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Abstract

This paper deals with robust guaranteed cost control for a class of linear uncertain descriptor
systems with state delays andjumping parameters. The transition of the jumping parameters
in the systems is governed by a finite-state Markov process. Based on stability theory for
stochastic differential equations, a sufficient condition on the existence of robust guaranteed
cost controllers is derived. In terms of the LMI (linear matrix inequality) approach, a linear
state feedback controller is designed to stochastically stabilise the given system with a cost
function constraint. A convex optimisation problem with LMI constraints is formulated to
design the suboptimal guaranteed cost controller. A numerical example demonstrates the
effect of the proposed design approach.
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1. Introduction

Descriptor systems capture the dynamic behaviour of many natural phenomena, and
have applications in many fields, such as network theory, robotics, and so on (see
for example [6,7,14,19,20] and the references therein). Descriptor systems are also
referred to as singular systems, implicit systems, generalised state-space systems
or semi-state systems. Many results on descriptor systems have been proposed and
various methods obtained (see for example [6, 7,14,19,20] and the references therein).

Stochastic modelling has come to play an important role in many branches of
science and industry. Much research has been focused on the Markov jumping linear
system (see for example [3,5,8,9] and the references therein). Nevertheless, these
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results are only applicable to Markov jumping linear systems without delays. More
recently, increasing attention has been focused on stochastic systems with time delays
(see, [1,4,11-13]). References [1,12,13] presented stability criteria of stochastic
systems with time delays. Robust control of uncertain stochastic systems with time
delays was considered in [1,4,11].

Robust guaranteed cost control for time-delay systems has been the focus of much
attention [2,15-18,21,22]. Some useful results have been established. These results
can be classified into two cases: the continuous-time case ([2,15-17,21]) and the
discrete-time case [18] and [22]. Guaranteed cost control for uncertain descriptor
systems was considered in [23,24] based on the LMI method. However, little attention
has been paid to robust guaranteed cost control for linear descriptor systems with state
delays and Markov jumping parameters.

In this paper, motivated by the results in [21], we address the robust guaranteed
cost control of a class of descriptor systems with state delays and Markov jumping
parameters based on the LMI method. The transition of the jumping parameters in
the systems is governed by a finite-state Markov process. The class of systems is a
hybrid class of systems with two components in the vector state. The first component
refers to the mode and the second one to the state. The mode is described by a
continuous Markov process with finite state space. The state in each mode is denoted
by a stochastic differential equation. The synthesis problem proposed here is to design
a memoryless state feedback control law such that the closed-loop system is regular,
impulse free, stochastically stable independent of delay and satisfies the proposed
guaranteed cost performance.

2. Problem formulation

Consider the following descriptor time-delay systems with Markov jumping para-
meters:

\x(t) = (p(t), for all t € [-d,0],

wherejc(r) € R",andM(r) e Kr are the state vector and the control vector, respectively.
Here d represents the discrete state time-delay and (p(t) e L2[—d, 0] is a continuous
vector-valued initial function. The random parameter r(t) represents a continuous-
time discrete-state Markov process taking values in a finite set N = {1, 2 , . . . , s) and
having the transition probability matrix n = [7r,y],,,€A,. The transition probability
from mode i to mode j is defined by
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where A > 0 satisfies lima_o(o(A)/A) = 0 . Here7r,y > 0 is the transition probability
from mode /' to mode j (i ^ j) and satisfies Yli±j nu — ~na-

The matrix £(r(f)) e R"x" may be singular with rank£(r(r)) = nE(r(t)) < n,
and A(r(t), t), A\(r{t), t) and B(r(t), t) are matrix functions of the random jumping
process (r(f)}. For simplicity of notation, we let A,(f) represent A(r(f),f) when
r(t) = i. For example, A^rit), t) is denoted by Au(r), and so on. Further, for each
r(t) = i € N, it is assumed that the matrices A,(f), Au(t) and B,-(f) can be described
by the following form:

