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ON THE DYNAMIC ANALYSIS OF A
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Abstract

In Convex Structures and Economic Theory, Nikaido analysed, inter alia, a circulating
capital Leontief model where final demand could exhibit either proportional or non-pro-
portional growth. This paper extends his analysis to a fixed capital model. Analogues of
Nikaido's results are derived for the closed model and for the open model under balanced
growth. However, the results obtained here for the open model with unbalanced growth
are weaker than Nikaido's.

1. Introduction

In the simplest multi-sector production model, each industry has only one
available process, which lasts for a common period, say a year: a typical process,
the y'th, requires inputs of circulating capital and homogeneous labour at the
beginning of a year to produce as output at the end of the year a quantity of the
yth commodity. The simplicity of the model is a consequence of the following:
first, the question of choice of technique cannot arise, there being only one
technique consisting of the process for each industry; second, there are only
single-product industries, pure joint production of the wheat-and-straw or wool-
and-mutton variety being absent; third, neither fixed capital nor such non-pro-
duced means of production as land is required in any process, the presence of
either of which would necessitate treatment in a multiple-product industries
framework (as demonstrated in Chapters X and XI of Sraffa [5]); fourth, as there
is a common period of production, there is no need to introduce fictitious
commodities to represent work-in-progress (on this point, see Chapter 7 of Woods
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[6] or Chapter 6 of Morishima [1]). In essence, we have the single-product
industries, circulating capital model of Part I of Sraffa [5], the quantity side of
which can be described by this equation

x(t) = Ax(t + l)+f(t + l), (1)

x(t) being the vector of sectoral gross outputs at the end of period t, A = [a,- ]
the n X n matrix of circulating capital input coefficients, and f(t + 1) the vector
of final demand in period (/ + 1). / ( / + 1) could represent the vector of final
demand at the end of period t; the important point is not so much the timing of
consumption—at the end of t, on the one hand, or during (t + 1), on the
other—as that f(t + 1) is met out of x(t). Production is described in (1) by a
backward difference equation, the gross outputs of period t being used in period
(t + 1) to meet inter-industry and final demand requirements; indeed, the
mathematical representation of production necessarily involves a backward dif-
ference equation if processes take time.

Nikaido [3] has analysed the behaviour of (1) under different specifications of
the final demand vector. The purpose of this paper is to extend Nikaido's analysis
by generalising the single-product industries, circulating capital model, (1), to
take account of fixed capital, albeit in the simplest possible way. Recalling that a
multiple-product industries framework is required for the treatment of fixed
capital, we must have technology specified by an n X n input matrix C and an
n X n output matrix B (which replace A and the identity matrix respectively in
(1)), on the assumption that each industry has only one process. Retaining the
assumption of a common period of production, we have instead of (1)

Bx(t)= Cx(t + l)+f(t + 1). (2)

In (1), A is a commodity/commodity matrix, its typical element, aijt being the
quanity of commodity / advanced per unit of output of commodity j . In (2), both
C = [c,y] and B = [&,..] are commodity/process matrices; c,j is the input and 6,y
the output of commodity / per unit intensity of process j . Correspondingly, x{t)
must be interpreted as an activity vector in (2), and not as a gross output vector
as in (1).

Fixed capital is treated by means of a priori specified exponential depreciation
coefficients. While unsatisfactory compared with the treatment in terms of joint
production2, this approach can be justified on the grounds that the resulting
model is relatively tractable. Our treatment of fixed capital permits the retention
of the single-product industries assumption (i.e. that each industry produces only
one final, or marketable, commodity). The elements of the matrix B in (2) thus

2As in von Neumann [2] and Sraffa [5]. See also Woods [7].
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[ 31 Dynamic Leontief model with fixed capital 475

refer to outputs of marketable commodities and durable instruments of produc-
tion. We define

B = I + K, (3)

where / = identity (i.e. commodity output) matrix of order n,

K — n X n matrix of fixed capital coefficients net of depreciation.

