A COUNTEREXAMPLE TO A CONJECTURE OF D. B. FUKS

BY
LUC DEMERS
Introduction. In [3] D. B. Fuks defined a duality of functors in the category \mathscr{H} of weak homotopy types. In general this duality is more difficult to work with than the duality of functors of the category \mathscr{T} of pointed Kelley spaces [2]. It happens however that all so-called strong functors [2] F of \mathscr{T} induce functors \bar{F} of \mathscr{H}, and if we denote the duality operators of \mathscr{H} and \mathscr{T} by \mathscr{D} and D respectively, then there are many cases where $(\overline{D F})=\mathscr{D}(\bar{F})$.

This has lead Fuks to make the following conjecture: a functor F of the category \mathscr{H} is reflexive (i.e. $F \simeq \mathscr{D}^{2} F$) if and only if there exists a functor G of \mathscr{T} such that $F=\bar{G}$ and $\mathscr{D} F=\overline{D G}$.

Not only would this conjecture enable us to compute $\mathscr{D} F$ in the most interesting cases, but it would imply the following strong corollary.

Corollary. Let G_{1} and G_{2} be reflexive functors of the category \mathscr{T}, and let $f: G_{1} \rightarrow G_{2}$ be a natural transformation such that for any C.W. complex $A, f_{A}: G_{1}(A)$ $\rightarrow G_{2}(A)$ is a weak homotopy equivalence. Then for any C.W. complex A,

$$
(D f)_{A}: D G_{2}(A) \rightarrow D G_{1}(A)
$$

is also a weak homotopy equivalence.
Unfortunately, we will provide a counterexample to this corollary, which will prove that Fuks' conjecture is false.

1. The Counterexample. Consider the functor $Q X=$ space of paths in X which start or end at the base point.

In other words, $Q X$ is the pull-back of the diagram

$$
\begin{aligned}
& \quad\left(I^{\prime}, X\right) \\
& \downarrow \\
& \downarrow \vee X \rightarrow X \times X
\end{aligned}
$$

where $I^{\prime}=$ disjoint union of the unit interval [0,1] with a point $*$ serving as the base point. The horizontal map is the inclusion, and the vertical map is defined as $\lambda \leadsto(\lambda(0), \lambda(1))$.

In [4, p. 210] there is defined a natural transformation

$$
m: \Sigma \Omega \rightarrow Q
$$

Received by the editors August 25, 1969.
with the property that for any 1-connected C.W. complex $X, m_{X}: \Sigma \Omega X \rightarrow Q X$ is a homotopy equivalence.

This implies in particular that

$$
\left(m * \Sigma^{2}\right)_{X}: \Sigma \Omega \Sigma^{2} X \rightarrow Q \Sigma^{2} X
$$

is a homotopy equivalence for any C.W. complex X.
Now if we assume that Q is a reflexive functor (which will be proved later), Fuks' conjecture would imply that

$$
\left((D m) * \Omega^{2}\right)_{X}: D Q \circ \Omega^{2} X \rightarrow \Omega \Sigma \Omega^{2} X
$$

is a homotopy equivalence for all C.W. complexes X.
In particular, if we take $X=K(Z, 3)$, we have $\Omega^{2} X \simeq S^{1}=K(Z, 1)$, so that $D Q\left(S^{1}\right)$ $\simeq \Omega \Sigma\left(S^{1}\right)$. But from the explicit computation of $D Q$, it will be clear that $D Q\left(S^{1}\right)$ is a finite complex, while the homology of $\Omega \Sigma\left(S^{1}\right)$ is infinite, by a theorem of Bott and Samelson [1]. Hence $D Q\left(S^{1}\right)$ and $\Omega \Sigma\left(S^{1}\right)$ cannot have the same homotopy type.

