HYPERBOLIC FLOWS ARE TOPOLOGICALLY STABLE

Sung Kyu Choi and Jong Suh Park

We show that any hyperbolic flow (X, π) on a metric space X is topologically stable by showing that it is expansive and has the chain-tracing property.

1. Introduction

In this paper we show that the following theorem:
Theorem A. Any hyperbolic flow (X, π) on a metric space X is topologically stable.

This is an attempt to approach some problems of smooth dynamical systems theory from a non-differential point of view.

Let (X, π) be a flow on a connected metric space (X, d). For brevity we denote $x t=\pi(x, t)$ for all $x \in X$ and $t \in R$. For a point x in X and a number $a>0$, we define subsets of X :

$$
W^{+}(x, a)=\left\{y \in X: d(x t, y t) \leqslant a \text { for all } t \in \mathbf{R}^{+}\right\}
$$

and

$$
W^{-}(x, a)=\left\{y \in X: d(x t, y t) \leqslant a \text { for all } t \in \mathbf{R}^{-}\right\}
$$

A flow (X, π) is called hyperbolic if there are positive constants a_{0}, b_{0}, c, r such that
(i) $W^{+}\left(x, a_{0}\right)=\left\{y \in X: d(x t, y t) \leqslant c e^{-r t} d(x, y)\right.$ for all $\left.t \in \mathbf{R}^{+}\right\}$,
$W^{-}\left(x, a_{0}\right)=\left\{y \in X: d(x t, y t) \leqslant c e^{r t} d(x, y)\right.$ for all $\left.t \in \mathbf{R}^{-}\right\} ;$
(ii) for any $(x, y) \in D\left(b_{0}\right)=\left\{(x, y) \in X \times X: d(x, y)<b_{0}\right\}$, there exists a unique element $\langle x, y\rangle \in X$ such that

$$
W^{+}\left(x v(x, y), a_{0}\right) \cap W^{-}\left(y, a_{0}\right)=\{\langle x, y\rangle\}
$$

where $v: D\left(b_{0}\right) \rightarrow \mathbf{R}$ and $\langle\rangle:, D\left(b_{0}\right) \rightarrow X$ are continuous maps.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

A flow (X, π) is said to be expansive if for any constant $a>0$ there exists a constant $b>0$ with the property that if for all $t \in R, d(x t, y f(t))<b$ for a pair of points $x, y \in X$ and a continuous map $f: \mathbf{R} \rightarrow \mathbf{R}$ with $f(0)=0$, then $y=x t$, where $|t| \leqslant a$.

Let a and p be positive numbers. A sequence $\left(x_{i}, t_{i}\right)_{i=-m}^{n}, 0 \leqslant m, n<\infty$, in $X \times R$ is called an (a, p)-chain if $t_{i} \geqslant p,-m \leqslant i \leqslant n$ and $d\left(x_{i} t_{i}, x_{i+1}\right)<a$, $-m \leqslant i \leqslant n$.

Let $\left(x_{i}, t_{i}\right)_{i=-m}^{n}$ be an (a, p)-chain in $X \times R$. We assume that

$$
T(j, k)= \begin{cases}\sum_{i=j}^{k} t_{i} & \text { if } j<k \\ 0 & \text { if } j>k\end{cases}
$$

as notation. For a point $x_{0} \in X$ and t with $-T(-m,-1) \leqslant t \leqslant T(0, n)$, we define

$$
x_{0} * t= \begin{cases}x_{-j}(t+T(-j,-1)) & \text { if }-T(-j,-1) \leqslant t<-T(-j+1,-1) \\ x_{k}(t-T(0, k-1)) & \text { if } T(0, k-1) \leqslant t<T(0, k) \\ x_{n} t_{n} & \text { if } t=T(0, n)\end{cases}
$$

For a number $b>0$, an (a, p)-chain $\left(x_{i}, t_{i}\right)_{i=-m}^{n}$ in $X \times \mathbf{R}$ is b-traced if there exists a monotone increasing continuous map $f:[-T(-m,-1), T(0, n)] \rightarrow \mathrm{R}$ satisfying
(i) $f(0)=0$,
(ii) $d\left(x f(t), x_{0} * t\right)<b$ for all $t \in[-T(-m,-1), T(0, n)]$.

