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1. Introduction

The theory of formations of soluble groups, developed by Gaschiitz [4],
Carter and Hawkes [1], provides fairly general methods for investigating
canonical full conjugate sets of subgroups in finite, soluble groups. Those
methods, however, cannot be applied to the class of all finite groups, since
strong use was made of the Theorem of Galois on primitive soluble groups.
Nevertheless, there is a possibility to extend the results of the above
mentioned papers to the case of 7r-soluble groups as defined by Cunihin [2].
A finite group G is called n-soluble, if, for a given set n of primes, the indices
of a composition series of G are either primes belonging to n or they are not
divisible by any prime of n. In this paper, we shall frequently use the follow-
ing result of Cunihin [2]: If n is a non-empty set of primes, n' its complement
in the set of all primes, and G is a ji-soluble group, then there always exist
Hall 7r-subgroups and Hall Tz'-subgroups, constituting single conjugate sets
of subgroups of G respectively, each jz-subgroup of G contained in a Hall
jr-subgroup of G where each w'-subgroup of G is contained in a Hall n'-
subgroup of G. All groups considered in this paper are assumed to be finite
and 7r-soluble. A Hall jr-subgroup of a group G will be denoted by Gn.

2. The formation gff

Let ^ be a saturated formation of soluble groups as defined in [4],
i$n the class of all groups G having a normal jr-complement Gn,, and Hall
Tt-subgroups G belonging to %.

PROPOSITION 2.1. %„ is a formation.

PROOF, (i) Let Ge%w, N < G. Then G^N/N ~ GJN nG«e% and
Gn,N/N < GIN.

(ii) Let N1<G1, N2<G and G/A^ e %„, GjN% €%„. It follows

G^iNi n N2)INX nN2< G / ^ n N2

and since
G^NJNi S GJN, n Gn e %, for i = 1, 2,
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we have GJNj^ nN2n Gne% whence Gn(Nx n N2)/Nl n N2 e g-

LEMMA 2.2. / / N is a normal n'-subgroup and GjN e $„ then G e %n.

PROOF. G/N = (G.NIN) • (GJN) e %„

implies Gn, < G and Gff ^ GnNIN e F. Hence G e%n.
By the Theorem of Gaschtitz-Lubeseder [8], any saturated formation

% can be locally defined. This means, that to any prime p, there exists a
formation %(p), such that G e g if and only if GjCG{HjK) e %(p) for all
/•-chief factors H/K of G.

PROPOSITION 2.3. Let <&„ be the class of all soluble n-groups. If the
formation % is locally defined by %(£), p ranging over all primes, then G e %„
if and only if GlCG(HjK) e %(p) n ©„, for all p-chief factors H/K with
pen.

PROOF. Let G e %„ and H/K be a p-chiei factor of G such that
Gn,CK<HCG. Since GIGn,e%, it follows G\CG{HIK) e%(p) n ©,.
But any />-chief factor .ffyif with /> e n is G-isomorphic to one lying between
Gn, and G.

Conversely, let GICG(HjK) e %(p) n @ff for aU p-chiei factors i?//C
with pen. By induction and Lemma 2.2 we may assume, that there is a
minimal normal ^-subgroup N of G with G/Ne%n, and />ejr. Then
Gff,Af < G, and GjCG(N) is a rc-group by assumption. Hence G,,/ C CG{N)
and therefore Gff- char Gn,N which implies Gn, < G. Also

s GnCG(N)ICG(N) = G/CG(iV) e

whence Gne% and G e %„.

DEFINITION. Let pen. Then we denote the formation $(/>) n ©„ by

PROPOSITION 2.4. If G $%„ and N is a minimal normal subgroup of G
such that GjN e %n then N is complemented and any two complements are
conjugate.

PROOF. By Lemma 2.2, N is a />-group, pen. If %n(p) = 0 then
p\ \G\N\ and the proposition follows by Schur-Zassenhaus. If %n(p) =£0,
then we proceed in a similar manner as in [4]. Let FP(G -^ N)/N be the
largest normal />-nilpotent subgroup of G/N. If there were an x eN, x ^ 1,
which is centralized by F"(G 4- N), then N C Z(FP(G 4- N)), since N is a
minimal normal subgroup. Let FP(G) be the largest normal />-nilpotent
subgroup of G. Then F"(G) = F"(G~N) n CG(iV) by [6; VI 5.4.b)]. This
implies FJ>(G) = FP(G 4- iV). Hence Ge%nby Proposition 2.3 which is a
contradiction. Let i/iV be the largest normal /"'-subgroup of GjN. Then L
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splits over TV by Schur-Zassenhaus and any two complements of TV in L
are conjugate. If there were an n e TV which is centralized by L then
TV C Z(L), since TV is a minimal normal subgroup of G. This would imply
LCCFpiG+m(N). Then FP(G ^-N)jCFHB^N)(N) would be a non-trivial
group of ^-automorphisms of TV, since TV <£ Z(FP(G 4- TV)). This is, however,
impossible, as TV = TV1xTV2x • • • xTVr) the TV/s being minimal normal
^-subgroups of FP(G ~ TV) and thus

