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PURELY INFINITE SIMPLE C-CROSSED 
PRODUCTS II 

JA A. JEONG, KAZUNORIKODAKA AND HIROYUKI OSAKA 

ABSTRACT. We study the pure infiniteness of C* -crossed products by endomor-
phisms and automorphisms. Let A be a purely infinité simple unital C*-algebra. At first 
we show that a crossed product A x p N by a corner endomorphism p is purely infinite if 
it is simple. From this observation we prove that any simple C*-crossed products xaZ 
by an automorphism a is purely infinite. Combining this with the result in [Je] on pure 
infiniteness of crossed products by finite groups, one sees that if a is an outer action by 
a countable abelian group G then the simple C*-algebra A xaGis purely infinite. 

1. Introduction. One of the most important problems concerning the structure of 
simple unital C* -algebras is whether there is an example of a simple unital C* -algebra 
which does not belong to the following classes: the class of stably finite simple unital 
C*-algebras and the class of purely infinite simple unital C*-algebras. In the context of 
general C*-algebras Clarke [CI] and Blackadar [Bl] independently showed the existence 
of finite unital C*-algebras which are not stably finite. However there is no known ex­
ample of a simple C*-algebra that does not belong to the classes described above. 

A projection p in A is said to be infinite if there is a partial isometry v G A such that 
v*v = p and vv* < p. A C*-algebra A is said to be purely infinite if for each non-zero 
positive element a in A, aAa has an infinite projection. If A is simple, this is equivalent to 
say that for each non-zero positive element a in A, xax* = 1 for some JC G A by [Cu2] and 
[Cu3]. Note that if a simple C*-algebra A has a purely infinite hereditary C*-subalgebra 
B, then A itself is purely infinite. In fact, for any hereditary C*-subalgebra C in A, there 
exists a unitary u in the multiplier algebra M{A) of A such that uBu* ( 1 C ^ 0 [R0I, 
Lemma 3.4]. Cuntz algebras On (2 < n < 00) are typical examples of purely infinite 
simple separable unital C*-algebras [Cu2]. 

Kishimoto [Ki2] showed that the reduced C*-crossed product^ xaG of a simple C*-
algebra by an outer action a of a discrete group G is always simple. If A is purely infinite 
simple then A xa G is obviously infinite simple since it contains A as a C*-subalgebra. 
It was shown [Je] that this crossed product is actually purely infinite if G is finite. 

In this note, we investigate the pure infiniteness of crossed products by endomor-
phisms and automorphisms to show the following: 

(i) If p is a proper corner endomorphism on a purely infinite simple unital C*-algebra 
A then^ xp N is purely infinite if it is simple. 
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(ii) If a is an automorphism on a purely infinite simple unital (or stable) C*-algebra 
A then A xa Z is purely infinite if it is simple. 

Recall that a unital C* -algebra A is said to have the comparability property if it has at 
least one normalized trace and if for every pair e9f of projections in A for which r{e) < 
r(f) for each normalized trace r on A it follows that e is equivalent to a subprojection of 

/ . 
Rordam proved in [Ro3] that for any simple unital C*-algebra^ of real rank zero with 

the comparability property and a proper corner endomorphism por\A,A x p N is simple 
and purely infinite. The Proof of (i) follows the ideas in the Proof of [Ro3, Theorem 3.1]. 

Combining (ii) and the result in [Je] we see that if or is an outer action of a countable 
discrete abelian group G on a purely infinite simple unital C* -algebra ,4, then ,4 x a G is 
also purely infinite. 

2. A crossed products xp N by an endomorphism. An endomorphism p on a 
unital C*-algebra A is called a corner endomorphism if its image is equal to the corner 
p(\)Ap(\) of A [Ro3]. We call p a proper corner endomorphism if p(l) ^ 1. 