The vector of total commodity outputs at the end of period t (i.e. marketable
commodities plus fixed capital goods) is given by Bx(t) = (/ + K)x(t). The
elements of C refer to both circulating and fixed capital inputs. We define

C = A + K, (4)

where A = n X n matrix of circulating capital inputs and depreciation coeffi-
cients. If commodity i is used only as a circulating capital good, it follows that
kl} = 0 for all j . On the other hand, if commodity i is used only as a fixed capital
good, a,j is the depreciation coefficient of capital good / when used in industry j ;
as no restriction is placed on the depreciation coefficients, it is possible that
at] # alk for j =t k (that is, capital good / depreciates at different rates in
industries j and k) and that atJ¥= ahj for / =£ h (that is, capital goods / and h
depreciate at different rates when employed in the same industry, j). Finally, it is
possible that commodity i may be used as circulating capital in one industry and
fixed capital in another. This treatment of capital is the most general one
available within the confines of a priori specified depreciation coefficients.

Substituting (4) and (3) into (2), we have

(I+K)x(t) = (A + K)x(t +l)+f(t + 1) or

x(t) = Ax(t + 1) + K[x(t + 1) - *(/)] + / ( ' + !)• (5)

This resembles the equation obtained in the discrete-time formulation of the
Dynamic Leontief Model3, viz.

x(t) = Ax(t) + K [x(t + 1) - x(t)] +f(t + 1). (6)

The assumption in (6), that current inputs are met from current outputs, is made
for mathematical convenience, as will be seen below. If time is to be introduced
into the model, it is preferable to do so in a consistent way; current inputs should
be met from last period's outputs as in (5), and more generally in (2).

(5) is a non-homogeneous backward difference equation. Following the method
adopted by Nikaido [3] for his analysis of the simpler model (1), we consider first
of all the following homogeneous equation associated with (5)

Bx{t) = Cx{t + 1) or (I + K)x(t) = (A + K)x(t + 1). (7)

3 See, for example, Chapter 5 of Woods [5].
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Having solved this equation in Section 2, we proceed in Section 3 to considering
the solution of the complete system (5) when the final demand vector exhibits
first proportional and then non-proportional growth. In general, we are following
the procedure for solving forward difference equations—that is, adding a particu-
lar solution to the solution of the homogeneous equation—though it should be
remembered that backward difference equations present their own particular
problems.

Before proceeding with the analysis of (5), we state two fundamental assump-
tions

(Al) B and C are non-singular.
(A2) A is productive and indecomposable.

(A2) is central to all production models. It means that a physical surplus can be
produced so that accumulation can take place and/or a final demand vector in
any proportions can be met. If (A2) did not hold, we would be dealing with either
a subsistence economy or one in which larger quantities of commodities were used
up than were produced (i.e. an unproductive economy). In the context of this
model, productiveness is equivalent to \*(A) < 1, \*(A) being the Frobenius
root of A4.

2. The homogeneous or closed system

With f(t + 1) = 0 in (2), we have

Bx(t)= Cx(t + 1). (7)

Under (Al), this can be rewritten as

x(t + 1) = C'lBx{t) or x(t) = B~1Cx(t + 1). (8)

However, the properties of CXB = (A + K)-\I + K) or BlC = ( / + K)~\A
+ K) are not evident; in particular, it is not clear that either exhibits a Frobenius
solution which would form the basis for a positive solution of (7).

REMARK 1. Contrast this with the analysis of the closed Dynamic Leontief
Model, i.e.

(9)

or

x(t + l)=[l+K-\l-A)]x(t). (10)

"See, for example, Chapter 5 of Pasinetti [4] Chapter 2 of Woods [6].
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Perron-Frobenius theory is applied to (10) via [/i:-l(/ - A)]-1 = ( / - A)-lK > [0]
from (A2). Note the implicit assumption that K is non-singular, which is stronger
and less realistic than (Al).

Following the terminology adopted for the Dynamic Leontief Model, (2) can be
described as an open system, (7) as a closed system.

DEFINITION 1. Any sequence of semi-positive vectors, u{t), satisfying (7) is
called a closed solution.

DEFINITION 2. A closed function solution {u(t)} is balanced if u(t + 1) =
<£«(/), <j> > 0 being the growth factor.

