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Abstract. This paper studies the Ratliff–Rush closure of ideals in integral
domains. By definition, the Ratliff–Rush closure of an ideal I of a domain R is the
ideal given by Ĩ := ∪(In+1 :R In), and an ideal I is said to be a Ratliff–Rush ideal if
Ĩ = I . We completely characterise integrally closed domains in which every ideal is a
Ratliff–Rush ideal, and we give a complete description of the Ratliff–Rush closure of
an ideal in a valuation domain.
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1. Introduction. Let R be a commutative ring with identity and I a regular
ideal of R; that is I contains a non-zero divisor. The ideals of the form
(In+1 :R In) := {x ∈ R|xIn ⊆ In+1} increase with n. In the case in which R is a
Noetherian ring, the union of this family is an interesting ideal, first studied by
Ratliff and Rush in [23]. In [13], W. Heinzer, D. Lantz and K. Shah called the ideal
Ĩ := ∪(In+1 :R In) the Ratliff–Rush closure of I or the Ratliff–Rush ideal associated
with I . An ideal I is said to be a Ratilff–Rush ideal, or Ratliff–Rush closed, if I = Ĩ .
Among the interesting facts of this ideal is that for any regular ideal I in a Noetherian
ring R, there exists a positive integer n such that for all k ≥ n, Ik = Ĩ k, that is all
sufficiently high powers of a regular ideal are Ratliff–Rush ideals, and a regular ideal
is always a reduction of its Ratliff–Rush closure in the sense of Northcoot and Rees
(see [18]), that is I(Ĩ)n = (Ĩ)n+1 for some positive integer n. Also the ideal Ĩ is always
between I and the integral closure I ′ of I , that is I ⊆ Ĩ ⊆ I ′, where I ′ := {x ∈ R|x
satisfies an equation of the form xk + a1xk−1 + · · · + ak = 0, where ai ∈ Ii for each
i ∈ {1, . . . , k}}. Therefore, integrally closed ideals, i.e. ideals such that I = I ′, are
Ratliff–Rush ideals. Since then, many investigations of the Ratliff–Rush closure of
ideals in a Noetherian ring have been carried out (for instance see [12, 13, 17, 24],
among others). The purpose of this paper is to extend the notion of Ratliff–Rush
closure of ideals to an arbitrary integral domain and examine ring-theoretic properties
of this kind of closure. In the second section, we give an answer to a question raised by
B. Olberding [21] about the classification of integral domains for which every ideal is
a Ratliff–Rush ideal in the context of integrally closed domains. This leads us to give
a new characterisations of Prüfer and strongly discrete Prüfer domains. Specifically,
we prove that ‘a domain R is a Prüfer (respectively strongly discrete Prüfer) domain
if and only if R is integrally closed and each non-zero finitely generated (respectively
each non-zero) ideal of R is a Ratliff–Rush ideal (Theorem 2.6). It turns out that a
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Ratliff–Rush domain (i.e. a domain such that each non-zero ideal is a Ratliff–Rush
ideal) is a quasi-Prüfer domain; that is, its integral closure is a Prüfer domain. As an
immediate consequence, we recover a characterisation of Noetherian Ratliff–Rush
domains due to Heinzer, Lantz and Shah (Corollary 2.8). The third section deals
with valuation domains. Here, we give a complete description of the Ratliff–Rush
closure of a non-zero ideal in a valuation domain (Proposition 3.2), and we state
necessary and sufficient condition under which the Ratliff–Rush closure preserves
inclusion (Proposition 3.3). We also extend the Ratliff–Rush closure to arbitrary
non-zero fractional ideals of a domain R, and we investigate its link to the notions of
star operations. We prove that ‘for a valuation domain V , the Ratliff–Rush closure is
a star operation if and only if every non-zero non-maximal prime ideal of V is not
idempotent, and in this case it coincides with the v-closure (Theorem 3.5).