We will now introduce a new functor which will be proved to be the dual of Q.
2. The Functor T. $Q X$ was defined as the pull-back of the natural transformations

$$
X \vee X \rightarrow X \times X
$$

and

$$
\left(I^{\prime}, X\right) \rightarrow X \times X
$$

Now if we take the dual of this situtation, we get two transformations:

$$
X \vee X \rightarrow X \times X
$$

and

$$
X \vee X \rightarrow X \wedge I^{\prime}
$$

where the first map is the same as the first one above, and the second is defined as

$$
\begin{aligned}
& (x, *) \leadsto(x, 0) \\
& (*, x) \leadsto(x, 1)
\end{aligned}
$$

We define then $T X$ to be the push-out of the diagram

Since the duality operator D transforms direct limits into inverse limits, it is clear that $D T \simeq Q$. Because of this, there is a natural transformation $\sigma: T \rightarrow D Q$ corresponding to the canonical transformation $T \rightarrow D^{2} T$. Explicitly, σ is defined as follows:

From the definition of Q as a pull-back, we have two natural transformations

$$
\omega_{X}: Q X \rightarrow X \vee X \quad\left(\omega_{X}(\lambda)=(\lambda(0), \lambda(1))\right)
$$

and

$$
\tau_{X}: Q X \rightarrow\left(I^{\prime}, X\right) \quad\left(\tau_{X}(\lambda)=\lambda\right)
$$

If we denote the wedge functor by W (i.e. $W(X)=X \vee X$), then there is a natural equivalence $\alpha_{X}: X \times X \rightarrow D(W)(X)$ (see [2]) given by the formula

$$
\begin{aligned}
& \alpha_{X}\left(x_{0}, x_{1}\right)_{Y}(y, *)=\left(x_{0}, y\right) \in X \wedge Y \\
& \alpha_{X}\left(x_{0}, x_{1}\right)_{Y}(*, y)=\left(x_{1}, y\right) \in X \wedge Y
\end{aligned}
$$

Thus we have a natural map $X \times X \rightarrow D Q X$ obtained as the composition

$$
X \times X \xrightarrow{\alpha_{X}} D(W)(X) \xrightarrow{(D \omega)_{X}} D Q(X)
$$

Explicitly,

$$
\begin{aligned}
{\left[(D \omega)_{X} \circ \alpha_{X}\left(x_{0}, x_{1}\right)\right]_{Y}(\lambda) } & =\alpha_{X}\left(x_{0}, x_{1}\right)_{Y} \omega_{Y}(\lambda) \\
& =\alpha_{X}\left(x_{0}, x_{1}\right)(\lambda(0), \lambda(1)) \\
& =\left(x_{0}, \lambda(0)\right) \quad \text { if } \lambda(1)=* \\
& =\left(x_{1}, \lambda(1)\right) \quad \text { if } \lambda(0)=* .
\end{aligned}
$$

On the other hand, by taking the dual of τ, we obtain a map $(D \tau)_{X}: X \wedge I^{\prime}$ $\rightarrow D Q(X)$ given by the formula $(D \tau)_{X}(x, t)_{Y}(\lambda)=(x, \lambda(t)) \in X \wedge Y$, where $\lambda \in Q Y$. It is easy to see that the two maps

$$
X \times X \rightarrow D Q X
$$

and

$$
X \wedge I^{\prime} \rightarrow D Q X
$$

agree on $X \vee X$, so that they combine to give us a map

$$
\sigma_{X}: T X \rightarrow D Q X .
$$

3. The Functor \bar{T} and the Map $\eta: D Q \rightarrow \bar{T}$. Instead of finding directly an inverse for σ, we will introduce an auxiliary functor \bar{T}, define $\eta: D Q \rightarrow \bar{T}$ and show first that $\eta \circ \sigma$ is a natural equivalence of functors.

As usual, I will stand for the unit interval $[0,1]$ with 0 as the base-point; we will let J denote the unit interval $[0,1]$ with 1 as the base point.
$\rho: I \rightarrow S^{1}$ and $\pi: J \rightarrow S^{1}$ will denote the usual identification maps. $\bar{T} X$ is then defined as the pull-back of the diagram

7-с.м.в.