A balanced, closed solution of (7) satisfies:

Bu{t) = <f>Cu(t), or (B-4>C)u(t) = 0. (11)

REMARK 2. <f> is thus a characteristic root of B relative to C or, by (Al), a
characteristic root of C'XB, with u(t) the corresponding characteristic vector;
clearly, (fr1 is a characteristic root of B'XC.

The existence of a balanced, closed solution to (7) is the first question for
consideration. (7) can be rewritten as

u(t) = Au(t + 1 ) + * [ « ( * + l)-u(t)]. (12)

Adding -Au(t) to both sides of (12), we obtain

(/ - A)u(t) = (A + K)[u(t + 1) - «(/)]• (13)

As (/ - A)'1 > [0] by (A2), (13) can be rewritten as

u(t) = (/ - A)-\A + K)[u(t + 1) - «(0]. (14)

Define

F = ( / - ^ ) - 1 ( ^ + i : ) > [ 0 ] . (is)

(14) can then be rewritten as

(I + F)u(t) = Fu(t + 1). (16)

From (Al), (A2) and (15), F is non-singular; so (16) becomes:

«(r + l) = ( / + F - 1 )« (0 . (17)

REMARK 3. This series of manipulations enables us to deal with the forward
difference equation, (17), rather than (7). The advantage of dealing with (17),
compared with (7), is that Perron-Frobenius theory can be applied. In this sense,
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the outcome of the above manipulations is analogous to the outcome of the
manipulations performed on the Dynamic Leontief Model (see Remark 1).

THEOREM 1. Under (Al) and (A2)

(i) Bu = <j>Cu has solution Q* > 1, u* > 0; p'B = <j>p'C has solution <j>* > 1,

P* > Q.

(ii) The Frobenius solution is the only semi-positive, balanced, closed solution.
(iii) </>* < 1/\*(A).
(iv) (B - <}>Cyl > [0] ifandonly if<j>< <J>*.

PROOF, (i) By the same manipulations as above

Bu = <f>Cu (18)

can be rewritten as

( / + F-X)u = </>M. (19)

By the Perron-Frobenius Theorem

Fu = Xu, F > [0] has solution:

X = X*(F) > 0, u = u* > 0. (20)

Then

(I + Fl)u* = [l + l/X*(F)]u*. (21)

So

<f>* = 1 + 1/A*(F) > 1, u = u* > 0 (22)

solve (18). Exactly the same argument can be applied to

p(t)'B = p(t + l)'C (23)

to yield

p'B = *p'C (24)

which has solution:

4,*>l,p=p*>0. (25)

(ii) Uniqueness of the balanced, closed solution follows trivially from primitiv-
ity, in fact positivity, of F (see Chapter 2 of Woods [6]).

(iii) F= {I - A)'\A + K)> (I-A)'1 A = F. (26)

Hence

X*(F)>X*(F) (27)

by a property of the Frobenius root. So

1 + l/X*{F) < 1 + l/X*{F). (28)
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But from (26)

\*(F) = \*(A)/[l-\*(A)]. (29)

From (22), (28) and (29)

</>* < \/\*(A).

(iv) Sufficiency. From (18) and (22)

Bu* = <t>*Cu*, </>* > 1 . (30)

If</>e[ l ,<n

Bu* > 4>Cu* or (B - <f>C)u* > 0 (31)

as M* > 0. Now

B - <I>C = I + K - <t>{A + K)

[j] (32)

For<f> e [\,<j>*)

dtJ^0, Vi*j. (33)

Relations (31) and (33) imply that (B - ^C)" 1 > [0] by a Corollary of the
Hawkins-Simon Theorem (see Chapter 2 of Woods [6]).

Necessity: Suppose (B - <t>C)~l > [0],

B - <t>C s / - <*>£(<*>), (34)

where

E(*) = A+(1-1/4)K. (35)

Then (7 - </>£((£))"* > [0] if and only if

1 / * > X*(£(*)) (36)

by a Corollary of the Perron-Frobenius Theorem. From (i), (B — <j>C) has root
</>*. Hence, ( / - 4>E(<j>)) has root <}>*. That is

\*{E(<t>*)) = 1 /** . (37)

From (36) and (37), <J>* > </>, as required.