We suppose that a C*-algebra A acts faithfully on a Hilbert space H. An isometry s 
on H is said to implement p if p(a) — sas* for any a G A. The crossed product A xp 

N is defined to be the universal C*-algebra generated by A and the isometry s which 
implements p. From this definition we know that the *-algebra generated by the following 
set 

{(s*)na-n + • • • + s*a-\ + #o + a\$ + • • • + cins
n \ a-n, . . . , f l „ G ^ , « G N } 

is dense in A x p N. Moreover the universal property of A x p N yields a circle(dual) action 
{PA}AGT given by 

Px(a) — a, a eA 
px(s) = \s9 AG T, 

so we can define the conditional expectation E: A x p N —> A by 

E(x) = JTPx(x)dm(X)9 

where m is the normalized Lebesgue measure on the circle T. The Cuntz algebra On is a 
typical example of this crossed product ,4 xp N with A a UHF-algebra of type n°° if n is 
finite and .4 an AF-algebra if n is infinite. If p is an automorphism of a unital C*-algebra 
A then,4 x p N is a usual C*-crossedproduct^ x p Z . We can extend Kishimoto's strong 
Connes spectrum [Kil, Ki2] for automorphisms to endomorphims, that is, 

f (p) = {A G T\px(I) = I for all / G Prim(^ xp N)}, 

where Prim(̂ 4 xp N) denotes the primitive ideal space of A xp N. It is easy to see that 
f (p) is a subgroup of T. 
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THEOREM 2.1. Let Abe a purely infinite simple unital C*-algebra and p a proper 
corner endomorphism implementedby an isometrys. Then the following are equivalent: 

(i) f(pn) = TforneK 
(ii) For any n G N and a G A, we have 

mf{\\xapn(x)\\ \x G A, x > 0, and \\x\\ = 1} 

= inf{||etfp"(e)|| \e is a non zero projection in A} 

= 0, 

(iii) A xp N is simple and purely infinite, 
(iv) A xp N is simple, 
(v) pn ^ Ad v,for any isometry v G A and n G N. 

That (i) implies (ii) is proved in the following proposition by modifying the Proof of 
[Ki2, Lemma 1.1] slightly. 

PROPOSITION 2.2 ((i) => (ii)). Let p be an endomorphism of a unital C-algebra A 
with T(p) ^ {1}. Then for any a^Awe have 

inf{||xap(x)|| \x G A, x > 0, and \\x\\ = 1} = 0. 

Moreover, for a C*-algebra of real rank zero the infimum taken over non zero projections 
in A is zero. 

PROOF. Suppose that there is an element a € A such that the infimum is 8 > 0. Let 
(p be a pure state of B = p(A), and let (7^, Q^) be the GNS-representation by (p. By 
the Proof of [Ki2, Lemma 1.1] we can find a projection/? in A** such that n^ip) is the 
one dimensional projection onto CQ^ and f^ (p(p)) is non-zero and so one dimensional, 
where 7f^(p, respectively) is an extension map of ^ ( p , respectively) onto A**. 

Let £ G Hp be a unit vector such that 

Define an operator V on H^ by 

V-KyfàÇly = -Ky o p(x)£, x eA. 

Since 
I K ° PWCII2 = ( ^ ° p(px*xp)£9 £) 

= <p(x*x) 

by /?x*x/? = <p(x*x)p, and since 71̂  is irreducible, V has an extension to an isometry on 
H^, which is denoted by V again. We get a contradiction from the same argument in the 
Proof of [Ki2, Lemma 1.1] (F was a unitary there). • 
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LEMMA 2.3. Let A and p satisfy (ii) in the Theorem 2.1 with the same assumptions. 
Ifx G A xp N is an element such that E{x) = 1 where E:A xp N —> A is the conditional 
expectation, then for any z > 0 there is an isometry v G A xpNsuch that || v*xv— 11| < e. 

PROOF. The Proof of [Ro3, Lemma 3.4] works under our assumptions since [Ro3, 
Lemma 3.2] is true (with m — 1) for a purely infinite simple C*-algebra. • 

PROOF OF (ii) => (hi). In a similar way as in [Ro3] we prove that for any positive 
element* G A xp N there is an element z G A xp N such thatzxz* = 1. 

Let x be a non-zero positive element in A x p N. It suffices to find an element z G ^ x p N 
so that E(z*xz) = 1. In fact if we can find such an element z G A xp N, by Lemma 2.3 
there is an isometry v G A xpN such that ||v*z*xzv — 1|| < 1. Hence since v*z*xzv is 
invertible, there is a positive element^ G ^ x p N such that yv*z*xzvy = 1. Thus we can 
see that ,4 xp N is simple and purely infinite. 