Throughout, R denotes an integral domain, qf (R) its quotient field and R′ and R its
integral closure and complete integral closure respectively. For a non-zero (fractional)
ideal I of R, the inverse of I is given by I−1 = (R : I) := {x ∈ qf (R)|xI ⊆ R}. The v-
closure and t-closure are defined respectively by Iv = (I−1)−1 and It = ∪Jv, where
J ranges over the set of f.g. subideals of I . We say that I is divisorial (or a v-
ideal) if I = Iv and a t-ideal if I = It. Unreferenced material is standard as in [11]
or [16].

2. Ratliff–Rush ideals in an integral domain. Let R be an integral domain. A non-
zero ideal I of R is L-stable (here L stands for Lipman) if RI := ∪(In : In) = (I : I). The
ideal I is stable (or Sally–Vasconcelos stable) if I is invertible in its endomorphisms
ring (I : I) [25]. A domain R is L-stable (respectively stable) if every non-zero ideal
of R is L-stable (respectively stable). We recall that a stable domain is L-stable
[1, Lemma 2.1], and for recent developments on stability (in settings different than
originally considered), we refer the reader to [1, 19–22]. We start this section with
the following definition which extends the notion of Ratliff–Rush closure to non-zero
integral ideals in an arbitrary integral domain.

DEFINITION 2.1. Let R be an integral domain and I a non-zero integral ideal of R.
The Ratliff–Rush closure of I is the (integral) ideal of R given by
Ĩ = ∪(In+1 :R In). An integral ideal I of R is said to be a Ratliff–Rush ideal, or Ratliff–
Rush closed, if I = Ĩ , and R is said to be a Ratliff–Rush domain if each non-zero
integral ideal of R is a Ratliff–Rush ideal.

The following useful lemma treats the Ratliff–Rush closure of some particular
classes of ideals.

LEMMA 2.2. Let R be an integral domain. Then

(1) all stable (and thus all invertible) ideals are Ratliff–Rush.
(2) Ĩ = R if I is a non-zero idempotent ideal of R.

Proof. (1) Let I be a stable ideal of R and set T = (I : I). Then I(T : I) = T . Now,
let x ∈ Ĩ . Then x ∈ R and xIs ⊆ Is+1 for some positive integer s. Composing the two
sides with (T : I) and using the fact that I(T : I) = T , we obtain xIs−1 ⊆ Is. Iterating
this process, we get xT ⊆ I . Hence x ∈ I and therefore I = Ĩ , as desired.
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(2) Let I be a non-zero idempotent ideal of R. Then for each n, In = I . So (In+1 :R
In) = (I :R I) = (I : I) ∩ R = R. Hence Ĩ = R. �

The next proposition relates Ratliff–Rush closure to L-stability.

PROPOSITION 2.3. Let R be an integral domain. If R is a Ratliff–Rush domain, then
R is L-stable.

Proof. Assume that R is a Ratliff–Rush domain. Let I be a non-zero (integral)
ideal of R and let x ∈ RI . Then there exists a positive integer n such that xIn ⊆ In. Let
0 	= d ∈ R such that dx ∈ R. Then xIn+1 ⊆ In+1 implies that dxI(dI)n = dn+1xIn+1 ⊆
dn+1In+1 = (dI)n+1. Hence dxI ⊆ ((dI)n+1 : (dI)n). Since dxI ⊆ R, dxI ⊆ (̃dI) = dI
(since R is Ratliff–Rush) and so xI ⊆ I . Hence x ∈ (I : I) and therefore RI = (I : I).
So I is L-stable, and therefore R is L-stable, as desired. �

It is easy to see that for a finitely generated ideal I of a domain R, in particular
if R is Noetherian, Ĩ ⊆ I ′. However, this is not the case for an arbitrary ideal of an
integral domain. Indeed, let V be a valuation domain with maximal ideal M such that
M2 = M, 0 	= a ∈ M, and set I = aM. It is easy to see that Ĩ = a(M : M) ∩ V = aV
and I = I ′ (since all ideals of a Prüfer domain are integrally closed). The next theorem
establishes a connection between stable domains, Ratliff–Rush domains and domains
for which Ĩ ⊆ I ′ for all ideals I . For this, we need the following crucial lemma.

LEMMA 2.4. Let R be an integral domain. If Ĩ = I for every finitely generated ideal
I of R, then R′ is a Prüfer domain.