F>(G 4- TV)/CWG^,(TV) = FP(G 4- TV)/n

Hence FP(G 4- N)ICFf(G+N) (Nt) is a non-trivialp-group for at least one
i, contradiction. Now let R be an arbitrary complement of TV in L. R is self-
normalizing in L, otherwise there exists an n e TV, n ^ 1, such that Rn = R,
and this n would be centralized by R which is a contradiction. By applying
a Frattini argument, the proposition is proved.

PROPOSITION 2.5. / / &(G) is the Frattini subgroup of G and Gj&(G) e %„
then G e %„.

PROOF. Let G8* be minimal among the normal subgroups TV of G with
G/Ne%n. Then Gs"C0(G). If GS" ^ 1, then there would exist a chief
factor GSnIH of G. By Prop. 2.4, G*njH would be complemented which
contradicts Gs" C&(G).

3. ^-cover ing subgroups

DEFINITION ([4]). A subgroup E of a ^-soluble group G is called an
%,,-covering subgroup if it has the following properties:

(i) £ e g ,
(ii) If E C H C G and Ho < H, such that H/Ho e %„ then EH0 = H.

The following theorem extends a result of Gaschiitz [4].

THEOREM 3.1. Every n-soluble group G has %n-covering subgroups and
any two of them are conjugate.

PROOF. We remark that any conjugate and any homomorphic image
of an §ff-covering subgroup is an ^-covering subgroup. We prove the
theorem by induction on |G|. If \G\ = 1, then the theorem holds. If G e %„
then G is the only gff-covering subgroup. Assume G

FIRST CASE. There exists a minimal normal subgroup TV, such that
GjN $$„. In this case, we may use Gaschiitz's argument ([4]) in order
to prove the theorem. We take an ^-covering subgroup i?/TV of G/TV
(by induction) and E < G. E has by induction an gff-covering subgroup
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E whence EN = E. Let ECFCG, Fo < F and F/Foe%n. Then
NFINFoe%n, thus NEF0 = NF and (NE n F ) F 0 = F. Furthermore

Therefore
F=(NEn F)F0 = £(2V£ n F0)F0 =

since £ is an f^-covering subgroup of E and so of 2VE n F. Hence £ is an
^-covering subgroup of G.

If Ex and F.2 are f^-covering subgroups of G then E-JSlfN and E2NjN
are ^-covering subgroups of G/2V. By induction there exists g eG, such
that NEX = 2VF,|, and NEt < G. Hence by induction Ex and ££ are con-
jugate under NEX as they are ^-covering subgroup of NEt. Therefore Ex

and E% are conjugate under G.

SECOND CASE. G\N e §ff for every minimal normal subgroup N of G.
Then G has to be monolithic with N as abelian monolith. By Proposition
2.4, N is complemented and any two complements are conjugate. Let M
be a complement of N. Then M is a maximal subgroup of G and therefore
an ^-covering subgroup. If M is another ^-covering subgroup, then
MN = G, as G/AT e ^ an<i if? n iV = 1, since iV is abelian. By Proposition
2.4, M and M are conjugate.

4. g^-normalizers

DEFINITION. A chief factor H/K of G is called %n-central if
GICG(HIK) e $„(/>) for ff/.K being a ^-chief factor pen, or if #/if is a
yr'-chief factor. Otherwise #//£ is called %,,-eccentric.

DEFINITION. A maximal subgroup M of G is called %^-normal if
M/Corec?(M") e$„(/>) for Af being of />-power index, p en, or if [G : Af] has
only Ti'-divisors. Otherwise M is called %n-abnormal.

REMARK. Since, in a jr-soluble group, a maximal subgroup is either of
Tr'-index or of a ^-power index for p e n, it follows that a maximal subgroup
is either ^-normal or f^-abnormal.

PROPOSITION 4.1. Ge%n if and only if every maximal subgroup of G is
%^-normal.

