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Abstract. In this paper we make precise the relationship between local or pointwise
dimension and the dimension structure of Borel probability measures on metric
spaces. Sufficient conditions for exact-dimensionality of the stationary ergodic
distributions associated with a dynamical system are obtained. A counterexample
is provided to show that ergodicity alone is not sufficient to guarantee exact-
dimensionality even in the case of continuous maps or flows.

1. Introduction and statement of results
1.1. Introduction
In the study of chaos and dynamical systems there has been much interest in
measure-dependent definitions of dimension. Of particular interest is the notion of
local or pointwise dimension

a(x) = lim log n(B(x, e))/log e

where fi is an invariant occupation measure over the attractor and B(x, e) is the
closed ball of radius e centred at x. The question of existence of the pointwise limit
and its possible relationships with other dimensions and quantities associated with
dynamical systems (such as information dimension and Lyapunov exponents) have
been discussed extensively in the literature. Young (1982) has shown that if the
pointwise limit exists and is fi-a.s. equal to some constant a then a is in fact the
information dimension of the attractor. (Here information dimension is taken to
mean the infimum of the Hausdorfl dimensions of all supporting sets for /i.) Various
authors assume or conjecture the existence of a constant pointwise limit in the
systems under study (see, for example, Farmer et al, 1983 and Guckenheimer, 1984).
Young (1982) has shown that in the case of C2 diffeomorphisms of surfaces a
constant pointwise limit does in fact exist and is related by formula to the Lyapunov
exponents of the map.

In this paper we first construct a general framework describing the relationship
between measures on metric spaces, Hausdorff dimension, and pointwise or local
dimension. This framework is an extension to general metric spaces of results
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452 C. D. Cutler

obtained by Cutler (1986) and Cutler and Dawson (1988) for measures on finite-
dimensional Euclidean space. The key point here is that the pointwise or local
dimension map completely describes the distribution of ju.-mass with respect to
Hausdorff dimension. These results are then used to examine the relationship
between ergodicity and exact-dimensionality of measures. (A measure fi will be
said to be exact-dimensional if its local dimension map is /i-a.s. constant.) Eckmann
and Ruelle (1985) in their excellent review article on ergodic theory and chaos
incorrectly suggest that ergodicity plus /*-a.s. existence of the pointwise limit is
sufficient to ensure that fi is exact-dimensional. We provide a counterexample to
this (in § 4) but establish sufficient conditions for ergodicity to imply exact-
dimensionality. These conditions are met by any ergodic differentiable dynamical
system.

1.2. Statement of main results
Let fi be a probability measure on the Borel sets of a metric space X. Then there
exists an associated distribution fi on the extended real line [0, oo] which describes
the manner in which jit-mass is distributed with respect to Hausdorff dimension.
(If fi consists of a unit mass at the value a then fi has no mass on sets of dimension
less than a but can be supported on some set of dimension a.) Furthermore if x e X
is selected randomly according to /J. then the nonnegative extended real-valued
function defined on X by

a(x) = lim inf log n(B(x, e))/log e (1.2.1)
ITH>0+

has distribution fi on [0, oo]. (From this point on we refer to a as defined in (1.2.1)
as the local dimension map of /A. It is easy to see that a is a measurable function
since {X|/A(J5(X, e))>c} is a closed subset of X for each c.) Thus fi consists of a
unit mass at a if and only if a = a fi-a.s.

If fi is stationary and ergodic with respect to a mapping T: X -» X then fi will be
exact-dimensional provided T satisfies a certain weak local Lipschitz condition at
^-almost all x This condition is stronger than continuity (but weaker than differentia-
bility in spaces where such a notion is possible). An analogous result holds for
continuous-time dynamical systems. Moreover, if a continuous-time system arises
as the family of solutions to a differential equation dx/dt =f(x) then the condition
for exact-dimensionality is met whenever f(x) satisfies the standard conditions
required for existence and uniqueness of solutions.

2. Dimension distributions and the local dimension map
In Cutler (1986) the notion of the dimension distribution fi associated with a measure
/j. on N-dimensional Euclidean space was introduced. Here we extend this idea,
with the necessary minor modifications, to general metric spaces.