A,(r) = A, + AA,(0, A,,(0 = Au + AA,,(f), B,(0 = B, + AB,(0. (2-2)

where A,, Ai, and B, are known real coefficient matrices with appropriate dimensions.
Time-varying uncertain matrices AA,(0, AB,(r) and AAi,(0 are assumed to be of
the form

[AA,(0 AB,(0 AA1,(0] = D1-f}(r)[E,; E2i E3i],

where D,, £i,, £2/ and £3, are known constant real matrices of appropriate dimensions,
which represent the structure of uncertainties, and F,(r) is an unknown matrix function
with Lebesgue measurable elements and satisfies F?(t)Fj(t) < I.

For convenience, it is assumed that the system has the same dimension at each
mode and the Markov process is irreducible.

Consider the following nominal unforced descriptor system of (2.1) with a state
delay:

J E,x(0 = A,x(t) + Aux{f - d),
\x(t) = <p(t), for all t e l-d,0].

Let jco, r0, and *(/, <p, r0) be the initial state, initial mode and the corresponding
solution of system (2.3) at time / respectively. We have the following definition.

DEFINITION 1. System (2.3) is said to be stochastically stable if for all <p(t) €
Lil—d, 0] and initial mode r0 e N, there exists a matrix M > 0 such that

\\x(t,<p,ro)\\
2dt ro,x(t) =

The following definition can be regarded as an extension of the definition in [20].

DEFINITION 2. (1) System (2.3) is said to be regular if det(s£, — A,), i e N is
not identically zero.
(2) System (2.3) is said to be impulse free if deg(det(5£, - A,)) = rank £,, i € N.
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(3) System (2.3) is said to be admissible if it is regular, impulse free and stochasti-
cally stable.

Similar to [4], it is also assumed in this paper that for all g e [—d, 0], there exists
a scalar h > 0 such that

\\x(t + g)\\ < h\\x(t)\\. (2.4)

Associated with the systems (2.1) is the cost function

J = E\f [xT(t)Q(r(t))x(t)+uT(t)R(r(t))u(t)]dt\, (2.5)

where the cost weighting matrices Q(r(t)) and R(r(t)) are symmetric positive definite
matrices for each r(t).

When the following state feedback controller law

u(t) = K,x{t), when r(t) = i, i e N, (2.6)

is applied to the system (2.1), the closed-loop system is obtained in the following
form:

E,x(t) = (A, + fl,-ff,- + D,F,{t)(Eu + EvK,)\x(f)

+ (Au + D,F,(t)Ev)x(t - d), (2.7)

JC(O = <p(t), for all t € [-d,0].

Based on Definition 2, we have the following definition.

DEFINITION 3. Consider system (2.1). If there exist a control law «*(/) and a
positive scalar J*, for all uncertainties, such that the closed-loop system (2.7) is
admissible and the closed-loop value of the cost function (2.5) satisfies J < J*, then
J* is said to be a robust guaranteed cost and u*(t) is said to be a robust guaranteed
cost control law for (2.1).

With the above description, the problem to be solved in this paper can be stated as
follows.

PROBLEM 1 (Robust guaranteed cost control). Given system (2.1), determine a
memoryless state feedback controller (2.6) such that the control law is a robust
guaranteed cost control law.
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3. Main results

Before presenting the main results, we introduce the following lemma which is to
be used in the proof of the main results.

LEMMA 3.1 ([20]). The system

iEx(t) = Ax(t) + Atx(t - d),

\x{t) = <p{t), for all te[-d,0]

is said to be admissible if there exist a matrix P and a symmetric positive definite
matrix Q such that ETP = PTE >0andATP + PTA + PTAxQ~iA]P + Q < 0.

Based on stochastic Lyapunov stability theory, we have the following theorem.

THEOREM 3.2. System (2.3) is admissible if there exist matrices Ph i e N, and
symmetric positive definite matrices 5,, / e N, such that

EjPt = PjE{ > 0 and (3.1)

0, . ' - I *. 0.2)

where n, = A] P, + P,rA, + £y= 1 nuEjPj + S,.

