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Abstract. Two statistical effects in the long-term chaotic asteroidal dynamics are considered, namely 
the power-law character of the dependence of recurrence times on local Lyapunov times and the 
power-law decay in the tails of the recurrence distributions. The dependences in both cases are 
shaped by effects of anomalous transport, due to the presence of the chaos border in phase space, and 
by statistical selection effects. 

In the chaotic asteroidal dynamics, two long-term effects in the statistics of 
sudden orbital changes are known. The first one consists in the power-law character 
of the dependence of times of sudden orbital changes on Lyapunov times (Soper 
et al., 1990; Lecar et al., 1992; Levison and Duncan, 1993; Murison et al., 1994; 
Ferraz-Mello, 1997), while the second one in the power-law decay in the tails 
of distributions of such times (Shevchenko and Scholl, 1996; 1997). Both effects 
are considered here as critical phenomena. The critical motion, i.e. the chaotic 
motion in the vicinity of the chaos border, does not represent normal diffusive 
process. It is said that transport is anomalous (Chirikov, 1996). In the following 
note, particular effects of anomalous transport in the behaviour of the standard map 
are demonstrated and discussed. They correspond to the considered effects in the 
asteroidal dynamics and provide better understanding of the latter. 

Let us associate the time of a sudden orbital change with a suitably defined 
recurrence time Tr. By "recurrences" we imply sequential returns of a trajectory 
to some arbitrary domain or surface in phase space. If phase space is divided, i.e. if 
chaotic and regular components are both present, longest recurrences of a chaotic 
trajectory are due to stickings to the chaos border. Sporadic stickings result in 
intermittent behaviour (Shevchenko, 1998a). 

Consider the standard map 

2/n+i = 2/n + —sin(2?ra;n), 

Xn+l = Xn + J / n + l - (1) 

Let us choose K = 2. In fact, the studied effects can be recovered for any non-zero 
K not too large, i.e. when the regular component is adequately present. 

Integral distribution of recurrence times for a single chaotic orbit is shown 
in Fig. 1. The quantity F{Tr) is the fraction of recurrences longer than TT. The 
recurrences are counted at the line y = 0 mod 1. Stickings to the island of stability 
around the integer resonance situated at this line lead to the initial steep short-
scale drop in the distribution. Then, on some limited interval, namely at 0.7 < 
logTr < 1.2, the distribution follows the power law with index equal to —0.56. 
This is close to the inverse square root law, which is inherent to free diffusion 
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Fig. 1. Integral distribution of recurrence times. K = 2; number of iterations Nit = 109. 
Initial short-scale drop, major exponential decay and subsequent power-law decay are 
prominent. Logarithms are decimal in Figs. 1—2. 

in the central part of a stochastic layer until finite width of the layer becomes 
important (Chirikov and Shepelyansky, 1981, p. 9). Note that in our case die 
borders y — Omod 1 of the "layer" are conventional. At logTr = 1.2—1.3 die 
dependence becomes exponential, because finite width of the layer starts to be 
important. Indeed, according to (Chirikov and Shepelyansky, 1981, p. 10), when 
the time of diffusion across a stochastic layer is finite, the distribution of recurrences 
decays exponentially due to fluctuations of diffusion. The tail of the distribution 
in Fig. 1 follows the power law with index a = —1.48. Generally, in its over-all 
shape, the distribution is strikingly close to those presented in Fig. 4 of (Shevchenko 
and Scholl, 1997) for intervals between eccentricity bursts of model intermittent 
trajectories in the 3/1 Jovian resonance. According to (Shevchenko and Scholl, 
1997), the values of power-law indices in the tails of the latter distributions are 
close to the value —1.5 theoretically considered and explained by Chirikov (1990, 
1996) for critical motion. As our experiment with the standard map indicates, all 
prominent features of the distributions in the asteroidal case (initial steep short-
scale drop, major exponential decay, and subsequent power-law decay) are present 
in case of the standard map, and have straightforward universal explanations. 

