
Math. Proc. Camb. Phil. Soc. (2023), 175, 187–215 187
doi:10.1017/S0305004123000099

First published online 7 March 2023

Motivic zeta functions of hyperplane arrangements

BY MAX KUTLER
100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210-1174, U.S.A. and The Ohio

State University, 281 W Lane Ave, Columbus, OH 43210, U.S.A.
e-mail: kutler.8@osu.edu

AND JEREMY USATINE
Box 1917, 151 Thayer Street, Providence, RI 02912, U.S.A.

e-mail: jeremy_usatine@brown.edu

(Received 10 October 2022; accepted 07 December 2022)

Abstract

For each central essential hyperplane arrangement A over an algebraically closed field, let

Zμ̂A(T) denote the Denef–Loeser motivic zeta function of A. We prove a formula expressing

Zμ̂A(T) in terms of the Milnor fibers of related hyperplane arrangements. This formula shows

that, in a precise sense, the degree to which Zμ̂A(T) fails to be a combinatorial invariant
is completely controlled by these Milnor fibers. As one application, we use this formula to
show that the map taking each complex arrangement A to the Hodge–Deligne specialization
of Zμ̂A(T) is locally constant on the realization space of any loop-free matroid. We also prove
a combinatorial formula expressing the motivic Igusa zeta function of A in terms of the
characteristic polynomials of related arrangements.

2020 Mathematics Subject Classification: 14E18, 14N20, 32S55 (Primary); 14T20, 05E14,
32S22 (Secondary)

1. Introduction

We study hyperplane arrangements and the motivic zeta functions of Denef and Loeser.
Let k be an algebraically closed field, and let H1, . . . , Hn be a central essential arrangement
of hyperplanes in A

d
k . If f1, . . . , fn are linear forms defining H1, . . . , Hn, respectively, then we

can consider the Denef–Loeser motivic zeta function Zμ̂f (T) of f = f1 · · · fn and the motivic

Igusa zeta function Znaive
f (T) of f .

Inspired by Kontsevich’s theory of motivic integration [Kon95], Denef and Loeser
defined zeta functions [DL98, DL01, DL02] that are power series with coefficients in a
Grothendieck ring of varieties. These zeta functions are related to multiple well-known
invariants in singularity theory and birational geometry, and they have implications for
Igusa’s monodromy conjecture, a longstanding conjecture concerning the poles of Igusa’s
local zeta function. There has been interest in understanding these motivic zeta func-
tions, and the closely related topological zeta function, in the case of polynomials defining
hyperplane arrangements [BSY11, BMT11, vdV18].

C© The Author(s), 2023. Published by Cambridge University Press on behalf of Cambridge Philosophical Society. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0305004123000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000099
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0305004123000099


188 MAX KUTLER AND JEREMY USATINE

In this paper, we prove Theorem 1·3, which provides a formula for Zμ̂f (T) in terms of the
classes of Milnor fibers of certain related hyperplane arrangements. We use Theorem 1·3 and
a result in [KU22] to show Corollary 1·7, which states that certain specialisations of Zμ̂f (T),
including the Hodge–Deligne specialisation, remain constant as we vary the arrangement
H1, . . . , Hn within the same connected component of a matroid’s realization space. Thus
when k=C, the Hodge–Deligne specialisation of the Denef–Loeser motivic zeta function
is a lattice-isotopy invariant, in the sense of e.g. [Ran89, Ran97].

There has been much interest in understanding how invariants of hyperplane arrange-
ments, particularly those invariants arising in singularity theory, vary as the arrangements
vary with fixed combinatorial type. For example, a major open conjecture predicts that when
k=C, the Betti numbers of a hyperplane arrangement’s Milnor fiber depend only on com-
binatorial type, i.e., they depend only on the matroid. Budur and Saito proved that a related
invariant, the Hodge spectrum, depends only on the combinatorial type [BS10]. Randell
proved that the diffeomorphism type, and thus Betti numbers, of the Milnor fiber is a lattice-
isotopy invariant [Ran97]. See [Suc17] for a survey on such questions. Our perspective on
Corollary 1·7 is in the context of that literature, and we hope it illustrates the utility of the
formula in Theorem 1·3 as a tool for answering related questions.

Our methods also provide a combinatorial formula for Znaive
f (T) in terms of the character-

istic polynomials of certain related matroids. See Theorem 1·10 below.

Remark 1·1. We note that the right-hand side of the formulas in Theorem 1·10 make
sense even for non-realisable matroids. In a paper with Jensen [JKU21], we use this to
define motivic zeta functions for not-necessarily-realisable matroids. In that paper, we show
how Poincaré duality for Chow rings of matroids, in the sense of Adiprasito–Huh–Katz
[AHK18], implies that these matroid zeta functions satisfy a certain functional equation.

1·1. Statements of main results

Throughout this paper, k will be an algebraically closed field. Before we state our results,
we set some notation.

For each n ∈Z>0, let μn ⊂ k× be the group of n-th roots of unity, let Kμn
0 (Vark) be the μn-

equivariant Grothendieck ring of k-varieties, let L ∈Kμn
0 (Vark) be the class of A1

k with the

trivial μn-action, and let Mμn
k =Kμn

0 (Vark)
[
L
−1

]
. Let Mμ̂

k = lim−→n
Mμn

k , and let L ∈Mμ̂
k

be the image of L ∈Mμn
k for any n.

Let d, n ∈Z>0, and let Grd,n be the Grassmannian of d-dimensional linear subspaces in
A

n
k = Spec(k[x1, . . . , xn]). For each A ∈Grd,n(k), let XA ⊂A

d
k denote the corresponding lin-

ear subspace, let FA be the scheme theoretic intersection of XA with the closed subscheme
of An

k defined by (x1 · · · xn − 1), and endow FA with the restriction of the μn-action on A
n
k

where each ξ ∈μn acts by scalar multiplication. Let Zμ̂A,k(T) ∈Mμ̂
k [[T]] be the Denef–Loeser

motivic zeta function of (x1 · · · xn)|XA , and let Zμ̂A,0(T) ∈Mμ̂
k [[T]] be the Denef–Loeser

motivic zeta function of (x1 · · · xn)|XA at the origin of An
k .