A flow (X, π) has a chain tracing property with respect to $p>0$ if for any $b>0$ there is an $a>0$ such that every (a, p)-chain is b-traced by some point in $X .(X, \pi)$ has a chain tracing property if it has a chain tracing property with respect to every positive number. If (X, π) has a chain tracing property with respect to time 1 , then it has a chain tracing property [5].

A flow (X, π) is called topologically stable if for any $a>0$ there exists a $b>0$ such that for every other flow $\left(X, \pi^{\prime}\right)$ with $d\left(\pi_{t}, \pi_{t^{\prime}}\right)=\sup _{x \in X} d\left(\pi_{t}(x), \pi_{t^{\prime}}(x)\right)$, where $\pi_{t}(x)=\pi(t, x)$, for all $t \in[0,1]$, then there exists a continuous map $h: X \rightarrow X$ such that $d\left(h\right.$, id) $<a$ and h (orbit of $\left.\pi^{\prime}\right) \subseteq$ (orbit of π^{\prime}), where id is the identity homeomorphism.

Now, we list well-known results ([1] and [5]).
Theorem B. (Bowen and Walters). If a flow (X, π) is expansive, then all fixed points are isolated.

Theorem C. (Thomas). Every continuous expansive flow without fixed points which has the chain tracing property is topologically stable.

Then Theorem A follows from the following theorems.

Theorem D. Any hyperbolic flow is expansive.
Theorem E. Any hyperbolic flow has the chain tracing property.
Thus it suffices to prove Theorems D and E, and we need some lemmas in the next section to prove these theorems.

For any homeomorphism on a compact metric space, Ombach [3] showed further relations: pseudo-orbit tracing property, expansiveness and hyperbolicity.

Basic terminologies are followed from [4].

2. Two Lemmas

Lemma 1. Let (X, π) be a hyperbolic flow. If, for any $a<a_{0}$, there exists a number $b>0$ with $d(x, y)<b$, then
(i) $|v(x, y)| \leqslant a$,
(ii) $W^{+}(x v(x, y), a) \cap W^{-}(y, a)=\{(x, y)\}$.

Proof: Since $v(x, x)=0$ and $\langle x, x\rangle=x$, there is a number $b<b_{0}$ such that $d(x, y)<b$ implies $|v(x, y)| \leqslant a$ and

$$
\begin{gathered}
d(x,\langle x, y\rangle) \leqslant a / 2 c, d(y,\langle x, y\rangle) \leqslant a / c \\
d(x, x v(x, y)) \leqslant a / 2 c
\end{gathered}
$$

and
by the uniform continuity. Since $\langle x, y\rangle \in W^{+}\left(x v(x, y), a_{0}\right) \cap W^{-}\left(y, a_{0}\right)$, we have

$$
\begin{gathered}
d(x(v(x, y)+t),\langle x, y\rangle t) \leqslant c e^{-r t} d(x v(x, y),\langle x, y\rangle) \leqslant a \\
d(y(-t),\langle x, y\rangle(-t)) \leqslant c e^{-r t} d(y,\langle x, y\rangle) \leqslant a
\end{gathered}
$$

for all $t \in R$. Thus

$$
\langle x, y\rangle \in W^{+}(x v(x, y), a) \cap W^{-}(y, a) \subset W^{+}\left(x v(x, y), a_{0}\right) \cap W^{-}\left(y, a_{0}\right)
$$

Another important property of hyperbolic flows is the following.
Lemma 2. Let (X, π) be a hyperbolic flow and $a>0$ be a constant. Suppose that there exists a constant $b>0$ such that for all $t \in R$,

$$
d(x t, y(t+f(t))) \leqslant b
$$

where $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous map with $f(0)=0$. Then we have
(i) $|v(x, y)| \leqslant a$,
(ii) $y=x v(x, y)$.