PROOF. Based on Definition 2 and Lemma 3.1, it follows from (3.1H3.2) that
system (2.3) is regular and impulse free. Next, the proof of stability is given. Let the
mode at time t be i, that is, r(t) = i e N, and consider the following positive definite
function as a stochastic Lyapunov-Krasovskii function of system (2.3):

V(x(t),r(t) = i)=xT(t)EjPix(t)+ I xT(t)SiX(t)dt,
Jl-d

where 5, is a symmetric positive definite matrix and P, is a matrix satisfying (3.1). The
weak infinitesimal operator L of the stochastic process [r(t), x(t)}, t > 0, is given by

LV(x(t),r(t) = i)

= lim^-[E[V(x(t + A), r{t + A)) | x(t), r(t) = i) - V(x(t), r(t) = i)]

= xT(t) A]Pt + PjAt + YjnijE]Pj + S,
y=i J

x(t) + 2xT(t)Pj Aux(t - d)

-xT(t-d)SiX(t -d). (3.3)
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The following inequality is obviously true:

2xT(.f)pTAux(t-d)<xT(t)P*AuS-lAuPix(t) + xT(t-d)SiX(t-d). (3.4)

Therefore, it follows from (3.3) and (3.4) that LV(x, t) < xT(t)Y,jX(t), where

s,. = n , . + />,rA11.5-1A1,./>,,

On the other hand, for x ^ 0 and each mode /, we have

V(x(t), r(t) = i) > x7(t)EjPiX(t) > 0.

Note that E, < 0, thus

LV(x(t),r(t) = i) < jtr(QS,x(O
V(x(t),r(t) = i) ~ xT(t)E[PiX(t)

Letting /3 = - min [A.min(T/)Ani«(E/"P/)] > 0, we have

LV(x(t),r(t) = i) ^

V(x(t),r(t) = i) ~

Similar to [4], using Dynkin's formula and the Gron wall-Bellman lemma, we obtain
for each/ e N, E{ V(x(t), r(t) = i) \<p,ra = i\ <e-fi'V(x0,i). Then

xT(t)PjX(t) + I xT(t)SiX(t)dt w, ro = i\
Ji-d J

= E {xT(t)PiX(t) | tp, r0 = i} + E I I xT(t)SiX(t)dt[
i-d

T h u s w e h a v e E[xT(t)EjPjX(t) \<p,ro = i ) < e - p ' V ( x 0 , i ) .
Let 6m = min16/v {^m\n(ETP,)\, and applying Fubini's theorem, this yields

\ j xT( <p,rQ = i\ <-j9mE\j xT(t)x(t)dt

Taking the limit as T —> oo, and using (2.4), we obtain

<p,ro = i\ < xl
\

lim E I / xT(/ (t)x(t) dt

where

M = A i6" + dh'k^ASi)] /, 6M = max

From Definition 2, it results that system (2.3) is admissible. •
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REMARK 1. Theorem 3.2 gives a sufficient condition for system (2.3) to be ad-
missible. When it has no Markov jumping parameters, the system (2.3) reduces to
a descriptor system with state delays which is studied in [20]. It is easy to show
that Theorem 3.2 coincides with [20, Theorem 1]. Therefore, the results presented in
Theorem 3.2 can be viewed as an extension of results from descriptor systems with
state delays to descriptor systems with state delays and Markov jumping parameters.

Based on Theorem 3.2, we give the following sufficient condition on the existence
of robust guaranteed cost controllers for system (2.1).