If XA is not contained in a coordinate hyperplane of An
k , then the restrictions of the coor-

dinates xi define a central essential hyperplane arrangement in XA. The Milnor fiber of that
hyperplane arrangement is FA, the μn-action on FA is the monodromy action, and Zμ̂A,k(T)

and Zμ̂A,0(T) are the Denef–Loeser motivic zeta functions associated to that arrangement.
Note that we are using a definition of the Milnor fiber that takes advantage of the fact
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Motivic zeta functions of hyperplane arrangements 189

that a hyperplane arrangement is defined by a homogeneous polynomial. This definition
is common in the hyperplane arrangement literature, and it allows us to consider the Milnor
fiber FA as a variety.

Remark 1·2. If H1, . . . , Hn is a central essential hyperplane arrangement in A
d
k , then any

choice of linear forms defining H1, . . . , Hn gives a linear embedding of A
d
k into A

n
k , and

H1, . . . , Hn is the arrangement associated to the resulting subspace of An
k . Therefore, we lose

no generality by considering the arrangements associated to d-dimensional linear subspaces
in A

n
k .

Let M be a rank d loop-free matroid on {1, . . . , n}, let Trop(M)⊂R
n be the Bergman

fan of M, and let GrM ⊂Grd,n be the locus parametrising linear subspaces whose asso-
ciated hyperplane arrangements have combinatorial type M. For any w ∈ Trop(M), there
exists a rank d loop-free matroid Mw on {1, . . . , n} such that for all A ∈GrM(k), the initial
degeneration inw(XA ∩Gn

m,k) is equal to XAw ∩Gn
m,k for some unique Aw ∈GrMw(k). We

refer to Section 2·4 for the definition of Mw. Let B(M) be the set of bases in M, and set

wtM : Rn −→R : (w1, . . . , wn) �→ max
B∈B(M)

∑
i∈B

wi.

In this paper, we will prove the following formulas that express the motivic zeta functions
Zμ̂A,k(T) and Zμ̂A,0(T) in terms of classes of the Milnor fibers FAw .

THEOREM 1·3. Let A ∈GrM(k). Then

Zμ̂A,k(T)=
∑

w∈Trop(M)∩
(
Z

n≥0\{0}
) [FAw , μ̂]L−d−wtM(w)(T , . . . , T)w ∈Mμ̂

k [[T]],

and

Zμ̂A,0(T)=
∑

w∈Trop(M)∩Zn
>0

[FAw , μ̂]L−d−wtM(w)(T , . . . , T)w ∈Mμ̂
k [[T]].

Remark 1·4. Theorem 1·3 tells us that, in a precise sense, all of the “non-combinatorial”
information seen by Zμ̂A,k and Zμ̂A,0 is determined by Milnor fibers of the arrangements Aw.
See Corollary 1·7 and Remark 1·9 below for more on the utility of this perspective.

In the course of proving Theorem 1·3, we prove Theorem 5·2 and Corollary 5·4, which
give formulas for motivic zeta functions when certain tropical hypotheses are satisfied. We
think of Theorem 5·2 and Corollary 5·4 as being in the spirit of the formulas for zeta func-
tions of so-called Newton non-degenerate hypersurfaces [DH01, Gui02, BV16, BN16]. To
prove Theorem 5·2 and Corollary 5·4, we use certain k[[π]]-schemes whose special fibers are
the initial degenerations that arise in tropical geometry. These k[[π]]-schemes have played an
essential role in much of tropical geometry. See for example [Gub13]. We also use Sebag’s
[Seb04] theory of motivic integration for Greenberg schemes, which are non-constant coeffi-
cient versions of arc schemes. For our proofs to account for the μ̂-action, we use Hartmann’s
[Har15] equivariant version of Sebag’s motivic integration.

Theorem 1·3 allows us to use results about additive invariants of the Milnor fibers FAw

to obtain results about specializations of the Denef–Loeser motivic zeta functions. To state
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such an application, we first define some terminology that can apply to additive invariants.
Let Z[L] be the polynomial ring over the symbol L, and endow Mμ̂

k with the Z[L]-algebra
structure given by L �→L.

Definition 1·5. Let P be a Z[L]-module, and let ν : Mμ̂
k → P be a Z[L]-module mor-

phism. We say that ν is constant on smooth projective families with μn-action if the
following always holds.

If S is a connected separated finite type k-scheme with trivial μn-action and X→ S is
a μn-equivariant smooth projective morphism from a scheme X with μn-action, then
the map S(k)→ P : s �→ ν[Xs, μ̂] is constant, where Xs denotes the fiber of X→ S
over s.

Remark 1·6. If k=C and HD : Mμ̂
k →Z

[
u±1, v±1

]
is the morphism that sends the class

of each variety to its Hodge–Deligne polynomial, then HD is constant on smooth projective
families with μn-action.

Note that if w ∈ Trop(M) and A1, A2 ∈GrM(k) are in the same connected component
of GrM, then (A1)w, (A2)w ∈GrMw(k) are in the same connected component of GrMw . See
for example [KU22, lemma 2·4]. Therefore the following corollary is a direct consequence
of Theorem 1·3 and [KU22, theorem 1·4].

COROLLARY 1·7. Let P be a torsion-free Z[L]-module, let ν : Mμ̂
k → P be a Z[L]-module

morphism that is constant on smooth projective families with μn-action, and assume that the
characteristic of k does not divide n.

If A1, A2 ∈GrM(k) are in the same connected component of GrM, then

ν
(

Zμ̂A1,k(T)
)
= ν

(
Zμ̂A2,k(T)

)
∈ P[[T]],

and

ν
(

Zμ̂A1,0(T)
)
= ν

(
Zμ̂A2,0(T)

)
∈ P[[T]].

Remark 1·8. In the statement of Corollary 1·7, by ν applied to a power series, we mean
the power series obtained by applying ν to each coefficient.

In particular, Corollary 1·7 implies that the Hodge–Deligne specialisation of the Denef–
Loeser motivic zeta function remains constant as we vary the linear subspace within the
same connected component of GrM.