Proof: We can choose $a<\min \left\{a_{0} / 8, a_{0} / 2 c\right\}$ and

$$
\max \{d(x, x t): x \in X,|t| \leqslant 4 a\} \leqslant a_{0} / 8
$$

By Lemma 1 , there is a constant $b>0$ such that $d(x, y) \leqslant b$ implies

$$
\begin{gathered}
|v(x, y)| \leqslant a \\
W^{+}(x v(x, y), a) \cap W^{-}(y, a)=\{\langle x, y\rangle\} .
\end{gathered}
$$

and
Let $v=v(x, y)$ and $z=\langle x, y\rangle$. Clearly $d(x, y) \leqslant b$ since $f(0)=0$. Put

$$
\begin{array}{ll}
& U=\left\{t \in \mathbf{R}^{+}:|f(t)| \geqslant 3 a \text { or } d(y t, z t) \geqslant a_{0} / 2\right\} \\
\text { and } & V=\left\{t \in R^{-}:|f(t)| \geqslant 3 a \text { or } d(x(v+t), z t) \geqslant a_{0} / 2\right\} .
\end{array}
$$

There exists an $s=\min U$ if $U \neq \emptyset$. Moreover, $0 \notin U$ since $|f(0)|<3 a$ and $d(y, z)<a_{0} / 2$. It follows that $s>0$.

We claim that $d(y(s-t), z(s-t)) \leqslant a_{0} / 2$ for all $t \in \mathbf{R}^{+}$. If $0<t \leqslant s$, then $d(y(s-t), z(s-t))<a_{0} / 2$ since $0 \leqslant s-t<s$ and so $s-t \notin U$. Thus we have $d(y s, z s) \leqslant a_{0} / 2$ if $t \rightarrow 0$. If $s<t$, then

$$
d(y(s-t), z(s-t)) \leqslant c e^{r(s-t)} d(y, z)<a_{0} / 2
$$

It is clear that $|f(s)| \leqslant 4 a$. For all $t \in \mathbf{R}^{+}$, we have

$$
\begin{aligned}
d(y(s & +f(s)-t), z(s+f(s)-t)) \\
\leqslant & d(y(s+f(s)-t), y(s-t))+d(y(s-t), z(s-t)) \\
& +d(z(s-t), z(s+f(s)-t)) \\
& <a_{0}
\end{aligned}
$$

This means that $z(s+f(s)) \in W^{-}\left(y(s+f(s)), a_{0}\right)$. Also, $z(s+f(s)) \in$ $W^{+}\left(x(s+f(s)+v), a_{0}\right)$ because

$$
\begin{aligned}
& d(x(s+f(s)+v+t), z(s+f(s)+t)) \\
& \quad \leqslant d(x(s+f(s)+v+t), x(s+v+t))+d(x(s+v+t), z(s+t)) \\
& \quad+d(z(s+t), z(s+f(s)+t)) \\
& \quad<a_{0}
\end{aligned}
$$

for all $t \in \mathbf{R}^{+}$. Since $|f(s)+v| \leqslant|f(s)|+|v| \leqslant 4 a$ and $d(x s, y(s+f(s))) \leqslant b$, we have $|v(x s, y(s+f(s)))|=|f(s)+v| \leqslant a$ and $\langle x s, y(s+f(s))\rangle=z(s+f(s))$. Furthermore, we have

$$
\begin{aligned}
& d(y s, z s) \leqslant d(y s, y(s+f(s)))+d(y(s+f(s)), z(s+f(s))) \\
& \quad+d(z(s+f(s)), z s) \\
& <
\end{aligned}
$$

since $d(y(s+f(s)), z(s+f(s))) \leqslant a$ and $|f(s)|<|f(s)+v|+|v| \leqslant 2 a$. This contradicts the fact that $s \in U$. Hence $U=\emptyset$. Also, we obtain $V=\emptyset$ by a similar method.

Now, let $A>0$ be any number and $t \in \mathbf{R}^{-}$. When $t \geqslant-A$,
and

$$
d(y(A+t), z(A+t)) \leqslant a_{0} / 2
$$

$$
d(y(A+t), z(A+t)) \leqslant c e^{r(A+t)} d(y, z)<a_{0} / 2
$$

when $t \leqslant-A$. Therefore $z A \in W^{-}\left(y A, a_{0} / 2\right)$. It follows that

$$
d(y, z)=d((y A)(-A),(z A)(-A)) \leqslant c e^{-r A} d(y A, z A) \leqslant c a_{0} e^{-r A} / 2 .
$$