THEOREM 3.3. Consider system (2.1) with cost function (2.5). There exists a
memoryless state feedback controller (2.6) that solves the addressed robust guaranteed
cost control problem if there exist matrices Pit i = 1 , . . . , s, and symmetric positive
definite matrices 5,, i = 1 , . . . , s, such that

EfPi = P^Ei>0 and (3.5)

J < 0 ' '-1'"-'*' I™*P, -5 ,

where

T, = [A, + B,Ki + DiFiOKEu + E2iK)]TPi

?[Ai + B,K, + DiMXEu + E2iK)] + 5>,VE,TPJ + 5,, (3.7)

PROOF. It follows from Theorem 3.2 and Definition 2 that the closed-loop system
(2.7) is admissible for all uncertainties if there exist matrices Ph i = 1 , . . . , s, and
symmetric positive definite matrices 5,, i = 1 , . . . , 5, such that (3.5) and the following
inequalities hold:

[ r, Pt (Au + Dj. ,K.,~M, i 0

{Au + DtFMEvYPi -S, J < U ' ~ * *•

From (3.6), the closed-loop system (2.7) is admissible. On the other hand, from
Theorem 3.2 and (3.6), we have

LV(x(t), r(t) = i) < xT(t)(-Qi - KjR,Kt)x(f) < 0. (3.8)

Based on cost function (2.5) and (3.8), we obtain

J = E I \xT(t)Q(r(t))x(t) + uT(t)R(r(t))u(t)]dt\
Jo J

= E J xT(t)[Q(r(t)) + KT(r(t))R(r(t))K(r(t)]x(t) dt
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< - / LV(x(t),r(t))dt
Jo

= -E [ lim V(x(t), r(t)) | + V(x0, r0). (3.9)

As the closed-loop system (2.7) is stochastically stable, it follows from (3.9) that
J < V(x0, r0). From Definition 3, we may conclude that a robust guaranteed cost for
system (2.1) can be given by

J* = xT
0ElPraxQ + I xT(t)Srox(t)dt. •

J-d

In the following, based on the above condition for the existence of robust guaranteed

cost controllers, a design method for such controllers is given.

THEOREM 3.4. Consider system (2.1) with cost function (2.5). Then there exists a
memoryless state feedback controller (2.6) that solves the addressed robust guaranteed
cost control problem if there exist matrices Pit i — 1 , . . . , s, and symmetric positive
definite matrices 5,, i = 1 , . . . , s, such that

£/"/>, =/>7"£, > 0 and (3.10)

*, PjBi P,TDi P,TAU PfBi {Eu + ̂ EiiBf Pi)T-
BfPi -^l 0 0 0 El
DjPi 0 -fii I 0 0 0
AT

uPi 0 0 -Si 0 0
BjPt 0 0 0 -4a, 2 /?-1 0

u + ^E2iBjPi £3, 0 0 0 -p-'l

(3.11)

for some positive constants a, and /?,, / = 1 , . . . , s, where

*, = PjAi + A] Pi + Qi + Si

In this case, the memoryless state feedback

u*(t) = ^-BjPiX{t) (3.12)
2a/

is a robust guaranteed cost control law and

r°
J* = x^EjoProx0+ xT(t)Srox(t)dt (3.13)

J-d
is a robust guaranteed cost for system (2.1).

< 0
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PROOF. Define

(A, + BiKtVP, + P,r(A, + BiKi)

A T p C

Then (3.2) is equivalent to

<0.

By applying [10, Proposition 2.2], for any scalars #; > 0, / = 1, . . . , s, and all Ft(t)
satisfying Fl(t)Fj(t) < I, the following inequality holds:

OTD-\ VpTnY
' 0 ' F , ( 0 [ £ « + E2i* Ev] + [Eu + E2iK E3i] F^(t)\ri

0'\

u + E2iK Ev]. (3.14)

Based on Schur complement results and Theorem 3.3, it follows from (3.11), (3.12)
and (3.14) that a robust guaranteed cost for system (2.1) is given by (3.13) under the
memoryless state feedback (3.12). •

REMARK 2. Theorem 3.4 provides a design approach for robust guaranteed cost
controllers in terms of LMIs, which can be solved by the LMI toolbox in MATLAB.