Remark 1·9. It is natural to ask if the Hodge–Deligne specialisation of the Denef–Loeser
motivic zeta function is furthermore a combinatorial invariant. Theorem 1·3 tells us that,
to verify this, it would be sufficient to show that the Hodge–Deligne polynomial of the
Milnor fiber is a combinatorial invariant. More generally, Theorem 1·3 shows that for any
combinatorial invariant obtained by applying an additive invariant ν (that respects multipli-
cation by L) to the class [FA, μ̂], we automatically obtain another combinatorial invariant
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by applying ν to Zμ̂A,k(T) or Zμ̂A,0(T). For example, when χ top is the topological Euler char-

acteristic, we obtain that χ top
(

Zμ̂A,k(T)
)

and χ top
(

Zμ̂A,0(T)
)

are combinatorial invariants.

Note that χ top
(

Zμ̂A,k(T)
)

and χ top
(

Zμ̂A,0(T)
)

can also be seen to be combinatorial by their

relationship with the so-called monodromy zeta functions (see [DL02, theorem 1·1] for this
relationship, and, e.g., the proof of Lemma 2·3 in [BMT11] for the fact that the monodromy
zeta function is a combinatorial invariant).

Our final main result consists of combinatorial formulas for the motivic Igusa zeta func-
tions of a hyperplane arrangement. It is well known that the motivic Igusa zeta functions are
combinatorial invariants. For example, one can see this by using De Concini and Procesi’s
wonderful models [DCP95] and Denef and Loeser’s formula for the motivic Igusa zeta
function in terms of a log resolution [DL01, corollary 3·3·2]. Regardless, it is worth stating
Theorem 1·10 below, as it follows from the methods of this paper with little extra effort, and
because we are not aware of these particular formulas having appeared in the literature. The
formulas in Theorem 1·10 also provide the inspiration for an upcoming paper with Jensen,
in which we define motivic zeta functions for matroids.

Let K0(Vark) be the Grothendieck ring of k-varieties, let L ∈K0(Vark) be the class of A1
k ,

and let Mk =K0(Vark)
[
L
−1

]
. For each A ∈Grd,n(k), let Znaive

A,k (T) ∈Mk[[T]] be the motivic

Igusa zeta function of (x1 · · · xn)|XA , and let Znaive
A,0 (T) ∈Mk[[T]] be the motivic Igusa zeta

function of (x1 · · · xn)|XA at the origin of An
k .

THEOREM 1·10. Let A ∈GrM(k). Then

Znaive
A,k (T)=

∑
w∈Trop(M)∩Zn≥0

χMw(L)L−d−wtM(w)(T , . . . , T)w ∈Mk[[T]]

and

Znaive
A,0 (T)=

∑
w∈Trop(M)∩Zn

>0

χMw(L)L−d−wtM(w)(T , . . . , T)w ∈Mk[[T]],

where χMw(L) ∈Mk is the characteristic polynomial of Mw evaluated at L.

We now outline the structure of this paper.

(i) In Section 2, we set notation and recall some facts that will be used throughout this
paper.

(ii) In Section 3, we describe one way of expressing the Denef–Loeser motivic zeta func-
tion in terms of Hartmann’s equivariant motivic integration. The results in this section
are unsurprising and likely well–known, but as we are unaware of these results hav-
ing appeared in the literature, we include this section for completeness and readers’
convenience.

(iii) In Section 4, we consider certain group actions on subvarieties of an algebraic torus.
In the course of proving Theorem 1·3, the results in this section are used to manipulate
classes in the equivariant Grothendieck ring of varieties.
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(iv) In Section 5, we prove formulas for motivic zeta functions in a setting involving vari-
eties with smooth initial degenerations. We do this by computing the motivic volumes
of the fibers of a certain tropicalisation map.

(v) We end the paper with Section 6, where we use the results of previous sections to
prove our main results.

2. Preliminaries

In this section, we set some notation and recall facts about the equivariant Grothendieck
ring of varieties, the motivic zeta functions of Denef and Loeser, Hartmann’s equivariant
motivic integration, and linear subspaces and matroids.

2·1. The equivariant Grothendieck ring of varieties

Suppose X is a separated finite type scheme over k. We let K0(VarX) denote the
Grothendieck ring of varieties over X, we let L ∈K0(VarX) denote the class of A

1
k ×k X,

and for each separated finite type X-scheme Y , we let [Y/X] ∈K0(VarX) denote the class of
Y . We will let MX denote the ring obtained by inverting L in K0(VarX), and by slight abuse
of notation, we write L, [Y/X] ∈MX to denote the images of L, [Y/X], respectively, in MX .

We will let K0(Vark) and Mk denote K0(VarSpec(k)) and MSpec(k), respectively, and for
each separated finite type k-scheme Y , we will write [Y]= [Y/Spec(k)] in both K0(Vark)
and Mk.

Suppose G is a finite abelian group. An action of G on a scheme is said to be good if
each orbit is contained in an affine open subscheme. For example, any G-action on any
quasiprojective k-scheme is good. If the separated finite type k-scheme X is endowed with
a good G-action, then we will let KG

0 (VarX) denote the G-equivariant Grothendieck ring
of varieties over X. For the precise definition of KG

0 (VarX), we refer to [Har15, definition
4·1]. We will let L ∈KG

0 (VarX) denote the class of A1
k ×k X with the action induced by the

trivial G-action on A
1
k and the given G-action on X, and for each separated finite type X-

scheme Y with good G-action making the structure morphism G-equivariant, we will let
[Y/X, G] ∈KG

0 (VarX) denote the class of Y with its given G-action. We will let MG
X denote

the ring obtained by inverting L in KG
0 (VarX), and by slight abuse of notation, we will let

L, [Y/X, G] ∈MG
X denote the images of L, [Y/X, G], respectively, in MG

X .
If X is a separated finite type k-scheme with no specified G-action and we refer to

KG
0 (VarX) or MG

X , then we are considering X with the trivial G-action. We will let KG
0 (Vark)

and MG
k denote KG

0 (VarSpec(k)) and MG
Spec(k), respectively, and for each separated finite type

k-scheme Y with good G-action making the structure morphism G-equivariant, we will let
[Y , G]= [Y/Spec(k), G] in both KG

0 (Vark) and Mk.
For � ∈Z>0, we will let μ� ⊂ k× denote the group of �th roots of unity.

Remark 2·1. We will only consider μ� as a finite group, so when the characteristic of k
divides �, we will not consider the non-reduced scheme structure of μ�.