For any $t \in \mathbf{R}^{+}$, we have

$$
d(x(v-A+t), z(-A+t)) \leqslant a_{0} / 2
$$

when $t \leqslant A$ and

$$
d(x(v-A+t), z(-A+t)) \leqslant c e^{r(A-t)} d(x v, z) \leqslant a_{0} / 2
$$

when $t \geqslant A$. Thus $z(-A) \in W^{+}\left(x(v-A), a_{0} / 2\right)$. This implies that

$$
\begin{aligned}
d(x z, v) & =d(x(v-A),(z(-A)) A) \leqslant c e^{-r A} d(x(v-A), z(-A)) \\
& \leqslant c a_{0} e^{-r A} / 2
\end{aligned}
$$

Consequently, we have

$$
d(x v, y) \leqslant d(x v, z)+d(z, y) \leqslant c a_{0} e^{-r A}
$$

and hence $d(x v, y)=0$ when $A \rightarrow \infty$. This completes the proof.

3. Two Theorems

Theorem D. Any hyperbolic flow (X, π) is expansive.
Proof: For any $a>0$, we can choose a number $b>0$ by Lemma 2. We define $g: \mathbf{R} \rightarrow \mathbf{R}$ by $g(t)=f(t)-t$. Then we have $g(0)=0$ and

$$
d(x t, y(t+g(t)))=d(x t, y f(t))<b
$$

Also, by Lemma 2, we have $|v(x, y)| \leqslant a$ and $y=x v(x, y)$. This means that (X, π) is expansive.

Theorem E. Any hyperbolic flow (X, π) has the chain tracing property.
Proof: For any $a>0$, there is a $p>0$ such that $d(x, x t)<a / 3$ for all $|t| \leqslant p$ and $x \in X$. Also, there is a $q_{1}>0$ such that $d(x f(t), y g(t))<q_{1}$ for all $A \leqslant t \leqslant B$, $A<0<B$ and continuous maps $f, g: \mathbf{R} \rightarrow \mathbf{R}$ with $f(0)=0=g(0)$, implying $|f(t)-g(t)|<p / 2$.

Putting $q=\min \left\{q_{1} / 2, a / 3\right\}$ there is a $b>0$ such that for any $(b, 1)$-chain $\left(z_{i}, s_{i}\right)_{i=-m}^{n}, 0 \leqslant m, n \leqslant \infty$ in $X \times R$, there are a monotone increasing continuous map $g:[-S(-m,-1), S(0, n)] \rightarrow R$ and a point $x \in X$ such that $g(0)=0$,

$$
3 t / 4-S(-m,-1) / 2-1<g(t)<5 t / 4+S(-m,-1) / 2+1
$$

and

$$
d\left(z g(t), z_{0} * t\right)<q
$$

for all $t \in[-S(-m,-1), S(0, n)]$.
Now, let $\left(x_{i}, t_{i}\right)_{i=-\infty}^{\infty}$ be a $(b, 1)$-chain and $n_{1}=1$. We can choose $n_{k+1}>n_{k}$ so that

$$
T\left(0, n_{k+1}\right)>5 T\left(0, n_{k}\right) / 3+2 / 3
$$

Since $\left(x_{i}, t_{i}\right)_{i=-n_{k}}^{n_{k}}$ is also a ($b, 1$)-chain, there are $y_{k} \in X$ and a monotone increasing continuous function $g_{k}:\left[a_{k}, b_{k}\right] \rightarrow \mathbf{R}$ such that

$$
3 t / 4+a_{k} / 2-1<g_{k}(t)<5 t / 4-a_{k} / 2+1
$$

where $a_{k}=-T\left(-n_{k},-1\right)$ and $b_{k}=T\left(0, n_{k}\right)$, and

$$
g\left(y_{k} g_{k}(t), x_{0} * t\right)<q .
$$

We may assume that $y_{k} \rightarrow x$ as $k \rightarrow \infty$. Since

$$
d\left(y_{k} g_{k}(t), y_{k+1} g_{k+1}(t)\right) \leqslant d\left(y_{k} g_{k}(t), x_{0} * t\right)+d\left(x_{0} * t, y_{k+1} g_{k+1}(t)\right)<2 q
$$

for all $t \in\left[a_{k}, b_{k}\right] \subset\left[a_{k+1}, b_{k+1}\right]$, we have $\left|g_{k}(t)-g_{k+1}(t)\right|<p / 2$. Therefore

$$
\left|g_{k}\left(a_{k}\right)-g_{k+1}\left(a_{k}\right)\right|<p / 2 \text { and }\left|g_{k}\left(b_{k}\right)-g_{k+1}\left(b_{k}\right)\right|<p / 2
$$

