PROJECTIVE GEOMETRIES THAT ARE DISJOINT UNIONS OF CAPS

BARBU C. KESTENBAND

We show that any $P G\left(2 n, q^{2}\right)$ is a disjoint union of $\left(q^{2 n+1}-1\right) /$ $(q-1)$ caps, each cap consisting of $\left(q^{2 n+1}+1\right) /(q+1)$ points. Furthermore, these caps constitute the "large points" of a $P G(2 n, q)$, with the incidence relation defined in a natural way.

A square matrix $H=\left(h_{i j}\right)$ over the finite field $G F\left(q^{2}\right), q$ a prime power, is said to be Hermitian if $h_{i j}{ }^{q}=h_{j i}$ for all $i, j[\mathbf{1}, \mathrm{p} .1161]$. In particular, $h_{i i} \in G F(q)$. If H is Hermitian, so is $p(H)$, where $p(x)$ is any polynomial with coefficients in $G F(q)$.

Given a Desarguesian Projective Geometry $P G\left(2 n, q^{2}\right), n>0$, we denote its points by column vectors:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{2_{n+1}}
\end{array}\right)
$$

All Hermitian matrices in this paper will be $2 n+1$ by $2 n+1, n>0$. Further, $A=\left(a_{i j}\right)$ being any matrix, we denote $A^{(q)}=\left(a_{i j}{ }^{q}\right)$.
In $P G\left(2 n, q^{2}\right)$, the set of points \mathbf{x} satisfying $\mathbf{x}^{T} H \mathbf{x}^{(q)}=0$, where H is a Hermitian matrix, will be called a Hermitian Variety (abbreviated HV) and denoted by $\{H\}$. If H is nondegenerate, $\{H\}$ is a nondegenerate HV [1, p.1168].

The points \mathbf{u} and \mathbf{v} are said to be conjugate with respect to the HV $\{H\}$ if $\mathbf{u}^{T} H \mathbf{v}^{(q)}=0$, or, equivalently, $\mathbf{v}^{T} H \mathbf{u}^{(q)}=0$ [1, p. 1169].

It is convenient to denote the number of points of $P G\left(2 n, q^{2}\right)$ and of a nondegenerate HV by m_{0} and m_{1}, respectively:

$$
m_{0}=\left(q^{2 n+1}+1\right)\left(q^{2 n+1}-1\right) /\left(q^{2}-1\right)
$$

By [1, p. 1175],
(1) $\quad m_{1}=\left(q^{2 n+1}+1\right)\left(q^{2 n}-1\right) /\left(q^{2}-1\right)$.

For convenience's sake again, we will say that the intersection of zero HV's is the whole geometry and the intersection of one HV is, of course, the HV itself.

A collection of HV's will be called dependent or independent (over $G F(q))$ according as the corresponding collection of Hermitian matrices is one or the other. By a linear combination of HV's we shall mean the obvious thing.

Let now H^{\prime} be a Hermitian matrix with characteristic polynomial $p_{2 n+1}{ }^{\prime}(x)$, irreducible over $G F(q)$. Since H^{\prime} satisfies $p_{2 n+1}{ }^{\prime}\left(H^{\prime}\right)=\mathbf{0}$, the polynomials $p\left(H^{\prime}\right)$ over $G F(q)$ form a field $G F\left(q^{2 n+1}\right)$. Let H be a primitive root of this field. H satisfies an irreducible equation $p_{2_{n+1}}(H)=\mathbf{0}$ and thus $p_{2_{n+1}}(x)$ is a fortiori its characteristic and minimal polynomial.

Let μ be a characteristic root of H. Then μ^{τ} is a characteristic root of H^{r}. The smallest power of μ belonging to $G F(q)$ is the $\left(q^{2 n+1}-1\right) /$ $(q-1)$ th. Hence the characteristic polynomials of the Hermitian matrices $H^{i}, i=1,2, \ldots,\left(q^{2 n+1}-q\right) /(q-1)$, have no roots in $G F(q)$.