Let X be a metric space with metric d. If E c X, 0< a < oo, and 8 > 0, then the
a, 8-outer Hausdorff measure of E is defined by

H?(£)= inf I d{St)
a, (2.1)

EsUS, i = 1

d(S,)sS

where d(S) = sup{d(x,y)\x,yeS} is the diameter of S and the infimum in (2.1) is
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taken over all countable coverings {$}, of E by subsets of X satisfying
for all i. (Such a covering is called a S-covering of E.) If no ^-covering of E exists
(which may occur in a nonseparable space) then H%{E) = 00.

The Hausdorff a-outer measure of E is then defined to be

H a (£ )= l im HUE). (2.2)

For fixed E, Ha(E) is a decreasing function of a and corresponding to each set E
there exists a unique point a0, 0< ao<<x>, such that

a0 is called the Hausdorff dimension ofE and denoted dim (E). A detailed discussion
of Hausdorff measures and dimension can be found in Rogers (1970).

By the Borel sets of X we will mean the cr-field generated by the open sets of X.

THEOREM 2.1. Let fi be a probability measure defined on the Borel sets of X. Then
there exists a unique probability distribution fi on the Borel sets of the extended real
line [0,00] such that fi([0, a]) = sup {/*(£) \ E c X, E Borel, dim (E) s a} for each
0 < a s o o . Thus fi([0, a]) is the proportion of mass of ft concentrated on sets of
dimension not exceeding a. We call fi the dimension distribution of fj,.

Proof. The construction of n follows the procedure in § 2 of Cutler (1986) (see
pp. 1460-1462). The only change is that we must allow for the possibility /I({°o}) > 0
in metric spaces of infinite Hausdorff dimension. •

In Cutler and Dawson (1989) it was shown that when X = MN the local dimension
map a as defined in (1.2.1) satisfies

dim ( D J s a where Da ={x |a (x)s a} and (2.4)

lx(Da)>fi([0, a]) for each 0 s a < 00. (2.5)

As a consequence of (2.4) and (2.5) we conclude /j.(Da) = fi([0, a]) and hence d(x)
has distribution fi when x has distribution /t. However the proofs of (2.4) and (2.5)
provided for the Euclidean case do not extend to more general metric spaces. The
key to the more general situation is provided by a Vitali covering theorem for
Hausdorff measures. If £ c X, a Vitali covering of £ will be a collection V of closed
subsets of X such that for each x e £ and each e > 0 there exists V e T with x e V
andO<d(V)<e.

THEOREM 2.2. (Vitali Covering Theorem): Let £ c X and suppose V is a Vitali
covering ofE. Then there exists a finite or countable disjoint collection {V,)j of members
of V which, for given a>0, satisfies either

(i) X i ^ ( ^ ) " = 0 ° or

(H) H

Proof. The proof is that of Theorem 1.10(a) of Falconer (1985). Note that Falconer
states the result for UN and under a measurability restriction on £ but the proof
does not require any further conditions than those we have stated here. •
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LEMMA 2.1. Let /A be a probability measure on the Borel sets of X. Then (2.4) holds.
That is, dim (Da)<a for each Os«<oo.

Proof. The case a = oo is immediate. Suppose 0 s a < oo and let /3 > a be arbitrary
and finite. For each xe DQ and each positive integer n there exists a family 98xn

of closed balls centred at x or arbitrarily small diameter (and maximum diameter
not exceeding 1/w) such that log fi(B(x, e))/log es / J for each B(x, e)e 38xn.
(This gives fi(B(x, e)) > e" > 2~^d(B(x, e))" since d(B(x, e)) < 2e.) The collection
^n = Uxeoa ^*,n ' s t n e n a Vitali covering of DQ and by Theorem 2.2 there exists a
disjoint sequence {V,,,,}, from Yn such that either: (i) Z, ^( V^i)" = °° or
(ii) H"(D a \U. Vn,,-) = 0. But since the Vn/s are disjoint and satisfy d(Vnif <

Vn>1-) (by construction of Tn) and fi is a probability measure, we obtain

Hence (ii) must hold. Now setting V = f~)n U, K,,- we obtain

by the countable subadditivity of Hp. Writing Da = (Da\ V) u (Da n V) we conclude
Hp(Da) = Hp{Da n V). But for each « { VnjI}, is a 1/n-covering of Da n V satisfying
1t d(VnJ

p^2p and hence H^(Da n V)<2^ <oo. Thus dim ( D J < 0 . As )3> a was
aribtrary we get dim (Da)<a as claimed. D

To show that (2.5) holds we will need the following:

LEMMA 2.2. Let n be a probability measure on the Borel sets of X. Let Osa<oo.
Suppose EcD* where D* = {x\a(x)>a}. / / > ( £ ) > 0 then d im(£)2a .