In Fig. 2, the dependence "log TL — log Tr" is shown. The Lyapunov time Tj, 
is the inverse of the LLCE (largest Lyapunov characteristic exponent). A formal 
mathematical approach requires the LLCE to be measured on an infinite time scale. 
In real computations this cannot be achieved. Henceforth the LLCE is measured 
for a recurrence (for detailed definitions and discussion, see Shevchenko, 1998b). 
As adopted already, the recurrences are counted at the line y = Omod 1. For 
convenience of handling large arrays of data, the field of Fig. 2 is partitioned 
in pixels. The figure represents a kind of a density plot. Each pixel contains no 
more than one symbol. Recurrences with TL, Tr in the area covered with dots are 
relatively frequent. They take place already on the adopted minimum time span 
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Fig. 2. Statistical dependence "log!/, — logTr". K = 2. Dots: Nit = 106; dots plus full 
circles: Nu = 108; dots plus full and open circles: Nu = 109. 

of computation Nu — 106. Increasing Nu allows one to recover recurrences with 
less frequent values of the pair TL, Tr. The area increments corresponding to the 
increase of Nu up to 108 and then up to 109 are covered respectively with full and 
open circles. Note that short recurrences (with Tr < 10) are not considered on the 
reason of large statistical fluctuations in evaluations of the LLCE on the short time 
scale. Such fluctuations are still clearly seen for recurrences with somewhat greater 
Tr in the form of jumps of TL to high values. 

One can see that recurrences with logTr > 2.5 are rare if Nu < 106, and 
the diffusion is normal: the mean log TL does not depend on the duration Tr of a 
recurrence. AtlogTr > 2.5 the dependence is a power law, with index/? = 1.5—2. 
One can graphically demonstrate, e.g. by means of construction of a spectrum of 
winding numbers (Shevchenko, 1996), that die recurrences with logTr > 2.5 are 
due to stickings to the chaos border. The winding number is formally defined for 
a recurrence. Indeed, at logTr > 2.5 the broad spectrum degenerates into a sharp 
peak corresponding to the half-integer resonance. 

Theoretical dependence "TL—Tr " for critical motion was derived in (Shevchen
ko, 1998b). In particular, on die condition mat the LLCE were computed on finite 
time intervals (corresponding to the recurrences), the dependence was shown to be 
close to quadratic: Tr oc TL2. The quadratic relationship is set forth by the fact 
that the transport near the chaos border is anomalous and by the selection effect 
following from the limitation of the time of computation of the LLCE from above, 
since the LLCE correspond to recurrences. 

Another important selection effect distorts statistical evaluations of the exponent 
/? of the "TL — Tr" relationship. The distortion is due to a strong statistical pre-
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dominance of short recurrence times. Therefore, when calculating mean observed 
values of/3, longer recurrences should be taken with greater weight; see discussion 
in (Shevchenko, 1998b). 

One more selection effect is often present and, on the opposite, enhances ap
pearance of the generic relationship. This is the effect of sparsity of the data set. 
In order to construct a relationship of the kind "TL — Tr" for a set of trajectories, 
one should choose a corresponding array of starting data. When the grid of the data 
is fine, the presence of narrow chaotic layers disconnected from the main chaotic 
domain would lead to distortions in the observed relationship, due to the apparition 
of the chaotic orbits which never exhibit "sharp" orbital changes. In this way, cases 
of "stable chaos" in the asteroidal dynamics are naturally explained. 

Conclusions are as follows. 
(1) Two known long-term effects in the statistics of sudden changes of asteroidal 

orbits, namely the power-law character of the dependence of times of sudden orbital 
changes on Lyapunov times (Soper et al, 1990; Lecar et al. , 1992; Levison and 
Duncan, 1993; Murison etal., 1994; Ferraz-Mello, 1997) and the power-law decay 
in the tails of distributions of such times (Shevchenko and Scholl, 1996; 1997), are 
both plausibly explained as critical phenomena, i.e. effects of anomalous transport 
near the chaos border. Our experiments with the standard map unambiguously 
recover similar dependences. (2) The "TL — Tr" relationship can indeed be used to 
statistically predict sudden changes in the orbital behaviour of asteroids, if the initial 
part of the power-law dependence is recovered numerically. (3) When interpreting 
the observed dependences, it is necessary to take into account selection effects. 
The main selection effects, in case of the "TL — Tr" relationship, are: limitations 
on the time of computation of the LLCE, concentration of data points to the lower 
time edge, sparsity of statistical data. 

It is a pleasure to thank Sylvio Ferraz-Mello for useful remarks on the manuscript. 
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