Proof. Let N be a maximal ideal of R′. To show that R′
N is

a valuation domain, let x = a
b ∈ qf (R), where a, b ∈ R \ {0}. Let J be

the ideal (a4, a3b, ab3, b4) of R. Then a2b2J = (a6b2, a5b3, a3b5, a2b6) ⊆ J2 =
(a8, a7b, a5b3, a4b4, a6b2, a3b5, a2b6, ab7, b8). So a2b2 ∈ (J2 :R J) ⊆ J̃ = J. Thus a2b2 =
g1a4 + g2a3b + g3ab3 + g4b4 for some g1, g2, g3 and g4 in R. Dividing by b4, we get
0 = g1x4 + g2x3 − x2 + g3x + g4. By the u, u−1 theorem [16, Theorem 67], we get that
either x ∈ R′

N or x−1 ∈ R′
N , as desired. �

THEOREM 2.5. Let R be an integral domain. Consider the following:
(1) R is stable;
(2) R is Ratliff–Rush;
(3) Ĩ ⊆ I ′ for each non-zero ideal I of R;
(4) R has no non-zero idempotent prime ideals.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4). Moreover, if R is a semi-local Prüfer domain, then
(4) =⇒ (1).

Proof. (1) =⇒ (2) by Lemma 2.2.
(2) =⇒ (3) is clear.
For (3) =⇒ (4), assume that P is a non-zero idempotent prime ideal of R. Now if
I = aP with 0 	= a ∈ P, then for all n ≥ 1, (In+1 :R In) = (In+1 : In) ∩ R = (an+1P :
anP) ∩ R = a(P : P) ∩ R = a(P : P) (since a(P : P) ⊆ P(P : P) = P ⊆ R). So a ∈ a(P :
P) = Ĩ . Suppose a ∈ I ′ = (aP)′. Then ak + c1ak−1 + · · · + ck = 0, where ci = aibi ∈
Ii = aiP for each i ∈ {1, . . . , k}. So ak + b1ak + b2ak + · · · + bkak = 0 with bi ∈ P. Thus
ak(1 + b) = 0 with b ∈ P, a contradiction.
(4) ⇐⇒ (1) if R is a semi-local Prüfer domain by [1, Theorem 2.10]. �
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We are now ready to announce the main theorem of this section. It gives a
classification of the integral domains for which every ideal is a Ratliff–Rush ideal
in the context of integrally closed domains and states a new characterisation of Prüfer
and strongly discrete Prüfer domains. Recall that a Prüfer domain is said to be strongly
discrete if P 	= P2 for each non-zero prime ideal P of R.

THEOREM 2.6. Let R be an integrally closed domain. The following statements are
equivalent:

(1) Ĩ = I for every finitely generated (respectively every) non-zero ideal I of R;
(2) R is Prüfer (respectively strongly discrete Prüfer).

Proof. (1) =⇒ (2) By Lemma 2.4, R is a Prüfer domain. Moreover, if each ideal is
a Ratliff–Rush ideal, by Theorem 2.5, R is strongly discrete.

(2) =⇒ (1). Let R be a Prüfer domain. Then every finitely generated ideal is
invertible and therefore a Ratliff–Rush ideal by Lemma 2.2. Assume that R is a strongly
discrete Prüfer domain. Let I be a non-zero ideal of R and let x ∈ Ĩ . Then x ∈ R and
xIs ⊆ Is+1 for some positive integer s. Let M be a maximal ideal of R. If I 	⊆ M,
then x ∈ R ⊆ RM = IRM . Assume that I ⊆ M. Since x ∈ RM and xIsRM ⊆ Is+1RM ,
x ∈ ĨRM . Since R is strongly discrete, RM is a strongly discrete valuation domain.
By Theorem 2.5, ĨRM = IRM . Hence x ∈ IRM . So x ∈ ⋂{IRM/M ∈ Max(R)} = I .
Hence I = Ĩ , as desired. �

The following example shows that the above theorem is not true if R is not integrally
closed.