Thus, if we consider the family $\chi=\left\{H^{i}: i=0,1, \ldots,\left(q^{2 n+1}-q\right) /\right.$ $(q-1)\}$, the polynomial $\left|H^{i}-\lambda H^{j}\right|$ has no roots in $G F(q)$ for any $H^{i}, H^{j} \in \chi, i \neq j$.

We denote by $\{\chi\}$ the collection of HV's $\left\{H^{i}\right\}, H^{i} \in \chi$.
Lemma 1. Given the independent HV's $\left\{H_{1}\right\}, \ldots,\left\{H_{m}\right\}$, consider the collection Γ of all their linear combinations with ceofficients in $\operatorname{GF}(q)$. Then for any $n \geqq m$, the common intersection of any n HV's from Γ, m of which are independent, is the same set of points.

Proof. The system of equations

$$
\sum_{j=1}^{m} c_{i j} \mathbf{x}^{T} H_{j} \mathbf{x}^{(q)}=0, \quad i=1,2, \ldots, n
$$

reduces to the system $\mathbf{x}^{T} H_{j} \mathbf{x}^{(q)}=0, j=1,2, \ldots, m$, proving the lemma.
Lemma 2. Any j independent HV's from $\{\chi\}, j \leqq 2 n+1$, intersect on $m_{j}=\left(q^{2 n+1}+1\right)\left(q^{2 n-j+1}-1\right) /\left(q^{2}-1\right)$ points.

Proof. The lemma holds for $j=1$, by (1). Next we prove it for $j=2$, namely we show that in general, given any two nondegenerate Hermitian matrices H_{1}, H_{2}, such that the polynomial $\left|H_{1}-\lambda H_{2}\right|$ has no roots in $G F(q)$, the HV's $\left\{H_{1}\right\}$ and $\left\{H_{2}\right\}$ have

$$
m_{2}=\left(q^{2 n+1}+1\right)\left(q^{2 n-1}-1\right) /\left(q^{2}-1\right)
$$

points in common.
The $q+1$ HV's $\left\{H_{2}\right\},\left\{H_{1}-\lambda H_{2}\right\}, \lambda$ ranging through $G F(q)$, are nondegenerate by assumption. Any two of them intersect on the same set (by Lemma 1), the cardinality of which we denote m_{2}. Moreover, these HV's span the geometry: if $\mathbf{x}^{T} H_{1} \mathbf{x}^{(q)}=m \neq 0$ and $\mathbf{x}^{T} H_{2} \mathbf{x}^{(q)}=n \neq 0$, the $\mathrm{HV}\left\{H_{1}-(m / n) H_{2}\right\}$ contains the point \mathbf{x}.

These considerations lead to the equation

$$
(q+1)\left(m_{1}-m_{2}\right)+m_{2}=m_{0}
$$

whence the desired expression for m_{2}.
Now we proceed by induction: We assume the lemma to be true for $j-1$ and j and show that it also holds true for $j+1$.

Let $H^{k_{1}}, H^{k_{2}}, \ldots, H^{k_{j+1}} \in \chi$ be independent, $2 \leqq j \leqq 2 n$. Also let

$$
A_{j-1}=\bigcap_{i=1}^{j-1}\left\{H^{k i}\right\}, \quad A_{j+1}=\bigcap_{i=1}^{j+1}\left\{H^{k i}\right\} .
$$

By the inductive hypothesis, we have

$$
\begin{aligned}
& \left|A_{j-1}\right|=m_{j-1}=\left(q^{2 n+1}+1\right)\left(q^{2 n-j+2}-1\right) /\left(q^{2}-1\right) \text { and } \\
& \left|A_{j-1} \cap\left\{H^{k_{j}}\right\}\right|=\left|A_{j-i} \cap\left\{H^{k_{j+1}}-\lambda H^{k_{j}}\right\}\right|=m_{j} \\
& \quad=\left(q^{2 n+1}+1\right)\left(q^{2 n-j+1}-1\right) /\left(q^{2}-1\right) \text { for any } \lambda \in G F(q) .
\end{aligned}
$$

Any two or more of the $q+1$ HV's $\left\{H^{k}\right\},\left\{H^{k_{j+1}}-\lambda H^{k_{j}}\right\}, \lambda \in G F(q)$, meet on the same set, by Lemma 1. Therefore the common intersection of A_{j-1} and any two of the above is the same set, viz. A_{j+1} defined before.