Theorem 1 establishes the existence of a balanced solution to the closed model,
(iii) demonstrates the expected result that the growth rate would be greater if
there were only circulating capital; for if K = [0], the growth rate would be
\/\*(A) — 1. This Theorem, especially (iv), will be used in the next section to
derive the existence of a balanced solution to the open model.
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3. The non-homogeneous or open system

We now consider the open system:

Bx(t) = Cx(t + l)+f(t + l),

f(t)>Q,x(t)>Q for all/. l '

To (2), we append

Bx(0) = Je(O), (38)

where 3c(0) is the vector of initial endowments. (38) states that the initial

endowments are fully utilised.

DEFINITION 3. A final demand sequence {/(')} is feasible if it satisfies (2) and
(38).

DEFINITION 4. A feasible final demand sequence is balanced if:

/ ( / + i ) = * / ( 0 , e>o. (39)

We can immediately derive

THEOREM 2. Under (Al) and (A2), a balanced feasible final demand sequence
exists if and only if 0 < </>*.

PROOF. Sufficiency: Suppose 9 < <>*. Consider:

x(t + 1) = Ox{t), f(t + 1) = 6f(t). (40)

Substituting into (2), we obtain

whence

x(t)=(B-6C)-16f(t)>0 (41)

by Theorem l(iv). As

fit) = 0'-y(i) (42)

(41) can be rewritten as

x(t) = 6'(B-0Cy1f(l)>Q. (43)

The initial endowment required for the final demand sequence is

Bx(0) = B(B - eC)'lf(l). (44)
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If 3c(0) = Bx(0), the proof is complete. If x(0) * Bx(0) = B(B - OCylf{\),
define:

z(0) = 5-̂ (0) -(B-ecy'fil). (45)
Then 3c(0) = Bz(0) + B(B - 0C)'lf(l) and z(O) is an initial point on a balanced
closed solution.

Necessity: Any balanced final demand sequence with 6 > <£* is not feasible by
Theorem l(iv). Necessity follows.

The analogue of Theorem 2 holds for the circulating capital model (1), as can
be seen by putting K = [0] and replacing <£* by 1/\*(A). Thus, the introduction
of fixed capital does not qualitatively alter the results to be derived on balanced
growth. It remains to be seen whether this conclusion also holds for unbalanced
growth.

REMARK 4. Nikaido [3] proved for the circulating capital model (1) that
convergence of either:

(«) lAJ(v + \) or E(**04))7(« + l) (/*)
y=0 u=0

entailed that of the other; furthermore, that (1) has a solution if and only if (a) is
convergent.

So, we now relax proportionality between final demand vectors in successive
periods. The first result on unbalanced growth is

THEOREM 3. Under (Al) and (A2), a necessary condition for a feasible final
demand sequence is that

00

X (<t>*)~Vf(v + 1) converges. (46)

PROOF. Let {f(t)} be feasible. Then from (2)

x{t + 1) = C-lBx{t) - C"Y(/ + 1)
or, after iteration

x(t) = (C'lB)'x(0) - t (C-lB)'-"C-'f(v). (47)
v = l

Multiplying (47) by (B'lC)', we obtain

(B-iC)'x(t) = x(0) - B-i'z {CB-iyf(v + 1). (48)
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Multiplying (48) by B, we obtain

v-0

or, as C = (CB~l)B:

(CB-l)'Bx(t) = Bx(0) - £ (CB-l)"f(o + 1). (49)
v-0

From Theorem l(i)

p*'B = <f>V*'C />* > Q or {4>*)~Xp*' = p*'CB~\ (50)

Premultiplying (49) by p* and using (50), we obtain

(<t>*ylp*'Bx(t) = p*'Bx(O)-p*''J:(<!>*y''f(v + l). (51)
y = 0

As the left-hand side of (51) is non-negative, it follows that:

p*'Bx(0)>p*''j:{**)-"f(o + l). (52)

As p* > 0, convergence of the sum follows. This completes the proof.