EXAMPLE 2.7. Let � be the field of rational numbers, X an indeterminate over
� and V = �(

√
2)[[X ]] = �(

√
2) + M. Set R = � + M. Then R is stable. Let I be a

non-zero (integral) ideal of R. Since R is local with maximal ideal M, I ⊆ M. If I is an
ideal of V , then I = cV for some c ∈ I . If I is not an ideal of V , then I = m(W + M),
where � ⊆ W � �(

√
2) is a �-vector space. Since [�(

√
2) : �] = 2, � = W , and so

I = cR. Therefore R is stable and then Ratliff–Rush by Theorem 2.5. However, R is
not a Prüfer domain [4, Theorem 2.1].

Our next corollary recovers a characterisation of Noetherian Ratliff–Rush
domains due to Heinzer, Lantz and Shah [13].

COROLLARY 2.8. (cf. [13, Proposition 3.1 and Theorem 3.9]) Let R be a Noetherian
domain. Then R is a Ratliff–Rush domain if and only if R is stable.

Proof. Since R is Noetherian, R′ = R̄ is a Krull domain. By Lemma 2.4, R′ is a
Prüfer domain. Hence R′ is a Dedekind domain and therefore dimR = dimR′ = 1. By
Proposition 2.3, R is L-stable and therefore stable by [1, Proposition 2.4]. �

We recall that a domain R is said to be strong Mori if R satisfies the ascending
chain conditions on w-ideals [8]. Trivially, a Noetherian domain is strong Mori and a
strong Mori domain is Mori. The next corollary shows that the Ratliff–Rush property
forces a strong Mori domain to be Noetherian.

COROLLARY 2.9. Let R be a strong Mori domain. If R is a Ratliff–Rush domain,
then R is Noetherian.
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Proof. By Lemma 2.4, R′ is a Prüfer domain. Hence every maximal ideal of R is
divisorial (see [6, Corollary 2.5] and [7, Theorem 2.6]). Now, let M be a maximal ideal
of R. Since M = Mv, RM is Noetherian [8, Theorem 3.9]. Hence R′

M = (RM)′ = RM

is a Krull domain. But since R′ is Prüfer, so is R′
M . Hence R′

M is Dedekind and
so htM = dimRM = dimR′

M = 1. Then dimR = 1 and therefore R is Noetherian [8,
Corollary 3.10]. �

Recall that R is semi-normal if for each x ∈ qf (R), x2, x3 ∈ R implies that x ∈ R.
Our next corollary states some conditions under which a Ratliff–Rush Mori domain
has dimension one.

COROLLARY 2.10. Let R be a Mori domain such that either (R : R) 	= 0 or R is
semi-normal. If R is a Ratliff–Rush domain, then dimR = 1.

Proof. Assume that R is a Ratliff–Rush domain. By Lemma 2.4, R′ is a Prüfer
domain.
(1) If (R : R) 	= (0), then R is a Krull domain [2, Corollary 18]. Since R′ ⊆ R, R is
a Prüfer domain and therefore Dedekind. Hence dim(R) = 1. By [3, Corollary 3.4],
dim(R) = 1, as desired.
(2) Assume that R is semi-normal. If dim(R) ≥ 2, then R has a maximal ideal M such
that htM ≥ 2. Set B = (MRM)−1 = (MRM : MRM). Since RM is a local Mori domain
which is semi-normal and htMRM = htM ≥ 2, B contains a non-divisorial maximal
ideal N contracting to MRM [3, Lemma 2.5]. Since R′ is a Prüfer domain (Lemma 2.4)
and combining [6, Corollary 2.5] and [7, Theorem 2.6], we get that every maximal ideal
of B is a t-ideal and so a v-ideal, since B is Mori, which is absurd. Hence dim(R) = 1,
as desired. �

3. Ratliff–Rush ideals in a valuation domain. It is well known that the maximal
ideal M of a valuation domain V is either principal or idempotent; any non-zero prime
ideal P of V is a divided prime ideal, that is, PVP = P; and any idempotent ideal
is a prime ideal. Also we recall that a valuation domain is a TP domain, that is for
each non-zero ideal I of V , either II−1 = V or II−1 = Q is a prime ideal of V [9,
Proposition 2.1], and for each positive integer n, InI−n = II−1 [14, Remark 2.13(b)].
We will often use these facts without explicit mention. Finally V is strongly discrete if
it has no non-zero idempotent prime ideal [10, Chapter 5.3].