On the other hand, the $q+1$ HV's in question span the geometry and as such, their intersections with A_{j-1} span A_{j-1}. Consequently:

$$
(q+1)\left(m_{j}-\left|A_{j+1}\right|\right)+\left|A_{j+1}\right|=m_{j-1} .
$$

Denote $\left|A_{j+1}\right|=m_{j+1}$ and obtain $m_{j+1}=\left[(q+1) m_{j}-m_{j-1}\right] / q$. Upon substituting the values for m_{j-1} and m_{j}, we get:

$$
m_{j+1}=\left(q^{2 n+1}+1\right)\left(q^{2 n-j}+1\right) /\left(q^{2}-1\right) .
$$

This completes the induction, and the proof.
Lemma 3. A polynomial of odd degree with coefficients in $G F(q)$ is irreducible over $G F(q)$ if and only if it is irreducible over $G F\left(q^{2}\right)$.

Proof. Let $p(x)$, of odd degree, have coefficients in $G F(q)$ and be reducible over $G F\left(q^{2}\right)$. We will show that $p(x)$ is reducible over $G F(q)$ as well.

Let $p(x)=r(x) s(x)$, where $r(x)$ is irreducible over $G F\left(q^{2}\right)$. If z is a primitive root of $G F\left(q^{2}\right)$, one can write

$$
r(x)=\sum_{i=0}^{m} z^{n_{i}} x^{i}, \quad s(x)=\sum_{i=0}^{n} z^{r_{i}} x^{i} .
$$

Denote

$$
r^{(q)}(x)=\sum_{i=0}^{m} z^{q n i} x^{i} \quad \text { and } \quad s^{(q)}(x)=\sum_{i=0}^{n} z^{q r_{i}} x^{i}
$$

It is straightforward that $r^{(q)}(x) s^{(q)}(x)=r(x) s(x)=p(x)$. Thus

$$
r^{(q)}(x) \mid r(x) s(x)
$$

But $\left(r^{(q)}(x), r(x)\right)=1$ (unless they are identical, in which case $r(x)$ has coefficients in $G F(q)$ and the proof is finished). Hence $r^{(q)}(x) \mid s(x)$, so that in fact

$$
p(x)=r(x) r^{(Q)}(x) t(x)
$$

The polynomial $r(x) r^{(2)}(x)$ has coefficients in $G F(q)$ and even degree, hence $t(x)$ is not a constant and therefore $p(x)$ is reducible over $G F(q)$.

A t-cap in a geometry is a set of t points no three of which are collinear.
Theorem. Any $2 n$ independent HV's from $\{\chi\}$ intersect on a $\left(q^{2 n+1}+1\right)$) $(q+1)$-cap and any two such caps are disjoint.

Proof. Use Lemma 2 with $j=2 n$ to obtain the required number of points.

We turn now to proving that they constitute a cap.
First note that a line can intersect a HV in $q+1$ points, in one point, or lies entirely in it [1, p. 1171].

Let $\left\{H^{k_{1}}\right\}, \ldots,\left\{H^{k_{2 n+1}}\right\} \in\{\chi\}$ be independent (over $G F(q)$). By Lemma 2, their intersection is empty. Thus the intersection of any $2 n$ of them cannot contain a complete line or that line would be disjoint from the remaining HV. We infer that the intersection of any $2 n$ independent HV's from $\{\chi\}$ contains at most $q+1$ collinear points. We will now prove a stronger statement, namely that no intersection of $2 n-1$ independent HV's from $\{\chi\}$ can contain a complete line.

Let $A=\bigcap_{i=1}^{2 n-1}\left\{H^{k_{i}}\right\}$ contain a full line L.
A is a disjoint union of the following $q+1$ sets:

$$
A \cap\left\{H^{k_{2 n}}\right\}, A \cap\left\{H^{k_{2 n+1}}-\lambda H^{k_{2 n}}\right\}, \lambda \text { ranging through } G F(q)
$$

L cannot intersect any of these sets at more than $q+1$ points. Hence it must intersect $q-1$ of them at $q+1$ points each and the remaining two, say $A \cap\left\{H^{k_{2 n}}\right\}$ and $A \cap\left\{H^{k_{2 n+1}}\right\}$, at one point each. Let those two points be \mathbf{u} and \mathbf{v}, respectively.