Proof. The case a = 0 is immediate so suppose a > 0 and let 0 < /8 < a be arbitrary.
Then for each xeE there exists e(x)>0 such that 0<e<e (x ) implies
log fi(B(x, e))/log e>/3. Hence we can write E -{J°^=l En where En =
{xe £ | e (x )> l/«}. Noting that £nc£n + 1 the assumption fi(E)>0 then implies
there exists 0>O such that /*(£„)> 0 for all sufficiently large n. Now fix n large
and let {5,}, be any 1/w-covering of E. (If no such covering exists then dim (E) = oo
and the theorem is trivially true.) If S, n Eni* <p choose xt e S, n £„ and define the
closed ball Bt = B{xt, d(St)). Note that S, s £, and hence the collection of balls {B,}
must cover £„. Now since xt e En and d(S,) < l/« we obtain log /*(By) s /3 log
and therefore /i(B,)< d(S,)'3. This gives the chain of inequalities

which shows that / / f / n (£)> ft Thus Hp(E)>0 and so dim (£ )> a. •

Remark. A proof of Lemma 2.2 in the case X = RiV has been given by Young (1982).
Related problems have also been studied by Billingsley (1960, 1961).

THEOREM 2.3. Let (i be a probability measure on the Borel sets of X. Then both (2.4)
and (2.5) hold and hence the local dimension map a(x) defined in (1.2.1) has
distribution fi, when x has distribution /u,.
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Proof. From Lemma 2.1 we know (2.4) holds. To show (2.5) holds, let E be any
Borel set of X satisfying dim (£) < a. As fi([0, a]) is the supremum of the /i-measures
of such sets E, (2.5) will be proved if we show fi(E)< n(Da). If a = oothen Da =X
so there is nothing to prove in this case. Therefore we assume 0 < a < oo. Now we
can write E = (£ n D J u (E\Da) and for each j ? > a w e have (E\Dp) c D | . Since
dim(E\Dl3)<dim(E)<a<p it follows from Lemma 2.2 that /JL(E\DI3) = 0. But
(£ \Dp) t (£ \A, ) as Pla and hence we must also have /u.(E\Da) = 0. Thus /ti(£) =
fi(EnDa)</j,(Da) as required. •

3. Sufficient conditions for exact-dimensionality in the ergodic case
The following lemma expresses the notion of continuity in a way which will allow
for easy comparison with the sufficient conditions of Theorems 3.1 and 3.2. As
before X is a metric space with metric d.

LEMMA 3.1. A function 7":X-»X is continuous at a point x if and only if there exists
R(e) >0 such that eR(e)iO as e|0 and d(T(x), T(y)) < R(d(x, y)) d(x, y) for ally
in some neighbourhood ofx.

Proof. Clearly the stated conditions imply continuity at x To show the converse, if
T is continuous at x set

R(e) = (l/e) sup {d(T(x),T(y))\yeX,d(x,y)^e}. O

We now consider the case of a discrete dynamical system.

THEOREM 3.1. Let the probability measure /u. be stationary and ergodic with respect to
a measurable mapping T: X -» X. Suppose T satisfies the following condition:

(3.1) There exists R(x, e) 2 0 such that, for /x-almost all x,
(a) d(T(x), T(y))< R(x, d(x,y)) d(x, y) for all y in some neighbourhood of x,
(b) eR(x, e)|0 as e|0, and
(c) limf^o+log efl(x, e)/loge = l.

Then /J, is exact-dimensional.