Define $\mu_{X}: D Q X \rightarrow X \wedge J$ as $\mu(S)=T_{J}\left(\mathrm{id}_{J}\right)$, where $S: Q \rightarrow \Sigma_{X}$ is an element of $D Q X$, and id denotes the identity map of J, and

$$
\nu_{X}: D Q X \rightarrow X \wedge I
$$

as

$$
v_{X}(S)=S_{I}\left(\mathrm{id}_{I}\right)
$$

These maps are continuous, since they are the composition of the following continuous maps:

$$
\left(Q, \Sigma_{X}\right) \xrightarrow[\text { at } J]{\text { evaluation }}(Q J, X \wedge J) \xrightarrow[\text { at } 1 \mathrm{~d}_{J}]{\text { evaluation }} X \wedge J
$$

and

$$
\left(Q, \Sigma_{X}\right) \xrightarrow[\text { at } I]{\text { evaluation }}(Q I, X \wedge I) \xrightarrow[\text { at } 1 \mathrm{~d}_{I}]{\text { evaluation }} X \wedge I .
$$

Moreover, because of the naturality of $S: Q \rightarrow \Sigma_{X}$, we have

$$
(X \wedge \rho) \circ \nu_{X}(S)=(X \wedge \pi) \circ \mu_{X}(S)=S_{S^{1}}(\rho)
$$

Thus the maps μ_{X} and ν_{X} induce a unique $\eta_{X}: D Q X \rightarrow \bar{T} X$. We will now prove that $\eta \circ \sigma$ is a natural equivalence.
4. The Natural Equivalence $\eta \circ \sigma: T \rightarrow \bar{T}$. From the definition of T as a push-out, we have that

$$
T X=X \wedge I_{X \vee X}^{\prime} \bigcup_{X} X \times X
$$

Let $(x, t) \in X \wedge I^{\prime}$. We have

$$
\begin{aligned}
& \mu_{X} \circ \sigma_{X}(x, t)=\sigma_{X}(x, t)_{J}\left(\mathrm{id}_{J}\right)=(x, t) \in X \wedge J \\
& \nu_{X} \circ \sigma_{X}(x, t)=\sigma_{X}(x, t)_{I}\left(\mathrm{id}_{I}\right)=(x, t) \in X \wedge I .
\end{aligned}
$$

Hence

$$
\eta_{X} \circ \sigma_{X}(x, t)=((x, t),(x, t)) \in X \wedge J \times X \wedge I
$$

On the other hand,

$$
\begin{aligned}
& \mu_{X} \circ \sigma_{X}\left(x_{0}, x_{1}\right)=\sigma_{X}\left(x_{0}, x_{1}\right)\left(\mathrm{id}_{J}\right)=\left(x_{0}, 0\right) \in X \wedge J \\
& \nu_{X} \circ \sigma_{X}\left(x_{0}, x_{1}\right)=\sigma_{X}\left(x_{0}, x_{1}\right)_{I}\left(\mathrm{id}_{I}\right)=\left(x_{1}, 1\right) \in X \wedge I
\end{aligned}
$$

Thus $(\eta \circ \sigma)_{X}: T X \rightarrow \bar{T} X$ is the map defined as

$$
\left.\begin{array}{rl}
(\eta \sigma)_{x}(x, t) & =((x, t),(x, t)) \\
(\eta \sigma)_{X}\left(x_{0}, x_{1}\right) & =\left(\left(x_{0}, 0\right),\left(x_{1}, 1\right)\right)
\end{array}\right\} \in X \wedge J \times X \wedge I .
$$

It is clear that $(\eta \sigma)_{\mathrm{X}}$ is both an injection and a surjection, so that it remains to show that its inverse is continuous. To that end, we define two subspaces A and B of $\bar{T} X$ with the properties that
(1) A and B are closed in $\bar{T} X$
(2) $\bar{T} X=A \cup B$
(3) $(\eta \sigma)^{-1}$ is continuous on both A and B.

$$
\begin{aligned}
& A=\{((x, t),(x, t)) \in X \wedge J \times X \wedge I\} \\
& B=\left\{\left(\left(x_{0}, 0\right),\left(x_{1}, 1\right)\right) \in X \wedge J \times X \wedge I\right\}
\end{aligned}
$$

Note first that under the homeomorphism

$$
X \wedge J \times X \wedge I \rightarrow X \wedge I \times X \wedge I
$$

sending $((x, t),(y, s))$ to $((x, 1-t),(y, s)), A$ and B are mapped respectively onto

$$
A^{1}=\{((x, 1-t),(x, t)) \in X \wedge I \times X \wedge I\}
$$

and

$$
B^{1}=\left\{(x, 1) \times\left(x_{1}, 1\right) \in X \wedge I \times X \wedge I\right\}
$$