It is known that the line joining two points on a HV lies entirely in the HV if and only if the two points are conjugate with respect to the HV $[\mathbf{1}, \mathrm{p} .1176]$. Thus \mathbf{u} and \mathbf{v} are conjugate with respect to $\left\{H^{k_{i}}\right\}, i=$ $1,2, \ldots, 2 n-1$.

We shall now prove by contradiction that \mathbf{u} and \mathbf{v} are also conjugate with respect to $\left\{H^{k_{2 n}}\right\}$ and $\left\{H^{k_{2 n+1}}\right\}$: If they are not, we can find elements $a \in G F\left(q^{2}\right)$ such that the points $a \mathbf{u}+\mathbf{v} \in\left\{H^{k_{2 n}}\right\}$. To achieve this, we have to solve

$$
(a \mathbf{u}+\mathbf{v})^{T} H^{k_{2 n}}(a \mathbf{u}+\mathbf{v})^{(q)}=0
$$

Because $\mathbf{u} \in\left\{H^{k_{2 n}}\right\}$, this equation reduces to

$$
x+x^{q}=-\mathbf{v}^{T} H^{k_{2 n}} \mathbf{v}^{(q)} \neq 0
$$

where x stands for $a \mathbf{u}^{T} H^{k_{2 n}} \mathbf{V}^{(q)}$. The latter equation has q distinct solutions, all nonzero, so that unless $\mathbf{u}^{T} H^{k_{2 n}} \mathbf{v}^{(q)}=0, L$ intersects $\left\{H^{k_{2 n}}\right\}$ at $q+1$ points, the sought contradiction.

Likewise we obtain $\mathbf{u}^{T} H^{k_{2 n+1}} \mathbf{v}^{(q)}=0$ and therefore \mathbf{u} and \mathbf{v} are conjugate with respect to all $\left\{H^{k_{i}}\right\}, i=1,2, \ldots, 2 n+1$.

It follows that the $2 n+1$ vectors $H^{k_{i}} \mathbf{v}^{(q)}$ cannot form a basis of the $(2 n+1)$-dimensional vector space, for if they did, we would have $\mathbf{u}^{T} \mathbf{w}^{(q)}=0$ for any point \mathbf{w} of the geometry, so that \mathbf{u} would be the zero vector. Hence there exist $2 n+1$ elements $c_{i} \in G F\left(q^{2}\right)$, not all zero, such that the matrix

$$
M=\sum_{i=1}^{2 n+1} c_{i} H^{k i}
$$

is singular. However, M cannot be the zero matrix: If $M=\mathbf{0}$ and since the main diagonal entries of all Hermitian matrices are in $\operatorname{GF}(q)$, we obtain a homogeneous system of equations with coefficients in $G F(q)$ and unknowns $c_{1}, \ldots, c_{2 n+1}$. This system will have solutions in $G F(q)$, which contradicts the independence of $H^{k_{1}}, \ldots, H^{k_{2 n+1}}$ over $G F(q)$. On the other hand, H satisfies an irreducible equation of degree $2 n+1$ over $G F(q)$, which is, by Lemma 3 , irreducible over $G F\left(q^{2}\right)$ also, thereby generating a $G F\left(q^{2(2 n+1)}\right)$. Where N is a primitive root of the latter field, we have $M=N^{b}$ for some integer b. But N is non-singular, thus M cannot be singular and this final contradiction proves that the intersection of $2 n-1$ independent HV's from $\{\chi\}$ does not contain a whole line, but at most $q+1$ collinear points.

It may be worth mentioning parenthetically that the present author has constructed examples where a line has exactly $q+1$ points in common with $2 n-1$ such HV's, and still other examples with fewer common points.