We require Theorem 3 in the proof of

THEOREM 4. Under (Al) and (A2), if x(t) is a feasible solution of (2) and (38)
andu(t) is a closed solution:

lim ( * • ) " ' [ * ( ' ) - « ( ' ) ] = Q - (53)
t—>oo

PROOF. From (2)

(**)-'[Bx(t) - Cx(t + 1)] = (*>)•'f{t + 1). (54)

By Theorem 3

lim (*•)"'/(/ + 1) = Q. (55)
f-«oo

So, we have

lim [Bx(t) - Cx{t + 1)] = 0. (56)
f-»oo

There are two cases to consider
(i) lim,_oo(<>*)-'x(0 = 0. As u(t) = 0 solves (7), (52) clearly holds for this

choice of u{t).
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(ii) lim,_oo(<|)*)"'x(0 3s 0. As u(t) solves (7), we have after iteration

u(t) = (C-lB)'u(0). (57)

Premultiplying by p > 0 (p to be determined below):

p'u(t)=p'(C-lB)'u(0). (58)

From Theorem 1, p* satisfies:

p*'B = <j>*p*'C or p*'CC~lB = <t>*p*'C or p'C-lB = <j>*p' (59)

where p' = /?*'C > 0'. Using (59) in (58), we have:

/>'«(/) = (**)V«(0). (60)
As M(0) is finite, it follows from (60) that (<t>*)''u(t) is bounded. Given x(0) > 0,
it is possible to find u(t) such that:

u(t)>x(t) (61)

by using (2) and (7). Hence, (<j>*)~'x(t) is bounded. For an appropriate subse-
quence {/„} of {/}

Urn { 4 > * Y ' ' [ B x ( t r ) - C x ( t , + 1 ) ] = Q
t.~ao

or

B lim {<t>*)'''x{tv) = <f>*C hm (<i>*)'(''+1)x(tv + 1) . (62)

The limits are used to define a closed solution w(/) such that

lim ( * • ) " [ * ( / ) - « ( 0 ] = Q . (63)
t—ao

This completes the proof.

It is a straightforward matter to establish that, if >"(?) is a particular solution of
(2) and u(t) is a closed solution, x(t) = u(t) + y(t) is the general solution of (2).
Theorem 3 tells us that the particular solution, y(t), is minorant to any solution,
x(t). This is easy to see in the case of a balanced final demand sequence, as
shown by Theorem 2. i.e.

Urn (^)"y(t) = lim (<t>*)"6'{B - 6C)'lf{\) = 0
f-» oo /-»oo

as 0 <</>*. Theorem 4 extends this result to cases where the final demand vector
does not grow in a balanced way and the appropriate solutions exist.

REMARK 5. Further to Remark 4, Nikaido [3] proves that the circulating capital
model (1) has solution

x(t) = u(t)+ Z A'f(v + t + 1), (64)
v-0
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u(t) being a solution of the homogeneous equation

+ l). (65)
He proves also that

lira (\*{A))'y(t) = 0, (66)
/-•oo

where y(t) = L?=0A»f(v + t + I).
It is evident that Theorem 4 provides an extension of Nikaido's result to our fixed
capital model.

We require Theorems 3 and 4 in the proof of the main result on non-propor-
tional growth:

THEOREM 5. Under (Al), (A2) and lA,^"^)! < (<t>*)~1 for all i, a necessary
condition for a feasible final demand sequence is that

00

£ {CB-l)vf{v + 1) converges. (67)

PROOF. From Theorem 4

lim(**)- '[x(0-K(0]=Q- (63)
r-»oo

From (2)

x{t) = B~lCx{t + 1) + B^fit + 1)

or, after premultiplying by (B~lC)'
{B-lC)'x{t) = {B-lC)'+lx{t + 1) +(B-1C)'B-If(t + 1). (68)

From (7)

u(O)=(B-lC)'+1u(t + l). (69)

Subtracting (68) from (69), we obtain after rearranging

(B-lC)'x{t) = u(0) +(B-1C)'+1[x(t + 1) - u(t + 1)]

+ (B-1C)'B-If(t + 1)

= u(o) +(<(,*ir1c)'+Vr('+I)[x(r + i) - „(/ + i)]

+ (<f.*fi-1c)'2r1(</>*r7(' + i)- (70)
By hypothesis, the characteristic roots of B'lC satisfy
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It follows that

lim (<j>*B'lC)' = M, a constant matrix.