The design of a robust guaranteed cost controller for linear time-delay systems is
considered in [16] and [21]. The results presented in Theorem 3.4 can be viewed as
an extension of results from linear time-delay systems to descriptor systems with state
delays and Markov jumping parameters.

REMARK 3. The solution of LMIs (3.10) and (3.11) parametrises the set of stochastic
guaranteed cost controllers. This parametrised representation can be used to design
the robust guaranteed cost controller with some additional performance constraints.
Similar to [21], the suboptimal guaranteed cost control law can be determined by
solving a certain optimisation problem, as presented in the following theorem.

THEOREM 3.5. Consider system (2.1) with cost function (2.5), and suppose that the
initial conditions r0 and x0 are known. If the following optimisation problem:

min J* s.t. (3.10) and (3.11) (3.15)
Pi.St.Oi and fit
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has a solution Pit 5,, a,, and fr, i = 1, ... ,s, then the control law of form (3.12) is a
suboptimal guaranteed cost control law for system (2.1), where

J* = xT
oE

T
raProxo + tr (I x(t)xT(t)dtSroj . (3.16)

PROOF. It follows from Theorem 3.4 that the control law of form (3.12) constructed
in terms of any feasible solution Pt, 5,, a, and /?,-, / = 1 , . . . , s, is a robust guaranteed
cost control law. It follows from

/ x T ( t ) S r o x ( t ) d t = J t r ( x T ( t ) S r o x ( t ) ) d t = t r ( f x ( t ) x 7 ' ( t ) d t s

that (3.16) holds. Therefore, the problem of suboptimal guaranteed cost control is
turned into the minimisation problem (3.15). •

4. A numerical example

Consider the following two-mode descriptor systems with uncertainties and state
delays. For mode 1, the system matrices are given by

Dl = r°0
2
 0 ° J , Eu=El2 = El3 = l, Qx = I, Rt = 0.51.

r°-2 ° i
" = [ o O.lJ'

For mode 2, the system matrices are given by

[0 O [-2 0 1 ^ [0.1 0 I _ [2 ll2 = [ o - 6 J ' A l 2 = L 0 0.2j ' B2 = [ l 2]'
D2 = F°o

3
 0 ° J , E2l = E22 = E2i = 1, Q2 = I, R2 = 0.5/ .

The time delay is d = 0.1, the initial state is <p(t) = [l 0] and the initial mode
is r0 = 1. The transition probability matrix fl is given by:

- [ V - ' ] •
After all these parameters are given, we can then obtain a suboptimal guaranteed cost
control law for this system.
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Selecting oti = a2 = 10, /5i = fi2 = 1, applying Theorem 3.5, and solving the
optimisation problem (3.15) by using the MATLAB LMI toolbox, one gets

[ 0.1986 0 "I [0.0277 0.0014]
1 ~ [-1.0703 -5.1863 J ' ' ~ [0.0014 8.1991 J '

[5.2088 -4.0571] f 6.3565 -3.6646]
2 ~ [ 0 8.0011 J ' 2 ~ [-3.6646 38.6054 J "

Then using (3.12), we can obtain the following state feedback gain matrices for the
two modes:

_ [-0.0436 -0.2593] _ [0.5209 -0.0057]
1 ~ [ 0.0971 -0.5186J ' 2 ~ [o.26O4 0.5973 J

and the corresponding suboptimal guaranteed cost is J* = 0.2013.

5. Conclusions

In this paper, a robust guaranteed cost control via state feedback for a class of
uncertain descriptor time-delay systems with Markov jumping parameters is studied
using the LMI method. The uncertainty is time-varying and assumed to be norm-
bounded. Memoryless guaranteed cost controllers are designed in terms of a set of
linear coupled matrix inequalities. The proposed state feedback control law guarantees
that the closed-loop system is regular, impulse free, stochastically stable and satisfies
the proposed guaranteed cost performance. The suboptimal guaranteed cost controller
is designed by solving a certain optimisation problem. A demonstrative example shows
the effect of the proposed approach.
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