LEMMA 3.1. Let V be a valuation domain and I a non-zero ideal of V and assume
that Ĩ 	= V. Then (I : I) ⊆ (Ĩ : Ĩ).

Proof. Let I be a non-zero ideal of V , and assume that Ĩ 	= V . If II−1 = V , then
I = Ĩ by Lemma 2.2 and therefore (I : I) = (Ĩ : Ĩ). Assume that II−1 = Q is a prime
ideal of V . Since V is a valuation domain, V is L-stable. So (I : I) = (In : In) for
each positive integer n. Let x ∈ (I : I) and z ∈ Ĩ . Then z ∈ V and zIr ⊆ Ir+1 for some
positive integer r. Since (I : I) = (Ir+1 : Ir+1), xzIr ⊆ xIr+1 ⊆ Ir+1. Hence xz ∈ (Ir+1 :
Ir). To show that xz ∈ Ĩ , it suffices to prove that xz ∈ V . Suppose that xz 	∈ V . Then
(xz)−1 ∈ V . Since z ∈ Ĩ , x−1 = (xz)−1z ∈ Ĩ . So x−1 ∈ V and x−1Is ⊆ Is+1 for some
positive integer s. Hence Is ⊆ xIs+1 ⊆ Is+1 (since (I : I) = (Is+1 : Is+1)) and therefore
Is = Is+1. Hence Is = I2s, and therefore I = P is an idempotent prime ideal of V . By
Lemma 2.2, Ĩ = P̃ = V , which is absurd. Hence xz ∈ V . So xz ∈ Ĩ and then xĨ ⊆ Ĩ .
Hence x ∈ (Ĩ : Ĩ) and therefore VQ = (I : I) ⊆ (Ĩ : Ĩ). �
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The next proposition describes the Ratliff–Rush closure of a non-zero integral
ideal in a valuation domain.

PROPOSITION 3.2. Let I be a non-zero integral ideal of a valuation domain V. Then
(1) Ĩ = V if and only if I is an idempotent prime ideal of V.
(2) assume that Ĩ � V; now either Ĩ = I or Ĩ = (IQ :V Q) for some non-zero prime

ideal Q of V.

Proof. (1) If I is an idempotent prime ideal of V , by Lemma 2.2, Ĩ = V .
Conversely, assume that Ĩ = V . Then there exists a positive integer n such that
In ⊆ In+1. Hence In = In+1. By induction, (In)2 = In. So In is an idempotent ideal
of V . Hence In = P is a prime ideal of V . Then I ⊆ P ⊆ I and therefore I = P, as
desired.

(2) Assume that Ĩ � V . If II−1 = V , then I = Ĩ by Lemma 2.2. Assume that II−1 =
Q � V is a prime ideal. Then (I : I) = VQ and for each positive integer n, InI−n = Q
since V is a TP domain. Let x ∈ Ĩ . Then x ∈ V and xIn ⊆ In+1 for some positive
integer n. So xQ = xInI−n ⊆ xIn+1I−n = IQ. Hence x ∈ (IQ :V Q) and therefore Ĩ ⊆
(IQ :V Q). Now, assume that I � Ĩ � V .
To complete the proof, we will show that Ĩ = (IQ :V Q). Since VQ = (I : I) ⊆ (Ĩ : Ĩ)
(Lemma 3.1), Ĩ is an ideal of VQ. Suppose that Ĩ � (IQ :V Q). Let x ∈ (IQ :V Q) \ Ĩ .
Since V is a valuation domain, Ĩ � xV . So x−1Ĩ � V ⊆ VQ. Hence x−1Ĩ is a proper
ideal of VQ. So x−1Ĩ ⊆ Q (Q = QVQ is the maximal ideal of VQ). Hence Ĩ ⊆ xQ ⊆
IQ ⊆ I � Ĩ , a contradiction. It follows that Ĩ = (IQ :V Q), as desired. �

Our next proposition shows that the Ratliff–Rush closure of an ideal I in a
valuation domain is itself a Ratliff–Rush ideal and gives necessary and sufficient
condition for preserving the Ratliff–Rush closure under inclusion.