From Theorem 4

lim (<j>*)~it+1)[x(t + 1) - u{t + 1)] = 0.

From Theorem 3

lim (<j>*)''f(t + 1) = 0.
r-»oo

Using (71)-(73) in (70), we have

lim (fi"1C)'x(0 = w(0) > 0.
r-»oo

Applying (74) to (48), we obtain

lim (B-lC)'x(t) = M(0)

This completes the proof.

485

(71)

(72)

(73)

(74)

(75)

There are obvious differences between Nikaido's results (mentioned in Re-
marks 4 and 5) on the circulating capital model (1), and our results on the fixed
capital model (2). First, Nikaido derives necessary and sufficient conditions for a
solution to (1), whereas we are able to derive only necessary conditions for a
solution to (2). This difference can be attributed to the presence of the matrix B.
As this matrix is not in general diagonal, its inverse contains negative entries;
CB'1 may also contain negative entries. Nikaido's proof relies on the presence of
semi-positive vector series, such as (a) and (/?) in Remark 4; this point is
demonstrated by the following

COROLLARY 1. 7/B-1Ef_0(C5-1)"-'/(u + 1) > 0 for all t, (67) is also sufficient
for a feasible final demand sequence.

PROOF. From the proof of Theorem 5, we have

(76)
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because the choice of the initial period is arbitrary. As u(t)> 0 by (74), we have
from (76)

x(t) = u(t) + 2T1 £ (CB-l)"-'f(o + 1). (77)
u = 0

The result now follows.

There is a second difference worth noting—a characteristic root assumption is
present in Theorem 5 but is absent from Nikaido's results. To appreciate the role
of this assumption, suppose that there exists a root of B'lC, denoted by XJt such
that | \7 | > (cf)*)"1. Consider the balanced final demand sequence given by (39).
From Theorem 2, this sequence is feasible if 6 < <j>*, when:

= e'B-'ii - ecB-lylf{\). (78)
( / - 9CB-1)-1 = I%_Q(eCB-l)v if and only if 1 > {X^OCB-1)] = e^XCB'1)].
i.e. 6-1 > \\XCB-1)]. Hence, if there exists A, such that |Xy| > 6'1 > (6*y\ the
series T.^0(CB'1)vf(v + 1) does not converge for an appropriate choice of /(I);
that is, if / ( I ) is expressed as a linear combination of characteristic vectors
including that corresponding to Ar There is an obvious extension if there is more
than one root such that \XJ > (ty*)'1- So, we have this negative result.

COROLLARY 2. / / the characteristic root condition of Theorem 5 does not hold,
convergence of T.^=Q(CB'1)vf(v + 1) is not necessary for a feasible final demand
sequence.

4. Conclusions

We have remarked above on the similarity between the circulating and fixed
capital models when the final demand sequence is balanced. For the former, the
inverse of the Frobenius root of A and for the latter, <J>* (the inverse of the
quasi-Frobenius root of B'XC) provide the upper limit to the growth factor. This
similarity is a consequence of the type of analysis performed—that is, balanced
growth analysis—on the type of model under examination—both the circulating
and fixed capital models are essentially of the single-product industries variety. In
balanced growth analysis, it suffices to consider the model in two consecutive
periods; the growth factor can then be inferred. Once the growth path has been
chosen, there is no reason to alter the proportions between the quantities
produced.
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It is when the final demand sequence is unbalanced that there is a divergence
between the properties of the circulating and fixed capital models. From the
mathematical point of view, this divergence can be attributed to the presence of
the semi-positive, non-diagonal matrix B, which prevents the direct application of
Nikaido's analysis of the circulating capital model to the fixed capital case. From
the economic point of view, there is a corresponding inherent difference. In a
circulating capital model, there are only flow conditions to be satisfied; in a fixed
capital model, there are in addition stock conditions to be satisfied. Therefore, it
is to be expected that more stringent (necessary and sufficient) conditions will be
required for the fixed capital model than for the circulating capital model or that
conditions which are necessary and sufficient for the latter will have analogues
which are only necessary for the latter.
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