For each �, m ∈Z>0, there is a morphism μ�m→μ� : ξ �→ ξm. Suppose that X is a sep-
arated finite type scheme over k. Then the morphism μ�m→μ� induces ring morphisms
Kμ�0 (VarX)→Kμ�m0 (VarX) and Mμ�

X →Mμ�m
X . We will let Kμ̂0 (VarX)= lim−→�

Kμ�0 (VarX)

and Mμ̂
X = lim−→�

Mμ�
X . We let L ∈Kμ̂0 (VarX) denote the image of L ∈Kμ�0 (VarX) for any

� ∈Z>0, and similarly we let L ∈Mμ̂
X denote the image of L ∈Mμ�

X for any � ∈Z>0.
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For each separated finite type X-scheme Y with good μ�-action making the structure
morphism μ�-equivariant, we let [Y/X, μ̂] ∈Kμ̂0 (VarX) denote the image of [Y/X,μ�] ∈
Kμ�0 (VarX), and we similarly let [Y/X, μ̂] ∈Mμ̂

X denote the image of [Y/X,μ�] ∈Mμ�
X .

We will let Kμ̂0 (Vark) and Mμ̂
k denote Kμ̂0 (VarSpec(k)) and Mμ̂

Spec(k), respectively, and for
each � ∈Z>0 and each separated finite type k-scheme Y with good μ�-action making the
structure morphism μ�-equivaraint, we will let [Y , μ̂]= [Y/Spec(k), μ̂] in both Kμ̂0 (Vark)

and Mμ̂
k .

2·2. The motivic zeta functions of Denef and Loeser

Let X be a smooth, pure dimensional, separated, finite type k-scheme. For each � ∈Z≥0,
we will let L�(X) denote �-th jet scheme of X, and for each m≥ �, we will let θm

� : Lm(X)→
L�(X) denote the truncation morphism. We will let L(X)= lim←−� L�(X) denote the arc
scheme of X, and for each � ∈Z≥0, we will let θ� : L(X)→L�(X) denote the canonical
morphism. The following is a special case of a theorem of Bhatt’s [Bha16, theorem 1·1].

THEOREM 2·2 (Bhatt). The k-scheme L(X) represents the functor taking each k-algebra
A to Homk(Spec(A[[π]]), X), and under this identification, each morphism θ� : L(X)→
L�(X) is the truncation morphism.

A subset of L(X) is called a cylinder if it is the preimage, under θ�, of a constructible
subset of L�(X) for some � ∈Z≥0. We will let μX denote the motivic measure on L(X),
which assigns a motivic volume in MX to each cylinder.

Suppose f is a regular function on X. If x ∈L(X) has residue field k(x), then it corresponds
to a k-morphism ψx : Spec(k(x)[[π]])→ X, and we will let f (x) denote f (ψx) ∈ k(x)[[π]]. For
each x ∈L(X), the order of f at x will refer to the order of π in the power series f (x), and
the angular component of f at x will refer to the leading coefficient of the power series f (x).
We will let ordf : L(X)→Z≥0 ∪ {∞} denote the function taking each x ∈L(X) to the order
of f at x. We will let Znaive

f (T) ∈MX[[T]] denote the motivic Igusa zeta function of f . Then

Znaive
f (T)=

∑
�∈Z≥0

μX

(
ord−1

f (�)
)

T� ∈MX[[T]].

Remark 2·3. In the literature, the motivic Igusa zeta function is sometimes referred to as
the naive zeta function of Denef and Loeser.

We will let Zμ̂f (T) ∈Mμ̂
X [[T]] denote the Denef–Loeser motivic zeta function of f . We

briefly recall the definition of Zμ̂f (T). The constant term of Zμ̂f (T) is equal to 0. Let � ∈
Z>0, and let Y�,1 be the closed subscheme of L�(X) where f is equal to π�. For any k-
algebra A, there is a μ�-action on A[[π]], where ξ ∈μ� acts by π �→ ξπ , and these actions
induce a μ�-action on L�(X) making Y�,1 invariant. Note also that the truncation morphism
θ�0 : L�(X)→ X restricts to a μ�-equivariant morphism Y�,1→ X. Then the coefficient of T�

in Zμ̂f (T) is defined to be equal to [Y�,1/X, μ̂]L−(�+1) dim X ∈Mμ̂
X .

Remark 2·4. Denef and Loeser defined versions of these zeta functions with coefficients
in Mk and Mμ̂

k [DL98, DL02], and Looijenga introduced versions with coefficients in the

relative Grothendieck rings MX and Mμ̂
X [Loo02]. See [DL01] for the definitions we are
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using for Znaive
f (T) and Zμ̂f (T), but note that compared to those definitions, ours differ by a

normalisation factor of L− dim X .

2·3. Hartmann’s equivariant motivic integration.

For the remainder of this paper, let R= k[[π]], the ring of power series over k. We will
set up some notation and recall facts for Greenberg schemes and Hartmann’s equivariant
motivic integration [Har15], which is an equivariant version of Sebag’s motivic integra-
tion for formal schemes [Seb04]. For the non-equivariant version of this theory, we also
recommend the book [CNS18].

Remark 2·5. In [Har15], Hartmann uses formal R-schemes. The analogous theory for
algebraic R-schemes, as stated here, directly follows by taking π-adic completion.

Let X be a smooth, pure relative dimensional, separated, finite type R-scheme. We will
let X0 denote the special fiber of X. For each � ∈Z≥0, we will let G�(X) denote the
�-th Greenberg scheme of X. Thus G�(X) represents the functor taking each k-algebra A
to HomR

(
Spec

(
A[π]/

(
π�+1

))
, X

)
. For each m≥ �, we will let θm

� : Gm(X)→ G�(X) denote
the truncation morphism. We will let G(X)= lim←−� G�(X) denote the Greenberg scheme of
X, and for each � ∈Z≥0, we will let θ� : G(X)→ G�(X) denote the canonical morphism. As
for arc schemes, the following is a special case of [Bha16, theorem 1·1]. See for example
[CNS18, chapter 4, proposition 3·1·7].

THEOREM 2·6 (Bhatt). The k-scheme G(X) represents the functor taking each k-algebra
A to HomR(Spec(A[[π]]), X), and under this identification, each morphism θ� : G(X)→
G�(X) is the truncation morphism.

A subset of G(X) is called a cylinder if it is the preimage, under θ�, of a constructible
subset of G�(X) for some � ∈Z≥0. We will let μX denote the motivic measure on G(X),
which assigns a motivic volume in MX0 to each cylinder.