Proof. First note that, in view of Lemma 3.1, condition (3.1) is stronger than fi-a.s.
continuity of T. Also note that without loss of generality we can assume R(x, e) is
uniformly bounded below by some constant -y>0 (otherwise let R(x,e) =
max (y, R(x, e)) and note that (3.1.(a), (b), (c)) continue to hold with R(x, s) in
place of R(x, e)). This shows that (3.1.(c)) is simply a bound on the allowable rate
of increase of R(x, e) as e shrinks. In particular, (3.1) is weaker than requiring T
to be locally Lipschitz. (We say T is locally Lipschitz at x if there exists a finite
constant R(x) such that d(T(x), T(y))< R(x) d(x, y) for all y in some neighbour-
hood of x.) If X is a normed linear space and T is differentiate at x it is well
known that T is also locally Lipschitz at x

To prove the theorem we will show that condition (3.1) implies that a is an
invariant function. If £ c X then let I(E,y) denote the indicator function of E.
From ergodicity we can write, for fi- almost all y:

)) = lim - "f I(B(x, e), Tk(y)) (3.2)
n-oo n k=0

https://doi.org/10.1017/S014338570000568X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000568X


456 C. D. Cutler

and

n(B( T(x), 8)) = lim - V I(B( T(x), 8), Tk(y)). (3.3)
n^oo rt k=O

Let A denote the subset of X for which (3.1.(a), (b), (c)) hold. (By assumption,
(JL(A) = 1.) Then for x e A we see that if Tk(y) e B(x, e) then

d(T(x), Tk+l(y)) < R(X, d(x, Tk(y))) d{x, Tk{y)) < sR(x, e).

Thus Tk(y)eB(x, e) implies Tk+\y)e B(T(x), eR(x, e)). In view of this and (3.2)
and (3.3) with 8 = sR(x, s), we conclude n(B(T(x), eR(x, e)))>/t(B(x, e)). Con-
sequently for xe A we have

a(T(x)) = lim inf log M(B(T(x), e))/log e
+

< lim inf log /J.(B(T(X), eR(x, e)))/log eR(x, e)
e-0+

<lim inf log (M(B(X, e))/log eR(x, e)

= lim inf (log /J.(B(X, e))/log e)(log e/log eR{x, e))

= (lim inf log fi(B(x, e))/log e)( lim log e/log eR(x, e))

= a(x).

Thus we have established

a{T(x))<a(x) i^-a.s. (3.4)

Now since /i is stationary with respect to T the distribution of a ° T is the
same as that of a when initial conditions are selected according to /i. This plus
the pointwise inequality (3.4) forces a°T=a fi-a.s. Thus a is invariant, and
ergodicity now implies the existence of a constant a (possibly a = oo) such that
a(x) = a /i-a.s. •

The case of a continuous dynamical system is similar. We will need to modify
condition (3.1) slightly.

LEMMA 3.2. Let {T1}, f>0, be a semigroup of measurable mappings 7":X-»X with
stationary distribution yu. If the semigroup satisfies

(3.2) There exists 8>0 and R'(x, e)>0 for each 0< t < 8 such that, for fi-almost
allx,

(a) d(T'(x), T'(y))<R'(x,d(x,y)) d(x, y) for ally in some neighbourhood of x,
(b) eR'(x, e)|0 as eJ,O, and

(c) lime^0+loge/?'(^, e)/loge = l

then in fact for each f >0 there exists R'(x, e) such that (a), (b), and (c) o/(3.2) hold.

Proof. We first show that if 0< s, u < 8 then there exists Ru+S(x, e) satisfying (3.2.(a),
(b), (c)) for /^-almost all x. Define Ru+S(x, e) by

Ru+S(x, e) = R"(r(x), eRs(x, s))Rs(x, e).

Letting A = {x\Rs(x, e) and R"(Ts(x), e) satisfy (3.2.(a), (b), (c))} then stationarity
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and assumption (3.2) applied at the time points u and 5 imply fi(A) = 1. Now if
xe A then for all y in a sufficiently small neighbourhood of x we obtain

d(Tu+s(x), T"+s(y)) = d(Tu(Ts(x)), Tu(Ts(y)))

< R"(Ts(x), d(Ts(x), Ts(y))) d(Ts(x), T*(y))
using (3.2.(a))

< R"(TS(x), Rs(x, d(x, y)) d(x, y))Rs(x, d(x,y)) d(x,y)
using (3.2.(a) and (b))

= Ru+S(x, d(x, y)) d(x, y) by definition of R"+s.