PROOF. Let G e %n and M be a maximal subgroup of rr-index. Then
Gn. C CoreG(Af) C M, GjGn, e % implies M is 5ir-n o r m al- Conversely, let
every maximal subgroup of G be §w-normal. By induction and Lemma 2.2,
we may assume G/N e %„ for a minimal normal ir-subgroup N of G,N being
the unique minimal normal subgroup of G. Furthermore, Prop. 2.5 allows

https://doi.org/10.1017/S1446788700007138 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007138


[5] Formations of 7t-soluble groups 245

us to assume 0{G) = 1. Hence N has a maximal subgroup M as a comple-
ment, M being of n-index with CoreG(M) = 1. Thus

if M is of ^>-power index. This implies G e %„.

DEFINITION. CP(G) = f] CG(H/K), the intersection taken over all
f^-central p-chiei factors of G, p en. Additionally, we put C"(G) = G if
G has no ^^-c&aXraX p-chiel factors for pen.

DEFINITION. A Sylow n-system is a f|-closed set of subgroups of G,
generated by a complete set of Hall ^'-subgroups of G for pen.

The following result is analogous to Ph. Hall's theorem on Sylow
systems ([5]).

PROPOSITION 4.2. Any two Sylow n-systems of a n-soluble group G are
conjugate in G.

PROOF. Let S : Klt • • •, Kr, S* : K*, • • •, K* be two complete sets of
Hall ^-subgroups of G, pk e n, and let Kt = Kf for i ^ s. Let K} ^ Kf.
Consider Qi = f]i¥:jKi. This is a Hall \j>it ?r'}-subgroup of G whence
KjQj = G (both statements follow from [7; 1.5.5]). Therefore there exists
x e Qs with Kx

t = Kf and Kl = Ku for i ^ /. Thus ft* and S* have s+1
elements in common, and induction proves the proposition.

DEFINITION. Let T = T'(G) = Gv, n CV{G), where Gv. is a Hall
^'-subgroup of G and CP(G) is as defined above. A subgroup D of G is called
an %n-normalizer if D = f)]>enNG(Tp).

REMARK. Prop. 4.2 implies that all ^-normalizers of a ?r-soluble group
G are conjugate in G.

For the remainder of the paper, we assume, that %(p) ^ 0 for all
pen.

PROPOSITION 4.3. If G e%n, then G is its own %n-normalizer.

PROOF. By Prop. 2.3, any chief factor is %n-centTal. Hence, for pen,
C'(G) = F'(G) ([6; VI, 5.4.6]) which implies T" char C{G). Thus Tp < G
and NG(T*) = G for all pen.

PROPOSITION 4.4. Let M be an %1,-abnormal maximal subgroup of G.
Then M contains an %,,-normalizer of G.

PROOF. Since M is ^-abnormal, it is of ^>-power index in G, for some
pen, and Af/CoreG(M) $ %^(p). Let ®ff be a Sylow ^-system, Gv, e S , ,
such that Gv. C M. Then Tp = C(G) n Gs, C M. We will show: NoiT") C M.
Let K = CoreG(M). Then MIK$%n{p). By definition of X, there is no
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normal subgroup of G between K and M, hence if HfK is a minimal
normal subgroup of G/K, we have ME = G. But |G| = \M\ \H\\\M n H\
whence p\\HjK\ and HjK is an elementary abelian ^>-group since G is
^-soluble. Furthermore M n H = K and GjH s M/X # g,(£). ff/ff is
the only minimal normal subgroup of GjK and is self-centralizing by
the theorem of Galois ([9; Th. 11.5]). Therefore H <KC(G), otherwise
G\H e%n{p). Let LjH be a minimal normal subgroup of GjH, lying in
KC»(G). Since H = CG{HIK), certainly p\\L\R\. Hence LnM/K is
a ^-complement of LjK. Now T* is a ^-complement of CV(G) whence
KTP/K is a ^-complement of KC/K. But i £ C D Z., therefore KTP n i /K
is also a ^-complement of LjK. Moreover KTV C KGV, C M, thus
KT"nLCMnL. Hence KT» n L = M n L. Let geNG(T"), then

n L)» = Kr» n L and geNG(KT» n L) = iVG(M n i ) = I . Thus

DEFINITION. Denote by 0ff/(G) the largest normal jt'-subgroup of a
7r-soluble group G. Then Fn{G)jOn,{G) shall be defined to be the Fitting
subgroup of GIOn,(G) and 0n(G)jOn,(G) to be the Frattini subgroup of

LEMMA 4.5. / / G is n-soluble, then Gj07'{G) has no non-trivial normal
n'-subgroup.