Let $q: X \times I \rightarrow X \wedge I$ be the indentification map, and consider

$$
q \times q:(X \times I) \times(X \times I) \rightarrow(X \wedge I) \times(X \wedge I)
$$

The inverse image of A^{1} under $q \times q$ is the union of the four subspaces

$$
\begin{aligned}
& \{((x, 1-t),(x, t)) \in(X \times I) \times(X \times I)\} \\
& \{((x, 0),(y, 1)) \in(X \times I) \times(X \times I)\} \\
& \{(x, 1),(y, 0) \in(X \times I) \times(X \times I)\} \\
& (q \times q)^{-1}(*)
\end{aligned}
$$

These are all closed subsets of $(X \times I) \times(X \times I)$. If we can show that $q \times q$ is an identification map, then we will have proved that A^{1} is closed.

But in the category of nonpointed Kelley spaces, the product with a fixed space is left adjoint to a hom functor and hence commutes with direct limits. Thus we have two push-out diagrams:

and

Since q^{\prime} and $q^{\prime \prime}$ are both identification maps, so is their composition $q^{\prime \prime} \circ q^{\prime}=q \times q$. Thus A^{\prime} is closed. As for B^{\prime}, it is the product of two closed subsets of $X \wedge I$. It remains only to show that $(\eta \circ \sigma)^{-1}$ is continuous on both A and B.
For A, we have the following commutative diagram

where p, q, and r are identification maps and ∇ is the map

$$
\nabla(x, t)=((x, 1-t),(x, t)) .
$$

Since ∇ is a homeomorphism into, $(r \times q) \circ \nabla$ is an identification map onto its image, which is A. Hence $\eta \sigma$ is a homeomorphism of $X \wedge I^{\prime}$ onto A, because p is also an identification map.

As for B, it is clear that $\eta \sigma: X \times X \rightarrow B$ is a homeomorphism, because B has the topology of a product.

This insures the continuity of $(\eta \sigma)^{-1}$ over the whole of $\bar{T} X$.
5. σ And η are Natural Equivalence. We have just shown that $\eta \circ \sigma$ is an isomorphism of functors. But η is a monomorphism. Indeed, let $R, S: Q \rightarrow \Sigma_{X}$ be two elements of $D Q X$. We have

$$
\begin{aligned}
& \eta_{X}(R)=\left(R_{J}\left(\mathrm{id}_{J}\right), R_{I}\left(\mathrm{id}_{I}\right)\right) \\
& \eta_{X}(S)=\left(S_{J}\left(\mathrm{id}_{J}\right), S_{I}\left(\mathrm{id}_{I}\right)\right) .
\end{aligned}
$$

Suppose that $\eta_{X}(R)=\eta_{X}(S)$, and let Y be any space, and $\lambda \in Q Y$.
If λ is a map $I \rightarrow Y$, then the naturality of R implies that the following diagram is commutative:

i.e. $X \wedge \lambda\left(R_{I}\left(\mathrm{id}_{I}\right)\right)=R_{Y}(\lambda)$.

If $\eta_{X}(S)=\eta_{X}(R)$, we have $R_{I}\left(\mathrm{id}_{I}\right)=S_{I}\left(\mathrm{id}_{I}\right)$, so that $R_{Y}(\lambda)=S_{Y}(\lambda)$. A similar thing happens if λ is a map $J \rightarrow Y$, so that in all cases, $R_{Y}(\lambda)=S_{Y}(\lambda)$, i.e. $R=S$.

Thus η_{X} is a monomorphism. This and the fact that $\eta_{X} \sigma_{X}$ is a homeomorphism imply that both η_{X} and σ_{X} are homeomorphisms, i.e. σ and η are natural equivalences.

Hence $T \simeq D Q$, which proves that T, (and hence Q) is reflexion. It is clear that if X is a finite C.W. complex, $T X$ is also a finite C.W. complex (cf. $\S 1$).

References

1. R. Bott and H. Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv. 27 (1953), 320-337.
2. D. B. Fuks, Eckmann-Hilton duality and the theory of functors in the category of topological spaces, Russian Math. Surveys (2) 21 (1966), 1-33.
3. - Duality of functors in the category of homotopy types, Soviet Math. Dokl. 8 (1967), 1007-1010.
4. P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965.

University of Ottawa,
Ottawa, Ontario