Thus (3.2(a)) holds for Ru+S. It is straightforward to verify that (3.2.(b) and (c))
also hold. To complete the proof of the lemma we note that if t > S then there exists
0 < s < 5 and a positive integer k such that t = ks and so the result follows by
induction on t •

THEOREM 3.2. Let {T1}, < > 0, be a semigroup of measurable mappings T: X -* X with
stationary, ergodic distribution fi. If the semi-group satisfies condition (3.2) then /LA is
exact-dimensional.

Proof. The proof is similar to that of discrete case with sums replaced by integrals.
Let f>0 be arbitrary. Then for /i,-almost all x and all s>0 , T'+S(y)e
B(T'(x), eR'(x, e)) whenever Ts(y)e B(x, e). From this and ergodicity we obtain,
for /i-almost all y,

x),e/?'(x,e)))=lim- [ I{B{T'{x\eR'{x,e)),T{y))ds
u^oc U Jo

= lim - I I(B{T'(x), eR'(x, e)), Tl+*(y)) ds
U-KV U Jo

i r
s Hm - I(B(x, e), Ts(y)) ds

Now as in the proof of Theorem 3.1 it follows that a ° T* = a fi-a.s. Thus a is an
invariant function and fi is exact-dimensional. •

Remark. Suppose that dx/dt =f(x) is a differential equation such that for each x0

there exists a ball B(x0) and a constant K(x0) such that

Then it is well known that for each x there exists a unique maximal solution
ux(t) = T'(x) (with ux(0) = x) and that the solution curves depend continuously on
the initial conditions to the extent that

ViT'(x)-T'(y)\\stxp(K{x)t)\\x-y\\

for all y sufficiently near x. Thus the generated dynamical system satisfies condition
(3.2).
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4. A counterexample
We construct a continuous function T:[0,1 ] -»[0,1 ] and stationary, ergodic distribu-
tion (JL such that /JL has positive mass on two sets of different dimensions and the
pointwise limit

lim log fi(B(x, e))/log e exists /t-a.s.

The function T can be regarded as a special example of a shift map with respect
to some generalized expansion of points in [0,1]. Let r > 2 be a fixed integer,
5 = { 0 , 1 , . . . , r - 1 } , and, for each positive integer n, let {an,}, f = 0 , 1 , . . . , r, be a
partition of [0,1] i.e. 0 = a n 0 < a n l < - • • < a n r _ , < a n r = 1. This splits [0,1] into r
intervals of length dni = ani+i - ani, i = 0 , 1 , . . . , r - 1 . Each point x e [0,1] then has
an associated generalized expansion of digits from S with respect to these partitions.
We set the first digit Ji(x) = i"i if a, , i < x < a , ,1+1. At the next stage each of the
preceding r intervals is split into r segments according to the second-stage partition
{a2j}i to determine the second digit I2(x). We obtain the left-closed interval

{x17,(x) = i,, I2(x) = i2} = {x|aMl + a2Jl d M i <x<a , , , , + a2l2+1 dMl}.

This procedure is repeated for each n to produce the expansion x = 0 . i, i2 • • • in • • •.
(The usual r-adic expansion of numbers in [0,1] is a special case of this with
tfn,i = i/r for each n and i.) Cutler (1988) has discussed a broader class of generalized
expansions where additionally the number of splits at the nth stage may vary with n.

We will let cn(x) = {y \ Ix{y) = Ix{x),..., In(y) = /„(*)}. We also make the follow-
ing restriction:

inf infdni = d>0. (4.1)
Osisr-l n

Note that as a consequence of (4.1) each sequence of digits from S defines a unique
x e [ 0 , 1 ] . (Equivalently, for each x, the diameter

d(cn(x)) = dlJl(x) d2Mx) • • • dnJn{x)i0 as n-»oo.)

The corresponding shift T: [0,1] -* [0,1] is the function mapping 0 . i, i2 i3 • • • to
0 . i2 i314 • • •. If the splits ani do not depend on n it is possible to obtain a closed
form expression for T as a piecewise linear map. In the general case of n- dependent
partitions this is not possible but we still obtain the following continuity result.

THEOREM 4.1. The shift Tis continuous at all points of [0,1] except the initial interval
endpoints ax,,..., a1>r_,, 1.

