ldots, f_{\beta-1}, u_{\beta}, 0, \ldots, 0\right)^{T}$. When $\alpha>\beta$ that is 0 , when $\alpha=\beta$ it is 1 , and when $\alpha<\beta$ it is $f_{\alpha} v_{\alpha}+f_{\alpha+1} v_{\alpha} v_{\alpha+1}+\ldots+f_{\beta-1} v_{\alpha} v_{\alpha+1} \ldots$ $v_{\beta-1}+v_{\alpha} v_{\alpha+1} \ldots v_{\beta} u_{\beta}$ which, on repeated use of $\left(1+f_{i}\right) v_{i}=1$ for descending $i=\beta-1, \ldots, \alpha$, is found to be 1 . Hence $V(I+F)=D_{U}$, and the result follows.
J.I.A., 114, Part III

Abstract of the Discussion on Long-Term Sickness and Invalidity Benefits: Forecasting and Other Actuarial Problems. By Professor S. Haberman, M.A. Ph.D., F.I.A.

On page 537 the remarks attributed to Mr A. Saunders were made by Mr A. J. Sanders.