Let now a line L have $y \geqq 2$ points in common with $2 n$ independent HV's from $\{\chi\}$. It is an easy exercise, based on the above, to show that there are at least two HV's among the $2 n$ given ones, say $\left\{H^{k_{1}}\right\}$ and $\left\{H^{k_{2}}\right\}$, none of whose linear combinations contains L.
L must have $z \geqq y$ points in common with $\left\{H^{k_{1}}\right\} \cap\left\{H^{k_{2}}\right\}$ and exactly $q+1$ common points with each of $\left\{H^{k_{1}}\right\},\left\{H^{k_{2}}-\lambda H^{k_{1}}\right\}, \lambda \in G F(q)$. These $q+1$ HV's span the geometry on the other hand, as in the proof of Lemma 2. Thus we obtain

$$
(q+1)(q+1-z)+z=q^{2}+1,
$$

yielding $z=2$, hence $y=2$ and the configuration is a cap as claimed.
It remains to be shown that no two caps meet. Each one of the two caps is the intersection of $2 n$ independent HV's from $\{\chi\}$. By Lemma 1, each family of HV's contains a HV that is independent of the $2 n$ HV's in the
other family. But the intersection of $2 n+1$ independent HV's from $\{\chi\}$ is empty, which completes the proof.

Corollary. The point-set of any Desarguesian $P G\left(2 n, q^{2}\right)$ is a disjoint union of $\left(q^{2 n+1}+1\right) /(q+1)$-caps.

Proof. Each Hermitian matrix in χ is a linear combination of the independent Hermitian matrices $I, H, H^{2}, \ldots, H^{2 n}$. This $(2 n+1)$-dimensional vector space has $\left(q^{2 n+1}-1\right) /(q-1)$ distinct $2 n$-dimensional subspaces.

It follows from the theorem that the $P G\left(2 n, q^{2}\right)$ contains $\left(q^{2 n+1}-1\right) /$ ($q-1$) pairwise disjoint caps and because of their cardinality, they exhaust the geometry.

At this point we need to introduce the following terminology: the HV's $\left\{H^{i}\right\} \in\{x\}$ will be called large hyperplanes, the caps obtained in the theorem we will call large points, the intersections of $2 n-1$ independent HV's from $\{\chi\}$, large lines and, in general, the intersection of $2 n-m$ independent HV's from $\{\chi\}$ will be an m-dimensional large subspace.

We show that the large points and the large lines form a $P G(2 n, q)$, by checking the axioms for Projective Geometry [2, p. 167]:
$P G 1$. We have to verify that any two large points A_{1} and A_{2} are contained in one and only one large line.

Among the $2 n$ Hermitian Varieties whose intersection is A_{1}, there must be one which is independent of the $2 n \mathrm{HV}$'s whose intersection is A_{2}. Now the dimension theorem for vector spaces shows that one can find exactly $2 n-1$ independent HV's the intersection of which contains both A_{1} and A_{2}.
$P G 2$. Let A, B, C, be distinct noncollinear large points and let $D \not \equiv A$ be collinear with A, B and $E \not \equiv A$ be collinear with A, C. We have to find a large point collinear with B, C and D, E.

Let, without loss of generality:

$$
\begin{aligned}
& A=\left\{H^{k_{1}}\right\} \cap \ldots \cap\left\{H^{k_{2 n}}\right\} ; B=\left\{H^{k_{1}}\right\} \cap \ldots \cap\left\{H^{k_{2 n-1}}\right\} \\
& C=\left\{H^{k_{2}}\right\} \cap \ldots \cap\left\{H^{k_{2 n}}\right\} \cap\left\{H^{k_{2 n+1}}\right\} ; \\
& \text { Line } A B=\left\{H^{k_{1}}\right\} \cap \ldots \cap\left\{H^{k_{2 n-1}}\right\} ; \text { Line } A C=\left\{H^{k_{2}}\right\} \\
& D=\left\{H^{k_{1}}\right\} \cap \ldots \cap\left\{H^{k_{2 n-1}}\right\} \cap\left\{H^{k_{2 n+1}}+a H^{k_{2 n}}\right\} ; \ldots \cap\left\{H^{k_{2 n}}\right\} ; \\
& E=\left\{H^{k_{2}}\right\} \cap \ldots \cap\left\{H^{k_{2 n}}\right\} \cap\left\{H^{k_{2 n+1}}+c H^{k_{1}}\right\}, a, b, c \in G F(q) .
\end{aligned}
$$