Proof. Suppose first that x belongs to the interior of cn(x) for each n. Then, given
n, there exists e > 0 such that the interval B(x, e ) s cn(x). Thus |_y-x |<e implies
Ij(y) = Ij(x) for j=\,...,n. It follows then that Ij(T(y)) = Ij(T(x)) for ; =
1 , . . . , « - 1 , and hence, from (4.1), | T(y) - T(x)\ < (1 - d)"~l. Thus T is continuous
at x. If x is the lefthand endpoint of cn(x) for some n > 2 (and for no smaller value
of n) we can write x = 0 . i, • • • /„ 0 0 where ;„ ̂  0. Then T(x) = 0 . i2 • • • in 0 0 and
it is clear that points immediately to the right of x map near T(x). Points immediately
to the left of x also map near T(x) due to the identity 0 . •••!„ — l r - l r - l =
0 . • • • /„ 0 0 which follows from (4.1). Thus T is continuous at x. Continuity fails
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at the first-stage endpoints a^ because T(atj) = 0 while points to the left of atJ

map near 1. •

The following theorem shows that local dimension can be calculated by taking limits
over the intervals cn(x).

THEOREM 4.2. Let fj. be any probability measure on the Borel sets of [0,1]
and suppose a family {anJ}nJ of partitions satisfies (4.1). Define ao(x) =
liminfn^colog/i(cn(x))/logd(cn(x)). Then ao= a/i-a.s. (Infact (2.4) and (2.5) hold
with a0 in place of a.)

Proof. Note that for each x we have cn(x)c B(x, d(cn(x))) and so

ao(x) s lim inf log /t(B(x, d(cn(x))))/log d(c(x))
n-*oo

>a(x) . (4.2)
(Consequently a0 must satisfy (2.4).) We need only check that a0 also satisfies (2.5)
to conclude ao= a ^-a.s. To show (2.5) holds we need the analogue of Lemma 2.2
for a0. The proof of Lemma 2.2 with a0 in place of a begins as the proof for a.
We have Ec{*|«„(*)>a}, /*(£)>0, and 0</3<a. Let en(x) = d(cn(x)). Then
for each xe E there exists e(x)>0 such that £„(*)< e(x) implies ^i(cn(x))< en(x)0.
Thus we have E ={J™=1 En where En ={xe jB|e(x)> l/«} and 0>O such that
n(En)> 0 for all sufficiently large n. At this point we note that the collection of
intervals

« = {c(x)|x6[0,l],fi = l ,2 , . . .}

is a complete bounded Vitali covering of [0,1] (see Cutler (1988) for the definition
and discussion of a complete bounded Vitali covering). Thus from Theorem 2.2 of
Cutler (1988) it follows that the correct Hausdorff dimension is still obtained for
sets when the members of coverings are restricted to being members of c€. So let
{Cj}, be any l/n-covering of E by members of c€. We then have the inequalities

and hence we conclude dim(£)>/3 and therefore d im(£)>a as required. The
proof of (2.5) for a0 then follows as in Theorem 2.3. •

Remark. By (4.1) and the argument used in (4.2) we can write

lim sup log fi(cn(x))/\og d(cn(x))
n-»oo

a lim sup log VL{B(X, d(cn(x))))/\og d(cn(x))
n-*oo

= lim sup log fi{B(x, e))/loge. (4.3)

This plus Theorem 4.2 shows that if the pointwise limit

lim log n(cn(x))/log d(cn{x)) exists /i-a.s.
n-*oo

then so does the pointwise limit limF_0
+ log f^(B(x, e))/log e.
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To construct distributions /A which are stationary and ergodic with respect to the
shift T, let P be any probability measure on the space of one-sided sequences
ft = nH=i & w i t n usual cr-algebra 9 generated by the cylinder sets. Then there is a
corresponding induced measure fi = fty"1 on the Borel sets of [0,1]. If P is stationary
and ergodic with respect to the usual shift on the sequence space fi then /J. will be
stationary and ergodic with respect to the shift T on [0,1] ((/>(/', i2 i3 • • •) =
0 . i , i 2 i 3 - • • ) •

To obtain a choice of fi which is not exact-dimensional, set S = {0,1,2} and let
P be the distribution of a periodic Markov chain with state space 5, transition matrix

/0 1 0\
o
1 /

and time-0 distribution given by the unique steady state # = (554)- It follows that
P is stationary and ergodic with respect to the usual shift on ft. Noting that P has
period 2 we choose an n-dependent family of partitions {anJ}ni on [0,1] which
takes advantage of this fact by possessing distinct behaviours for odd and even
values of n. Let 0 < /} < a < \ and set

an, = a, anl = 1 - a for odd n

anj = /3, an 2 = 1 — /S for even n.