Suppose f is a regular function on X. If x ∈ G(X) has residue field k(x), then it corresponds
to an R-morphism ψx : Spec(k(x)[[π]])→X, and we will let f (x) denote f (ψx) ∈ k(x)[[π]]. As
for arc schemes, this is used to define the order and angular component of f at x and the
order function ordf : G(X)→Z≥0 ∪ {∞}.

Now suppose G is a finite abelian group acting on R, and suppose that each element of
G acts on R by a π-adically continuous k-algebra morphism. Endow X with a good G-
action making the structure morphism G-equivariant, and endow X0 with the restriction of
the G-action on X. The G-action on X induces good G-actions on G(X) and each G�(X).
We refer to [Har15, section 3·2] for the construction and properties of these G-actions on
the Greenberg schemes. We will let μG

X denote the G-equivariant motivic measure on G(X),

which assigns a motivic volume in MG
X0

to each G-invariant cylinder in G(X). We refer to

[Har15, section 4·2] for the definition of μG
X.

If A⊂ G(X) is a G-invariant cylinder and α : A→Z is a function whose fibers are
G-invariant cylinders, then the integral of α is defined to be∫

A
L
−αdμG

X =
∑
�∈Z

μG
X

(
α−1(�)

)
L
−� ∈MG

X0
.
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Remark 2·7. By the quasi-compactness of the construcible topology, α takes finitely many
values, so the above sum is well defined. See [CNS18, chaper 6, section 1·2].

We now state the equivariant version of the motivic change of variables formula [Har15,
theorem 4·18]. If h : Y→X is a morphism of R-schemes, then we let ordjach : G(Y)→
Z≥0 ∪ {∞} denote the order function of the jacobian ideal of h.

THEOREM 2·8 (Hartmann). Suppose #G is not divisible by the characteristic of k. Let
X, Y be smooth, pure relative dimensional, separated, finite type R-schemes with good G-
action making the structure morphisms equivariant, and let h : Y→X be a G-equivariant
morphism that induces an open immersion on generic fibers. Let A,B be G-invariant cylin-
ders in G(X), G(Y), respectively, such that h induces a bijection B(k′)→ A(k′) for all
extensions k′ of k.

If α : A→Z is a function whose fibers are G-invariant cylinders, then α ◦ G(h)−
ordjach : B→Z is a function whose fibers are G-invariant cylinders, and∫

A
L
−αdμG

X =
∫

B
L
−(α◦G(h)+ordjach)dμG

Y ∈MG
X0

.

Remark 2·9. Hartmann stated the formula when A= G(X) and B= G(Y), but the same
proof works when replacing G(X) and G(Y) with G-invariant cylinders. See for example the
proof of the non-equivariant version in [CNS18].

We note that for all � ∈Z>0, the characteristic of k never divides #μ�.

2·4. Linear subspaces and matroids

Let d, n ∈Z>0. We will let Grd,n denote the Grassmannian of d-dimensional linear

subspaces in A
n
k = Spec(k[x1, . . . , xn]). We will let G

n
m,k = Spec

(
k
[
x±1

1 , . . . , x±1
n

])
⊂A

n
k

denote the complement of the coordinate hyperplanes, and we will let V(x1 · · · xn − 1)
denote the closed subscheme of An

k defined by (x1 · · · xn − 1). For each A ∈Grd,n(k), we
will let XA ↪→A

n
k denote the corresponding linear subspace. If XA is not contained in

a coordinate hyperplane of A
n
k , then the restrictions to XA of the coordinates xi define

a central essential hyperplane arrangement in XA. We let UA = XA ∩Gn
m,k and FA =

XA ∩ V(x1 · · · xn − 1) denote this arrangement’s complement and Milnor fiber, respectively,
and we endow FA with the restriction of the μn-action on A

n
k where each ξ ∈μn acts by

scalar multiplication. In the context of tropical geometry, we will consider both UA and
FA as closed subschemes of the algebraic torus G

n
m,k. We will let Zμ̂A(T) ∈Mμ̂

XA[[T]] and

Znaive
A (T) ∈MXA[[T]] denote the Denef–Loeser motivic zeta function and the motivic Igusa

zeta function, respectively, of the restriction of the monomial x1 · · · xn to XA. We will let
Zμ̂A,k(T) ∈Mμ̂

k [[T]]
(
resp. Znaive

A,k (T) ∈Mk[[T]]
)

denote the power series obtained by pushing

forward each coefficient of Zμ̂A(T)
(
resp. Znaive

A (T)
)

along the structure morphism of XA. We

will let Zμ̂A,0(T) ∈Mμ̂
k [[T]]

(
resp. Znaive

A,0 (T) ∈Mk[[T]]
)

denote the power series obtained by

pulling back each coefficient of Zμ̂A(T)
(
resp. Znaive

A (T)
)

along the inclusion of the origin
into XA.

Let M be a rank d loop-free matroid on {1, . . . , n}. We will let χM(L) ∈Mk denote the
characteristic polynomial of M evaluated at L, so
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χM(L)=
∑

I⊂{1,...,n}
(−1)#I

L
d−rk I ∈Mk,

where rk I is the rank function of M applied to I. We will let B(M) denote the set
of bases of M, and we will let wtM : Rn→R denote the function (w1, . . . , wn) �→
maxB∈B(M)

∑
i∈B wi. For each w= (w1, . . . , wn) ∈Rn, we let

B(Mw)=
{

B ∈B(M)

∣∣∣∣ ∑
i∈B

wi =wtM(w)

}

be the set of all bases with maximal w-weight. The set B(Mw) is the set of the bases of
a rank d matroid on {1, . . . , n}, and we will let Mw denote that matroid. We let Trop(M)
denote the Bergman fan of M, so

Trop(M)= {w ∈Rn |Mw is loop-free}.
We will let GrM ⊂Grd,n denote the locus parametrising linear subspaces whose associated
hyperplane arrangements have combinatorial type M. For all A ∈GrM(k), the fact that
M is loop-free implies that XA is not contained in a coordinate hyperplane. Note that if
A ∈GrM(k), then [UA]= χM(L) ∈Mk and

Trop(UA)= {w ∈Rn | inw UA �= ∅} = Trop(M).