Since
and

$$
\begin{aligned}
g_{k+1}\left(a_{k+1}\right) & <5 a_{k+1} / 4-a_{k+1} / 2+1 \\
& <3 a_{k} / 4+a_{k} / 2-1<g_{k}\left(a_{k}\right) \\
g_{k}\left(b_{k}\right) & <5 b_{k} / 4-a_{k} / 2+1 \\
& <3 b_{k+1} / 4+a_{k+1} / 2-1<g_{k+1}\left(b_{k+1}\right)
\end{aligned}
$$

there exist monotone increasing continuous functions

$$
\begin{aligned}
& f_{k}^{-}:\left[a_{k+1}, a_{k}\right] \rightarrow \mathbf{R} \text { and } f_{k}^{+}:\left[b_{k}, b_{k+1}\right] \rightarrow \mathbf{R} \\
& f_{k}^{-}\left(a_{k+1}\right)=g_{k+1}\left(a_{k+1}\right), \quad f_{k}^{-}\left(a_{k}\right)=g_{k}\left(a_{k}\right), \\
& f_{k}^{+}\left(b_{k}\right)=g_{k}\left(b_{k}\right), \quad f_{k}^{+}\left(b_{k+1}\right)=g_{k+1}\left(b_{k+1}\right), \\
& \left|f_{k}^{-}(t)-g_{k+1}(t)\right|<p / 2, \quad a_{k+1} \leqslant t \leqslant a_{k}, \\
& \left|f_{k}^{+}(t)-g_{k+1}(t)\right|<p / 2, \quad b_{k} \leqslant t \leqslant b_{k+1} .
\end{aligned}
$$

satisfying

Now, if we define $f: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
f=g_{1} \cup\left(\bigcup_{k=1}^{\infty}\left(f_{k}^{-} \cup f_{k}^{+}\right)\right)
$$

then $f(0)=0$ and it is monotone increasing continuous. For any $t \in \mathbf{R}$, there is an $i>$ $k+1$ such that $d\left(y_{i} f(t), x f(t)\right)<a / 3$ whenever $a_{k+1} \leqslant t \leqslant a_{k}$ since $y_{k} f(t) \rightarrow z f(t)$. Note that

$$
\begin{aligned}
\left|f(t)-g_{i}(t)\right| & =\left|f_{k}^{-}(t)-g_{i}(t)\right| \\
& \leqslant\left|f_{k}^{-}(t)-g_{k+1}(t)\right|+\left|g_{k+1}(t)-g_{i}(t)\right| \\
& <p
\end{aligned}
$$

Therefore

$$
\begin{gathered}
d\left(x f(t), x_{0} * t\right) \leqslant d\left(x f(t), y_{i} f(t)\right)+d\left(y_{i} f(t), y_{i} g_{i}(t)\right) \\
+d\left(y_{i} g_{i}(t), x_{0} * t\right)
\end{gathered}
$$

$<a$.
The case $b_{k} \leqslant t \leqslant b_{k+1}, d\left(x f(t), x_{0} * t\right)<a$ follows in the same manner. It completes the proof.

References

[1] R. Bowen and P. Walters, 'Expansive one-parameter flows', J. Differential Equations 12 (1972), 180-193.
[2] M. Hurley, 'Consequences of topological stability', J. Differential Equations 54 (1984), 60-72.
[3] J. Ombach, 'Consequences of the pseudo orbits tracing property and expansiveness', J. Austral. Math. Soc. 43 (1987), 301-313.
[4] M. Shub, Global stability of dynamical systems (Springer-Verlag, Berlin, Heidelberg, New York, 1987).
[5] R.F. Thomas, 'Stability properties of one-parameter flows', Proc. London Math. Soc. 45 (1982), 479-505.

Department of Mathematics Chungnam National University
Taejon, 305-764
Korea

[^0]: Received 3 April 1990
 The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1989.