The element #o = E(x) is a non-zero positive element in A. Let 0 < e < \\ao\\ and set 
f(t) = max{/ - e, 0} (t G R+). Then 

{0} ^f(a0)Af(a0) C a\Aa\ 

and/(ao)4/(^o) contains a non-zero projection/? since A is purely infinite. Write p = 
a\ya\ with y a positive element in^4. Put e — yî a^y1-. Then e is a non-zero projection in 
A. Since A is a purely infinite simple unital C*-algebra, there is a partial isometry u G A 
such that u*u = ss* and ww* < e. Then s*u*eus — 1. With z = yî us we have 

E(z*xz) — s*u*yïaoyïus = s*u*eus — 1. 

• 
To prove (iv) => (i), we need the following well known proposition. 

PROPOSITION 2.4. Le£ a be an automorphism of a simple C* -algebra A. Then the 
following are equivalent: 

(i) A xaZ is simple, 
(ii) f (a) - T, 

(Hi) t(a")^{l}forneZ\{0}. 

(It is known (see [Ki2]) that if A is simple then T(a) ^ {1} is equivalent to a being 
outer). 

PROOF. See [Pe, 8.11.12] for (i) <^ (ii). (iii) => (i) was proved by Kishimoto in [Ki2]. 
(i) => (iii) (See [OP, Lemma 10.1]). Let v be the unitary in the multiplier algebra of the 

crossed product by which a is implemented. Suppose that a" is inner and let u G M(A) 
be a unitary with a" = Ad u. We may assume that n > 0. Then for each k,\ < k < « — 1, 
o^{u) implements a", so an = Ad w, w — ua(u) • • • o?~x(u). Since a"(w) = w, we see 

2 

that a(w) = w. It is easily checked that V1 w* is in the center of M(A xaZ) which is trivial 
by Dauns-Hofmann theorem. But v"w* is not an element in M(A), that is, v"w* ^ CI and 
we get a contradiction. • 
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PROOF OF (iv) => (i). There are an embedding (p of A onto a corner of Â, where A is 
the direct limit of the directed system 

and an automorphism a on À so that p extends to an embedding of A x p N onto a corner of 
À x a Z, and the diagram commutes for n G N (see [Pa] and [Ro3, Proposition 2.1]). In fact 
A x p N is isomorphic to the corner (p(l)(Â xaZ)<p(l)( = C*(ip(A), s))ofÀ xaZ, which 
is generated by p(A) and s = wp(l\ where u is the unitary in M(A xaZ) implementing 

A — > A -^-» A Xpn N 

(pi <p i (p I 

À -^-> À ~^-> Â Xan Z . 

Since A xpN is simple we see that À x a Z i s simple. Then by Proposition 2.4., Â xa«Z 
is simple for all n G N since Â is (purely infinite) simple. It follows that A x^ N is simple 
as a corner of À xanZ and t(pn) = T. • 

PROOF OF (ii) => (v). Suppose that pw = Ad v for some isometry v e A and « G N. 
Then for any non-zero projection e G A, 

\\ev*p"(e)\\ = | | e v W | | = ||ev*|| = 1. 

PROOF OF (V) => (iv). Suppose that ^ xp N is not simple. Then À xa Z is not 
simple and by Proposition 2.4. a72 = Ad w for some unitary w G M(^) and n ^ 0. Let 
w G M(̂ 4 x a Z) be the unitary, so that a(x) = uxu*, x G Â. Since A xp N is isomorphic 

to the corner ^( l )( i x a Z)<p(l)( = C"(^(J4), â) j o f i x a Z and 

we see that w*(/?(pw(l))w = </?(l) and it follows that </?(l)w*</?(l)w(/?(l) — </?(l), that 
is, (p(\)w<p{\) is an isometry in (p(l)À(p(\) = ip(A). So there exists an isometry v G A 
such that ip(v) = (p(\)w(p(l). From (/?(pw(#)) = y(v)(p(a)ip(v)*, a G A, we conclude that 
pw(a) = vav*, a G^4. • 

3. A crossed product /4 x a Z by an automorphism. Throughout this section, for 
a projection/? €A,AP denotes the hereditary C*-subalgebra^p of A generated by p. 

THEOREM 3.1. Let A be a purely infinite simple unital C*-algebra and let a:A—>A 
be an automorphism. Then the crossed product A xaZ is purely infinite if it is simple. 