For each A ∈GrM(k) and each w ∈ Trop(M), we will let Aw ∈GrMw(k) denote the unique
point such that inw UA =UAw .

Before concluding the preliminaries, we recall two propositions proved in [KU22] that
will be used in Section 6. If B ∈B(M) and i ∈ {1, . . . , n} \ B, then we will let C(M, i, B)
denote the fundamental circuit in M of B with respect to i, so C(M, i, B) is the unique
circuit in M contained in B∪ {i}. For each circuit C in M and each A ∈GrM(k), we will
let LA

C ∈ k[x1, . . . , xn] denote a linear form in the ideal defining XA in A
n
k such that the

coefficient of xi in LA
C is nonzero if and only if i ∈C. Such an LA

C exists and is unique up to
scaling by a unit in k. Once and for all, we fix such an LA

C for all C and A.

PROPOSITION 2·10 ([KU22, proposition 3·5]). Let A ∈GrM(k), let w ∈Rn, and let B ∈
B(Mw). Then {

LA
C(M,i,B) | i ∈ {1, . . . , n} \ B

}
⊂ k[x1, . . . , xn]

generates the ideal of XA in A
n
k, and{

inw LA
C(M,i,B) | i ∈ {1, . . . , n} \ B

}
⊂ k

[
x±1 , . . . , x±n

]
generates the ideal of inw UA in G

n
m,k.

PROPOSITION 2·11 ([KU22, proposition 3·2]). Let w= (w1, . . . , wn) ∈Rn, let B ∈
B(Mw), and let i ∈ {1, . . . , n} \ B. Then

min
j∈C(M,i,B)

wj =wi.
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For additional information on matroids and the tropical geometry of linear subspaces, we
refer to [MS15, chapter 4].

3. Equivariant motivic integration and the motivic zeta function

Let � ∈Z>0, and throughout this section, endow R= k[[π]] with the μ�-action where each
ξ ∈μ� acts on R by the π-adically continuous k-morphism π �→ ξ−1π .

Let X be a smooth, pure dimensional, finite type, separated scheme over k. We will endow
L(X) and each Lm(X) with μ�-actions that make the truncation morphisms μ�-equivariant
as follows. Let ξ ∈μ�, let A be a k-algebra, let ξA[[π]] : Spec(A[[π]])→ Spec(A[[π]]) be the
morphism whose pullback is the π-adically continuous A-algebra morphism π �→ ξ−1π ,
and let ξA[π]/(πn+1) : Spec

(
A[π]/

(
πn+1

))→ Spec
(
A[π]/

(
πn+1

))
be the morphism whose

pullback is the A-algebra morphism π �→ ξ−1π .
If x ∈L(X)(A) corresponds to a k-morphism

ψx : Spec(A[[π]])→ X,

then let ξ · x ∈L(X)(A) correspond to the k-morphism

ψx ◦ ξ−1
A[[π]] : Spec(A[[π]])→ X.

This action is clearly functorial in A, so it defines a μ�-action on L(X). Similarly, if x ∈
Lm(X)(A) corresponds to a k-morphism

ψx : Spec
(

A[π]/
(
πm+1

))
→ X,

then let ξ · x ∈Lm(X)(A) correspond to the k-morphism

ψx ◦ ξ−1
A[π]/(πm+1)

: Spec
(

A[π]/
(
πm+1

))
→ X.

This action is also functorial in A, so it defines a μ�-action on Lm(X). We also see that these
μ�-actions make the truncation morphisms μ�-equivariant.

PROPOSITION 3·1. Let f be a regular function on X. Then f has constant order on any
μ�-orbit of L(X). Furthermore, f has constant angular component on any μ�-orbit of L(X)
on which f has order �.

Proof . Let ξ ∈μ�, let ξL(X) : L(X)→L(X) be its action on L(X), let x ∈L(X)(k′)
for some extension k′ of k, let R′ = k′[[π]], and let ξR′ : Spec(R′)→ Spec(R′) be the mor-
phism whose pullback is the π-adically continuous k′-algebra morphism π �→ ξ−1π . Then
x corresponds to a k-morphism

ψx : Spec(R′)→ X,

and ξL(X)(x) ∈L(X)(k′) corresponds to the k-morphism

ψx ◦ ξ−1
R′ : Spec(R′)→ X.

Write

f (x)= f (ψx)=
∑
i≥0

aiπ
i ∈ R′,
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where each ai ∈ k′. Then

f (ξL(X)(x))= f
(
ψx ◦ ξ−1

R′
)
=

∑
i≥0

aiξ
iπ i ∈ R′.

Thus the order of f (x) is equal to the order of f (ξL(X)(x)), and if f (x) has order �, then the fact
that ξ� = 1 implies that the angular component of f (x) is equal to the angular component of
f (ξL(X)(x)). Thus we are done.

Let X= X ×k Spec(R) and endow X with the μ�-action induced by the μ�-action on R
and the trivial μ�-action on X. Note that any open affine cover of X induces an open cover
of X by μ�-invariant affines, so the μ�-action on X is good. Composition with the projection
X→ X induces isomorphisms G(X)→L(X) and Gm(X)→Lm(X) that commute with the
truncation morphisms.

Remark 3·2. The motivic zeta function of X can be defined using only the arc scheme
L(X). We pass to the constant family X and the Greenberg scheme G(X) because our
computations will utilise comparisons to R-schemes that are not constant families (see
Section 5).

Because we are using Greenberg schemes, our techniques naturally generalize to the case
where X is a degenerating family of linear subspaces. In this case, one would need to replace
matroids with valuated matroids. For expositional simplicity, we restrict our attention to the
constant coefficient case.

PROPOSITION 3·3. The isomorphisms G(X)→L(X) and Gm(X)→Lm(X) are μ�-
equivariant.

Proof . Let m ∈Z≥0. It will be sufficient to show that the isomorphism Gm(X)→Lm(X)
is μ�-equivariant, as we get the remainder of the proposition by taking inverse limit.

Let ξ ∈μ�, let ξX : X→X be its action on X, and let ξGm(X) : Gm(X)→ Gm(X) be its
action on Gm(X).