PROOF. Assume A}&*{G) is a normal rc'-subgroup of Gj0n{G). Since
0"(G)IOn,(G) is a ?i-group, by Schur-Zassenhaus there exists a subgroup
B of A such that B0"(G) = i a n d B n 0"(G) = 0^(G). B is then a Hall
it '-subgroup of A and a Frattini argument yields

G = ANG(B) = B0"(G)NG(B) = 0"(G)NG(B) = 2VG(B).

Thus 5 < G which implies B = 0n,{G). Hence ^ = 0"{G).

LEMMA 4.6. / / G is n-soluble, 0n> = 0n,{G), 0»IOn. is the Frattini
subgroup of GjOn,, and FnJOn., is the Fitting subgroup of G\0n,, then
F* = CG{F"j0").

PROOF. Put C = CG(F»l0"). Certainly F"CC. Assume F" < C. By
Gaschiitz ([3]), there exists a subgroup K of G, such that F"K = G,
F" n K = 0". Let HjO^ be the largest normal jr-subgroup of G/0n,.
Then F"jOn, is also the Fitting subgroup of HjOn, which is a soluble jr-group.
Since H < G, the Frattini subgroup of H\0« is trivial. Thus [6; III, 4.2b]
implies that C n H = CH{F7!j01') = F". Let L/F" be a minimal normal
subgroup of GIF1' in CjF". Since

L1F" n # /F» C CjF" n / f /F" = F»/F»,

the chief factor L/F" of G is a Tr'-group. Now F"{K n L) = L and
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F« n (K n L) = 0". But LCC implies L/0" = F"/0"x(K n L)/0". It
follows that F" CNG(K r\L). Furthermore K n Z. < K whence K n L < G.
As (K n L)I0" ^ L/F", X n L\0^ is a non-trivial normal zr'-subgroup of
GIF". This contradicts Lemma 4.5.

COROLLARY. If i?/0w- is the Frattini subgroup of F"jOn>, then
F* = CG(F"IR).

PROOF. Certainly F" C CG(F"IR), as F»/i? is abelian. But also R C 0"
since F* <1 G. Hence F* C CG(F"IR) C CG(F"l0") = F* by Lemma 4.6.

LEMMA 4.7. F" is the intersection of the centralizers of all n-chief factors
of G.

PROOF. Let N be the intersection of the centralizers of all 7r-chief
factors of G, 07!>{N) the largest normal jr'-subgroup of N, Nj^/Ojf^N) the
Fitting subgroup of iV/Ow,(iV) and K\O^{N) the Frattini subgroup of
NJO^N). By the corollary of Lemma 4.6, C^NJK) = N1. If iVx < N,
then there exists x e N, x $ N1. NJK is a direct product of elementary
abelian ^-groups for certain primes p in n. Therefore there exists a chief
factor L\M of NjK, such that K C M < L CNt and x $ CG(L/M). This is
a contradiction since N centralizes every jr-chief factor of N. Hence Nt — N
and N C F". Conversely F" centralizes every yr-chief factor of G, thus
N = F:

PROPOSITION 4.8. G e £?„ if and only if every minimal normal subgroup
of Gj0" is %,,-central.

PROOF. If G e %„ then any chief-factor of G is ^-central, particularly
the minimal normal subgroups of Gj0n. Conversely, let Q = Gj0n, then
F = F"10" is the Fitting subgroup of G. F is direct sum of certain minimal
normal subgroups St of G. Let C( = CG(^t), then G/Q e i$n[p), if ftt is a
/•-chief factor. One can choose the ^{p)'s in such a way that %{p) C g-
Then G / C t e ^ . But f) Ct = CG(F) = F C f] Ct by Lemma 4.6 and
Lemma 4.7. Hence GjF e%n and also GjOn, = Ge%n. By Lemma 2.2,

COROLLARY. If G ̂  %n, then there exists an %n-abnormal maximal
subgroup M of G with G = MFn.

PROOF. Since G £ %„, there exists an ^,,-eccentric chief factor NjO"
of G and N C F*. Therefore there exists a maximal subgroup M of G with
G = MN and hence G = MF". Furthermore M n N = 0" as iV/<£* is an
abelian p-group, pen. But M/CoreG(M) ~ GjCG{Nj0") $ %n(p).

LEMMA 4.9. Let G be a n-soluble group, M a maximal subgroup of G

https://doi.org/10.1017/S1446788700007138 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007138


248 H. Lausch [8]

with G = MFn and H/K a n-chief factor of G. If M covers HfK, then
H n M/K n M is a chief factor of M.

PROOF. M covers HjK whence H/K =; H n MjK n M and

C*(HIK) = CM(tf n M/ff n M).