PROPOSITION 3.3. Let I be a non-zero ideal of a valuation domain V. Then

(1) ˜̃I = Ĩ .
(2) Ĩ ⊆ J̃ for all ideals I ⊆ J if and only each non-zero non-maximal prime ideal of

V is not idempotent.

Proof. (1) If I = Ĩ or Ĩ = V , then clearly ˜̃I = Ĩ . Assume that I � Ĩ � V . By
Proposition 3.2, Ĩ = (IQ :V Q), where Q = II−1 is a prime ideal of V (note that
II−1 � V , otherwise I = Ĩ , by Lemma 2.2). For simplicity, we set J = Ĩ . Our aim is
to prove that J = J̃. If JJ−1 = V , then J = J̃ by Lemma 2.2. Assume that JJ−1 � V .
By Lemma 3.1, VQ = (I : I) ⊆ (Ĩ : Ĩ) = (J : J) = VP, where P = JJ−1. So P ⊆ Q. Let
x ∈ J̃. Then x ∈ V and xJn ⊆ Jn+1 for some positive integer n. Composing the two
sides with J−n and using the fact that P = JJ−1 = JnJ−n, we obtain xP ⊆ JP. Hence
J̃P ⊆ JP ⊆ JQ = ĨQ = IQ. Now, if P � Q, then let a ∈ Q \ P. Since V is a valuation
domain, P � aV . So a−1P � V . Hence a−1 ∈ (V : P) = (P : P) = VP = (J : J) [15].
So a−1J ⊆ J. Then J ⊆ aJ ⊆ QJ = QI ⊆ I � J, a contradiction. Hence P = Q. So
J̃P = J̃Q = JQ = IQ. Hence J̃ ⊆ (IQ :V : Q) = Ĩ = J, as desired.

(2) Assume that Ĩ ⊆ J̃ for every ideals I ⊆ J. Suppose that there is a non-zero
non-maximal prime ideal P of V such that P2 = P. Let a ∈ M \ P, where M is the
maximal ideal of V . Since V is a valuation domain, P � aV = I . By Lemma 2.2 and
the hypothesis, V = P̃ ⊆ Ĩ = aV ⊆ M, which is absurd.
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Conversely, assume that each non-zero non-maximal prime ideal of V in not
idempotent, and let I ⊆ J be ideals of V . If I = Ĩ or J̃ = V , then clearly Ĩ ⊆ J̃. If
Ĩ = V , by Proposition 3.2, I = P is an idempotent prime ideal of V . By the hypothesis,
I = M. So M = I ⊆ J ⊆ M. Then I = J = M and so Ĩ = J̃. Hence we may assume
that I � Ĩ � V and J̃ � V . By Proposition 3.2, Ĩ = (IQ :V Q), where Q = II−1. Now,
suppose that Ĩ 	⊆ J̃. Then let x ∈ Ĩ \ J̃. Since V is a valuation domain, J̃ � xV . So
x−1I ⊆ x−1J ⊆ x−1J̃ � V ⊆ VQ. Since I is an ideal of (I : I) = VQ, x−1I ⊆ Q. So
I ⊆ xQ ⊆ ĨQ = IQ ⊆ I . Therefore I = xQ. If Q is non-maximal, by the hypothesis,
Q2 � Q. Hence Q = aVQ for some non-zero a ∈ Q (since Q is the maximal ideal of VQ).
Hence I = xQ = xaVQ = xa(I : I). So I is stable, and by Lemma 2.2, Ĩ = I , which is
absurd. Hence Q = M and I = xM. If M is principal in V , then so is I , and therefore
Ĩ = I , which is absurd. Hence M = M2. So Ĩ = (IM :V M) = (xM2 :V M) = (xM :V
M) = x(M : M) = xV . Let b ∈ J \ I . Then xM = I � bV . Hence xb−1M ⊆ M. So
xb−1 ∈ (M : M) = V . Hence x = (xb−1)b ∈ J ⊆ J̃, which is absurd. It follows that
Ĩ ⊆ J̃, as desired. �

Now, we extend the Ratliff–Rush closure to arbitrary non-zero fractional ideals,
and we study its link to the notion of star operations. Our motivation is [13, Example
1.11], which provided an example of a Noetherian domain R with a non-zero ideal I
such that ãI 	= aĨ for some 0 	= a ∈ R. First, we recall that a star operation on R is a
map ∗ : F(R) −→ F(R), E �→ E∗, where F(R) denotes the set of all non-zero fractional
ideals of R, with the following properties for each E, F ∈ F(R) and each 0 	= a ∈ K :
(E1) R∗ = R and (aE)∗ = aE∗;
(E2) E ⊆ E∗, and if E ⊆ F , then E∗ ⊆ F∗;
(E3) E∗∗ = E∗.
For more details on the notion of star operations, we refer the reader to [11].

DEFINITION 3.4. Let R be an integral domain with quotient field K , and let I be a
non-zero fractional ideal of R.
(1) The generalised Ratliff–Rush closure of I is defined by Î := {x ∈ K|xIn ⊆ In+1, for
some n ≥ 1}. Clearly Ĩ = Î ∩ R for any non-zero integral ideal I of R.

It is easy to see that for a non-zero fractional ideal I of a domain R, Î is an
R-module which is a fractional ideal if (R : RI ) 	= 0. In particular if R is conducive
(i.e. the conductor (R : T) 	= (0) for each overring T � qf (R) of R [5]) or L-stable,
then Î is always a fractional ideal of R. The next theorem gives necessary and sufficient
conditions for the generalised Ratliff–Rush closure to be a star operation on a valuation
domain.

THEOREM 3.5. Let V be a valuation domain. The generalised Ratliff–Rush closure
on V is a star operation if and only if each non-zero non-maximal prime ideal P of V is
not idempotent. In this case, it coincides with the v-operation.

Proof. Assume that the generalised Ratliff–Rush closure is a star operation.
Then, by Proposition 3.3, each non-zero non-maximal prime ideal of V is not
idempotent. Conversely, assume that each non-zero non-maximal prime ideal of V
is not idempotent.

Claim. For each integral ideal I of V , Ĩ = Î . Indeed, it suffices to show that Î ⊆ V .
If II−1 = V , then Î = I , as desired. Assume that II−1 = Q is a prime ideal of V . Then
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(I : I) = VQ. Let x ∈ Î . Then xIn ⊆ In+1 for some positive integer n. Since InI−n = Q,
we get xQ ⊆ IQ. Now, if Q = M, then xM ⊆ IM ⊆ M. So x ∈ (M : M) = V . If Q �
M, by hypothesis, Q is not idempotent. Hence Q = aVQ (since Q is the maximal ideal
of VQ). So xaVQ ⊆ aIVQ = aI (here I is an ideal of (I : I) = VQ). Hence xVQ ⊆ I and
therefore x ∈ I ⊆ V , as desired.

Now, we prove the three properties of star operations. Let I and J be non-zero fractional
ideals of V and o 	= a ∈ qf (V ).

(1) (E1): x ∈ âI if and only if x(aI)n ⊆ (aI)n+1 for some positive integer n, if and
only if xa−1 ∈ (In+1 : In) ⊆ Î , if and only if x ∈ aÎ .

(2) (E2): Let o 	= d ∈ V such that dI ⊆ dJ ⊆ V . By (E1), Proposition 3.3(2) and
the claim, dÎ = d̂I = d̃I ⊆ d̃J = d̂J = dĴ. Hence Î ⊆ Ĵ.

(3) (E3): Clearly I ⊆ Î and by (E1) and Proposition 3.3(1), ˆ̂I = Î .

To complete the proof, we prove that Ĩ = Iv for each non-zero fractional ideal I of
V . Since the v-operation is the largest star operation on V , Î ⊆ Iv. Suppose that
Î � Iv for some ideal I of V . Then I is not divisorial in V . Hence I = aM for some
a ∈ qf (V ) and M = M2. Since M is idempotent, M is not divisorial. So Mv = V .
Hence Iv = aMv = aV = Î (note that by (E1) and Lemma 2.2 Î = aM̂ = aM̃ = aV ),
which is absurd. �
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