Let x ∈ Gm(X)(A) for some k-algebra A, and let

ξA[π]/(πm+1) : Spec
(

A[π]/
(
πm+1

))
→ Spec

(
A[π]/

(
πm+1

))
be the morphism whose pullback is the A-algebra morphism π �→ ξ−1π . Then x corresponds
to an R-morphism

ψx : Spec
(

A[π]/
(
πm+1

))
→X,

and ξGm(X)(x) ∈ Gm(X)(A) corresponds to the R-morphism

ξX ◦ψx ◦ ξ−1
A[π]/(πm+1)

: Spec
(

A[π]/
(
πm+1

))
→X.

Because ξX is trivial on the factor X, we get that the composition of the above morphism
with the projection X→ X is equal to the composition of

ψx ◦ ξ−1
A[π]/(πm+1)

: Spec
(

A[π]/
(
πm+1

))
→X

with the projection X→ X. Thus the proposition follows by our definition of the μ�-action
on Lm(X).
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PROPOSITION 3·4. Let f be a regular function on X obtained by pulling back a regular
function on X along the projection X→ X. Then f has constant order on any μ�-orbit of
G(X). Furthermore, f has constant angular component on any μ�-orbit of G(X) on which f
has order �.

Proof . Let g be a regular function on X that pulls back to f . Then the isomorphism G(X)→
L(X) identifies the order function of g with the order function of f . By Proposition 3·3, the
μ�-orbits are identified as well. Therefore the result follows from the analogous result on
L(X), i.e., Proposition 3·1.

Let f be a regular function on X, let Zμ̂f (T) ∈Mμ̂
X [[T]] denote the Denef–Loeser motivic

zeta function of f , and let Znaive
f (T) ∈MX[[T]] denote the motivic Igusa zeta function of f .

By slight abuse of notation, we will also let f denote the regular function on X obtained by
pulling back f along the projection X→ X.

PROPOSITION 3·5. Let A�,1 ⊂ G(X) be the subset of arcs where f has order � and angular

component 1. Then A�,1 is a μ�-invariant cylinder, and the coefficient of T� in Zμ̂f (T) is equal

to the image of μμ�X (A�,1) in Mμ̂
X.

Proof . Let B�,1 ⊂L(X) be the subset of arcs where f has order � and angular component 1,
and let Y�,1 be the closed subscheme of L�(X) consisting of jets where f is equal to π�. Then
θ�(B�,1)= Y�,1. By Proposition 3·1, B�,1 is a μ�-invariant subset of L(X), so because θ� is
μ�-equiviariant, we have that Y�,1 is a μ�-invariant subset of L�(X). Thus we may endow
Y�,1 with the μ�-action given by restriction of the μ�-action on L�(X). By the definition of

Zμ̂f (T) and the μ�-action on Y�,1, the coefficient of T� in Zμ̂f (T) is equal to

[Y�,1/X, μ̂]L−(�+1) dim X ∈Mμ̂
X .

But by the μ�-equivariant isomorphisms G(X)→L(X) and G�(X)→L�(X), the fact that
the image of A�,1 under G(X)→L(X) is equal to B�,1, and the fact that θ−1

� (Y�,1)= B�,1, we
have that A�,1 is a μ�-invariant cylinder and

μ
μ�
X (A�,1)= [Y�,1/X,μ�]L

−(�+1) dim X ∈Mμ�
X ,

and we are done.

PROPOSITION 3·6. Let A� ⊂ G(X) be the subset of arcs where f has order order �. Then
A� is a cylinder and the coefficient of T� in Znaive

f (T) is equal to μX(A�).

Proof . This proposition follows from the definition of Znaive
f (T) and the fact that the

isomorphism G(X)→L(X) is cylinder and volume preserving.

4. Actions of the roots of unity on an algebraic torus

Let T be an algebraic torus over k with character lattice M and co-character lattice N =
Hom(M, Z). For each u ∈M, let χu ∈ k[M] denote the corresponding character on T . In this
section, we establish some notation and facts regarding certain actions, by the roots of unity,
on the closed subschemes of T . In particular, we prove Proposition 4·6, which will allow us
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to show that the equivariant classes appearing in the statement of Theorem 1·3 involve the
desired μ�-action.

Definition 4·1. Let � ∈Z>0. Let w ∈N, and Gm,k→ T be the corresponding co-character.
Then we define the (μ�, w)-action to be the μ�-action on T induced by the group
homomorphism μ� ↪→Gm,k→ T .

For each closed subscheme U of T that is invariant under the (μ�, w)-action, we will let Uw
�

denote the scheme U endowed with the μ�-action given by restriction of the (μ�, w)-action.

Remark 4·2. Under the (μ�, w)-action, each ξ ∈μ� acts on T with pullback

χu �→ ξ 〈u,w〉χu.

PROPOSITION 4·3. Let � ∈Z>0, let w ∈N, and let U be a closed subscheme of T. Then
the initial degeneration inw U is a closed subscheme of T that is invariant under the (μ�, w)-
action.

Proof . Let ξ ∈μ�, and let ξT : T→ T be its action on T . It will be sufficient to show that
for all f ∈ k[M], the pullback ξ∗T (inw f ) is contained in the ideal of k[M] generated by inw f .

By definition,

supp(inw f )= {u ∈ supp(f ) | 〈u, w〉 = trop(f )(w)},
so by Remark 4·2

ξ∗T (inw f )= ξ trop(f )(w)inw f ,

and we are done.

PROPOSITION 4·4. Let w ∈N, let u ∈M such that 〈u, w〉> 0, and let V(χu − 1) be the
closed subscheme of T defined by χu − 1 ∈ k[M]. Then V(χu − 1) is invariant under the
(μ〈u,w〉, w)-action.

Proof . Let ξ ∈μ〈u,w〉, and let ξT : T→ T be its action on T . Then by Remark 4·2
ξ∗T (χu − 1)= ξ 〈u,w〉(χu − 1)= χu − 1,

and we are done.

PROPOSITION 4·5. Let U be a closed subscheme of T, let � ∈Z>0, let w ∈N, and let
u ∈M be such that 〈u, w〉> 0.

Then U is invariant under the (μ〈u,w〉, w)-action if and only if U is invariant under the
(μ〈u,�w〉, �w)-action.

Furthermore, if U is invariant under the (μ〈u,w〉, w)-action, then[
Uw〈u,w〉, μ̂

]
=

[
U�w
〈u,�w〉, μ̂

]
∈Kμ̂0 (Vark).