Consequently:

$$
\begin{aligned}
& \text { Line } B C=\left\{H^{k_{2}}\right\} \cap \ldots \cap\left\{H^{k_{2 n-1}}\right\} \cap\left\{H^{k_{2 n+1}}+b H^{k_{1}}\right\} \text { and } \\
& \text { Line } D E=\left\{H^{k_{2}}\right\} \cap \ldots \cap\left\{H^{k_{2 n-1}}\right\} \cap\left\{H^{k_{2 n+1}}+a H^{k_{2 n}}+c H^{k_{1}}\right\} .
\end{aligned}
$$

We see now that these two large lines intersect on the large point:

$$
\begin{aligned}
\left\{H^{k_{2}}\right\} \cap \ldots \cap\left\{H^{k_{2 n-1}}\right\} \cap\left\{H^{k_{2 n+1}}+b H^{k_{1}}\right\} \\
\cap\left\{H^{k_{2 n+1}}+a H^{k_{2 n}}+c H^{k_{1}}\right\} .
\end{aligned}
$$

PG3. Every large line contains at least three large points: By Lemma 2,

$$
m_{2 n}=\left(q^{2 n-1}+1\right) /(q+1) \text { and } m_{2 n-1}=q^{2 n+1}+1
$$

so that

$$
m_{2 n-1} / m_{2 n}=q+1 \geqq 3
$$

Next we observe the following:
H is a primitive root of $G F\left(q^{2 n+1}\right)$, hence the matrix $H^{\left(q^{2 n+1-1) /(q-1)}\right.}$ is a member of the $G F(q)$ subfield consisting of scalar matrices. It follows that

$$
H^{2 i}=c H, c \in G F(q),
$$

where

$$
i=\frac{1}{2}\left(q^{2 n+1}-1\right) /(q-1)+\frac{1}{2} .
$$

The collineation \mathscr{C} of $P G\left(2 n, q^{2}\right)$ that maps each point \mathbf{x} onto $H^{i T} \mathbf{x}$, will map each $\mathrm{HV}\left\{H^{j}\right\}$ onto the $\mathrm{HV}\left\{H^{j-1}\right\}$, as can be readily checked.

Furthermore, \mathscr{C}^{\prime} maps all large subspaces of $P G(2 n, q)$ onto large subspaces; an m-dimensional large subspace, $0 \leqq m \leqq 2 n$, is the intersection of the independent HV's $\left\{H^{k_{1}}\right\}, \ldots,\left\{H^{k_{2 n-m}}\right\}$ (and of their linear combinations, by Lemma 1).

Let $\mathbf{x} \in\left\{H^{k_{1}}\right\} \frown \ldots \cap\left\{H^{k_{2 n-m}}\right\}$. Then

$$
H^{i^{T}} \mathbf{x} \in\left\{H^{k_{1}-1}\right\} \cap \ldots \cap\left\{H^{k_{2 n-m}-1}\right\}
$$

But multiplication of $H^{k_{1}}, \ldots, H^{k_{2 n-m}}$, by H^{-1}, does not affect their linear independence and hence the latter intersection is also an m-dimensional large subspace.

Thus we conclude that \mathscr{C} is a collineation of the $P G(2 n, q)$, too.
Remark. The exponents of H in the $\left(q^{2 n}-1\right) /(q-1)$ linear combinations of any $2 n$ independent Hermitian matrices from χ (two Hermitian matrices are considered identical, of course, if they differ by a factor in $G F(q)$) form a perfect difference set, as in the theorem of James Singer [3].

References

1. R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $P G\left(N, q^{2}\right)$, Can. J. Math. 17 (1966), 1161-1182.
2. M. Hall, Jr., Combinatorial theory (Blaisdell, 1967).
3. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.

New York Institute of Technology, Old Westbury, New York