Clearly this partition satisfies (4.1) and thus Theorems 4.2 and 4.3 hold for the
corresponding shift T and measure fi = Pi//~\ Note that

if/,(x) = 0or2, then d(c2n(x)) = a"(l-2p)" fj.-a.s.

and d(c2n_1(x)) = a"(l-2/?)"-1 /i-a.s. (4.4)

if/,(x) = l, then cf(c2n(x)) = (l-2a)"/3" fi-a.s.

and c/(c2n_,(x)) = ( l - 2 a ) ^ ' - 1
 M-a.s. (4.5)

Now from the Shannon-McMillan-Breiman Theorem and the known entropy for
Markov shifts (see Billingsley, 1978) we obtain

lim-log/*(£„(*))/« = (log2)/2 ^-a.s. (4.6)
n-*oc

In fact (4.6) is not difficult to compute directly without resorting to entropy since
explicit expressions along the lines of (4.4) and (4.5) can be obtained for fi(cn(x)).

Consequently from (4.4), (4.5), and (4.6) we obtain

ao(x) = lim log fi(cn(x))/log d(cn(x))
n-*oo

flog 2/2 log a"'(l-2)3)~1 fi-a.s. when /,(*) = 0 or2
~llog2/21og(l-2a)"1j8"1 ^-a.s. when /,(*) = 1.

This shows that the dimension distribution jl. =(l/2)5o, + (l/2)5a2 where a ,=
log2/21oga~'(l-2)3)"1, <v2 = log2/2 log ( l -2a)" ' /S - 1 , and 8ai, 8a2 denote unit
masses at a, and a2 respectively. Furthermore, appealing to the Remark following
Theorem 4.2, we see that the pointwise limit

a(x) = lim log fi(B(x, e))/log e exists /u-a.s.
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Note. The map T discussed above has two points of discontinuity. This can be
modified to a completely continuous map f in the following manner: Let x =
0. i, i213 • • • be a point in [0,1]. If i, =0 or 2 then define f (x) = T(x). If i, = 1,
then r(x) is defined by a two-step procedure: first exchange all 0's and 2's in the
expansion of x (a mapping x->x) then apply T to the resulting point x, i.e.
T(x) = T(x). It is not difficult to see that in sequence space this procedure also
defines a Markov chain with the same transition matrix P as the first procedure (so
the measure /A on [0,1] remains unchanged). It is also straightforward to verify
that the map T is continuous at all points of [0,1].

Concluding remarks
(1) This example shows that the dimensional behaviour of a measure /x depends

not only on ergodicity but on the degree to which the associated mapping T
separates nearby points in a supporting set for /A.

(2) This same technique can obviously be extended to construct ergodic measures
with positive mass on k different dimensions by using a chain of period k and
appropriate partitions.

(3) If the chain is chosen to be aperiodic then /A = Pip'1 will be exact-dimensional
for any choice of partitions satisfying (4.1). A finite aperiodic Markov chain
is mixing and from (4.1) and the 0-1 law there exists a finite constant c such
that

1 "
lim inf- £ log dJJM = c fi-a.s.

n-»°° n j=\

The Shannon-McMillan-Breiman theorem then gives a(x) = ft/|c| /x-a.s.,
where h is the entropy of the chain. This shows that T has better behaviour
at points in the supporting sets of mixing distributions.

(4) Conditions (3.1)(a) and (3.2)(a) can be required to hold only for /x-almost all
y in a neighbourhood of x. In fact further weakening of these conditions can
be done but may not be of any practical importance.

Acknowledgement. The suggestion that the map T might be patched to make it
continuous at all points was due to a participant of the 1990 Oberwolfach Measure
Theory Conference, whose name is regrettably not known to the author.

Note added in proof. Since the set of atoms of /J, has dimension 0, it can be temporarily
removed from Do in the proof of Lemma 2.1. Hence the balls in S8x<n must have
positive diameter (thus validating the use of Theorem 2.2).
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