Furthermore GlCa(HjK) = GICMF*(HIK). But i?» C Ca{HfK) by Lemma
4.7, thus

= F»MIF«CM{HIK) s M\CM{H\K) ~ M\CM(H csM\K nM).

Since #/.?£ is a chief factor of G, this isomorphism shows # n il//if n M
to be a chief factor of M.

COROLLARY. If pen, then CV(M) = M n CP(G).

REMARK. M is of ^>-power index in G for some pen.

PROPOSITION 4.10. Let M be defined as in Lemma 4.9. Let \G : M\ = pa

for some pen and ® = {Gp,, Gg,, • • •, Gr-} be a Sylow n-system of G with
Gp> C M'. If &' = ® n M which is a Sylow n-system of M, then

T*{G), T"[G), • • -, and T'{M), T'(M), • • •

are determined by ® and $ ' respectively. They are related by

T"(M) = M n T"{G),

particularly T"(M) = T»(G).

PROOF. By the corollary of Lemma 4.9, C(M) = M n C(G) for all
q en. Then

rfl(M) = Gq, n M n C«(M) = Gff, n M n C{G) = M n T"(G).

Since G ,̂, C Af, we have in particular TV(M) = Gp, n (^(G) = ^ (G) .

PROPOSITION 4.11. Under the assumption of Prop. 4.10,

NU(T*(M))=NM(T<(G))
for all q en.

PROOF. If q = p, the result follows from Prop. 4.10. Assume q ^ p.
By Lemma 4.7, F"CC"{G). Let FJ,/OB, be the ^-complement of F"jOv,.
Then .F" C Ta(G) and is normal in G. Furthermore F\, <t M whence
F^M = G. Thus

T«(G) = F^.(T'(G) nM) = F^

by Prop. 4.10. Now choose meNM(T9{G)). Then
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(T"{M))m = (T'{G) n M)m = T«(G)m n M = T"(M).

Hence m eNM(T"(M)). Choose x <sNM({T«{M)). Then

r«(G)* = Fl,T"{M)' = T'(G)

which proves the proposition.

PROPOSITION 4.12. Let M of index pa in G be defined as in Lemma 4.9
for some pen where M is %n-abnormal, DG an %,,-normalizer obtained from
a Sylow n-system K of G whose p-complement is contained in M and DM the
^n-normalizer of M obtained from the Sylow n-system ® n M of M. Then
Da = DM.

PROOF.

qejr qen qen

by Proposition 4.11. By the proof of Prop. 4.4, DG C M whence DM = DG.

THEOREM 4.13. An %^-normalizer of G covers every %n-central chief
factor and avoids every %n-eccentric chief factor.

PROOF. If G e %„, then the theorem is true by Prop. 4.3. Assume
G $%„. Then, by the corollary of Prop. 4.8, there exists an ^-abnormal
maximal subgroup M with G = MFn and M is of rc-index in G. Let HjK
be an ^-central chief factor of G. If H/K is a rrc'-chief factor, then DG covers
H/K, since Gn, C DG (by induction, using Prop. 4.12) and GV,K D H. Now
let HjK be a n-chiti factor. M covers HjK, otherwise M avoids HjK and
M/CoreG(M) s GJCG{HJK) which would imply that M is £5f;rnorinal- By
Lemma 4.9, H n MjK n M s HjK and is ^-central. Choose DG as in
Prop. 4.12. Then DG = DM and by induction DG{K nM)DH r\M. Thus
DGK D (H n M)K = H.

If HjK is ^-eccentric, then HjK is a 7t-chief factor. Either M avoids
HjK, then also DG avoids HjK, since DG C M, or M covers HjK, then by
Lemma 4.9, HjK ~ H n MjK n M which is also not gff-central. Hence,
by induction, DM = DG avoids HnMjKnM. Thus Hr\Mr\DGCKnM
which implies H n DG C K.

The theorem has been proved for a special ^^-normalizer, but, since
all 5,,-normalizer are conjugate in G, the theorem is valid for any %n-
normalizer of G.

COROLLARY. The order of an %^-normalizer of a n-soluble group G equals
the product of all ^^-central chief-factors in a chief series of G.

Several other theorems which hold in soluble groups can be easily
generalized to the ^-soluble case. Particularly, one can show, that the
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5^-normalizers of a jr-soluble group belong to %„, and that they are just
the minimal members of descending chains of successively ^-abnormal
subgroups. Also, any ^,,-covering subgroup contains an ^,,-normalizer and
any ^^-normalizer is contained in an f^-covering subgroup.

The author is indebted to Dr L. G. Kova.cs for helpful conversations.
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