PROOF. We may assume that there is a non-zero projection/? G A with 

s*s = a(p), ss* = e < p, 
ft = 1 - a(p), tf = 1 - e 
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for some partial isometries s91 G A by choosing nonzero projections;?,/? < 1, and e ^ 0, 
e<p,[e] = \p] in K0(A). 

It follows that s = esa{p) and / = (1 — e)t( 1 — a(p)). It is obvious that u\ = s + t is 
a unitary. Define an automorphism p:A —> A by p(a) = u\a(a)u\*, a G A, and define a 
function u: Z —•» ^i(^() (the unitary group of >4) by 

w(0) = 1, w(l) = wi, 

w(m) = u\a(u(m — 1)) for m > 2, 

u(—m) = a_m(w(m)*) form > 1. 

Then it is easily checked that pm = (Adww)aw, m G Z with ww = w(/w). Hence two 
systems (A, Z, a) and (^, Z, p) are exterior equivalent [Pe, 8.11.2]. 

It suffices to show that A x p Z is purely infinite. Note that p(p) = wi a(p)wi * = e <p. 
The restriction po = pUp is a proper corner endomorphism. 

Let v be a unitary in A xpZ which implements p. Set s\ = v/?. Then s\ £ A xaZ, 
s\*s\ = p, and s\S\* = vpv* = p(p) = e <p. Moreover, po(a) = s\as\* for a G Ap. It is 
easily checked that (A xp Z)p = C*(Ap,s\), the C*-subalgebra of A xpZ generated by 
Ap and s\. Since A x p Z is simple, T(p) = T ^ {1}, hence by [Ki2, Lemma 1.1 ] for any 
e > 0 and a E Ap there exists a positive element* G ^ p , ||x|| = 1 with ||jcapo(x)|| < e. 
Hence the endomorphism po onAp satisfies (ii) in Theorem 2.1, zndAp xpo N is purely 
infinite and simple, so that Ap xPo N is isomorphic to C*(AP, s\). Therefore AxpZ has a 
purely infinite hereditary C*-subalgebra and is hence purely infinite. • 

REMARKS 3.2. (1) The above Theorem is true for purely infinite simple stable C*-
algebras. In fact, there exist a unitary u G M(A) and a projection/? G A with Aduoa(p) < 
p. Set p = Adw o a, thenAp xPo N (po = P\AP) is isomorphic to a purely infinité simple 
full hereditary C*-subalgebra of A xpZ = A xaZ. 
(2) From the Proof of Theorem 3.1, we see that every C*-dynamical system (A, Z, a) 
with a unital purely infinite simple C*-algebra A is exterior equivalent to a dynamical 
system (̂ 4, Z, /3) for some automorphism /3ofA such that there is a projection/? G ^ 
with j3{p) < p. 

For a discrete product group G = K x H, if a is an action of G on a C* -algebra ̂  then 
there is an isomorphism between two reduced crossed products 

</>:A xarG->(A xa{KrK)xprH 

where a|# is the restriction of a to K and /?: / / —• Aut(^ xa|^r iT) is an action defined 
by (3(h)(au(k,\)) = »(i,/o(fl)w(£,i)> a e A (here M ^ is the unitary such that a^h){a) — 
"(M)flW(jt,/,)*). Then <j> is defined by (}){au^,h)) — aU(k,\)Vh where v/, is the unitary with 
P(h)(x) = vhxvh\x£A x{a\K)rK,heH. 

COROLLARY 3.3. Let a be an outer action of a countable abelian group G on a 
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purely infinite simple unital C*-algebra A. Then the crossed product A xa G is simple 

([Ki2]) and purely infinite. 

PROOF. Assume that G is of the form G = F x Zn for some finite subgroup F. Since 
a\f is outer we see from [Je] that̂ 4 xa\FFis purely infinite simple. Applying Theorem 3.1 
to (A xajFF, ot\, Z) we obtain a purely infinite simple C*-algebra (A xa\FF) xai Z, where 
oc\ is an action induced by a for which we have 

(AxalFF)xaiZ^Axa]{fxZ)(FxZ). 

In general the simple crossed product A xa G is the direct limit of purely infinite 

simple unital crossed products of the above form and therefore purely infinite. • 
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