Proof . Under the (μ〈u,w〉, w)-action, each ξ ∈μ〈u,w〉 acts on T with pullback

χu′ �→ ξ 〈u′,w〉χu′ .
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The homomorphism μ〈u,�w〉 →μ〈u,w〉 : ξ �→ ξ� and the (μ〈u,w〉, w)-action induce a μ〈u,�w〉-
action on T such that each ξ ∈μ〈u,�w〉 acts on T with pullback

χu′ �→
(
ξ�

)〈u′,w〉
χu′ = ξ 〈u′,�w〉χu′ .

We see that this action is equal to the (μ〈u,�w〉, �w)-action. Then the surjectivity of μ〈u,�w〉 →
μ〈u,w〉 implies that U is invariant under the (μ〈u,w〉, w)-action if and only if it is invariant
under the (μ〈u,�w〉, �w)-action. The remainder of the proposition follows from the definition
of the map K

μ〈u,w〉
0 (Vark)→K

μ〈u,�w〉
0 (Vark).

We will devote the remainder of this section to proving the following proposition.

PROPOSITION 4·6. Let U be a closed subscheme of T, let u ∈M, let V(χu − 1) be the
closed subscheme of T defined by χu − 1 ∈ k[M], let w ∈ u⊥ ∩N, and let v ∈N be such that
�= 〈u, v〉> 0 and such that inw U is invariant under the (μ�, v)-action.

Then inw U is invariant under the (μ�, v−w)-action, and[(
V

(
χu − 1

)∩ inw U
)v
�

,μ�
]= [(

V
(
χu − 1

)∩ inw U
)v−w
�

,μ�
]
∈Kμ�0 (Vark).

Remark 4·7. In the statement of Proposition 4·6, because �= 〈u, v〉 = 〈u, v−w〉,
Proposition 4·4 implies that V(χu − 1) is invariant under the (μ�, v)-action and the (μ�, v−
w)-action, so the classes in the statement are well defined.

4·1. Proof of Proposition 4·6
Let U be a closed subscheme of T , let u ∈M, let V(χu − 1) be the closed subscheme of T

defined by χu − 1 ∈ k[M], let w ∈ u⊥ ∩N, and let v ∈N be such that �= 〈u, v〉> 0 and such
that inw U is invariant under the (μ�, v)-action. Proposition 4·6 is clear when w= 0, so we
assume that w �= 0.

Let Ow = Spec
(
k
[
w⊥ ∩M

])
, and let T→Ow be the algebraic group homomorphism

induced by the inclusion k
[
w⊥ ∩M

]→ k[M].

LEMMA 4·8. Let f ∈ k[M]. Then there exists u′ ∈M such that inw

(
χu′ f

)
∈ k

[
w⊥ ∩M

]
.

Proof . By definition,

supp(inw f )= {u′ ∈ supp(f ) | 〈u′, w〉 = trop(f )(w)}.
If f = 0, the statement is obvious. Thus we may assume that there exists u′ ∈M such that
−u′ ∈ supp(inw f ). Then we have that

inw

(
χu′ f

)
= χu′ inw f ∈ k

[
w⊥ ∩M

]
.

PROPOSITION 4·9. There exist closed subschemes Y and Z of Ow such that inw U is equal
to the pre-image of Y under the morphism T→Ow and V(χu − 1)∩ inw U is equal to the
pre-image of Z under the morphism T→Ow.

Proof . Let f1, . . . , fm ∈ k[M] be such that inw f1, . . . , inw fm ∈ k[M] generate the ideal
defining inw U in T . By Lemma 4·8, we can assume that inw f1, . . . , inw fm ∈ k

[
w⊥ ∩M

]
.

Because w ∈ u⊥, we have that χu ∈ k
[
w⊥ ∩M

]
.
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Thus we may let Y be the closed subscheme of Ow defined by the ideal generated by
inw f1, . . . , inw fm ∈ k

[
w⊥ ∩M

]
, and we may let Z be the closed subscheme of Ow defined

by the ideal generated by inw f1, . . . , inw fm, χu − 1 ∈ k
[
w⊥ ∩M

]
, and we are done.

LEMMA 4·10. The composition of the co-character Gm,k→ T corresponding to v
with the morphism T→Ow is equal to the composition of the co-character Gm,k→ T
corresponding to v−w with the morphism T→Ow

Proof . The composition of the co-character Gm,k→ T corresponding to v with the

morphism T→Ow corresponds to the map of lattices w⊥ ∩M ↪→M
〈·,v〉−−→Z, and the com-

position of the co-character Gm,k→ T corresponding to v−w with the morphism T→Ow

corresponds to the map of lattices w⊥ ∩M ↪→M
〈·,v−w〉−−−−→Z. These are clearly the same

lattice maps, so we are done.

Let Tw = Spec(k[(Rw∩N)∨]). Any splitting of 0→Rw∩N→N→N/(Rw∩N)→ 0
induces an isomorphism of algebraic groups T ∼= Tw ×k Ow such that T→Ow corresponds
to the projection Tw ×k Ow→Ow.

Let φ1 :μ�→ T (resp. φ2 :μ�→ T) be the composition of μ� ↪→Gm,k with the co-
character Gm,k→ T corresponding to v (resp. v−w).

Let ϕ1 :μ�→Ow (resp. ϕ2 :μ�→Ow) be the composition of φ1 (resp. φ2) with T→Ow.

LEMMA 4·11 We have that ϕ1 = ϕ2.

Proof . This follows directly from Lemma 4·10.

Let ψ1 :μ�→ Tw (resp. ψ2 :μ�→ Tw) be the composition of φ1 (resp. φ2) with the
projection T ∼= Tw ×k Ow→ Tw.

Remark 4·12. We see that under the identification T ∼= Tw ×k Ow, the (μ�, v)-action (resp.
(μ�, v−w)-action) is the diagonal action defined by the action on Ow induced by ϕ1 (resp.
ϕ2) and the action on Tw induced by ψ1 (resp. ψ2).

We now prove the first part of Proposition 4·6.

PROPOSITION 4·13. We have that inw U is invariant under the (μ�, v−w)-action.

Proof . By Proposition 4·9, there exists a closed subscheme Y of Ow such that inw U is
equal to the pre-image of Y under the morphism T→Ow. Then under the identification
T ∼= Tw ×k Ow, we have that

inw U = Tw ×k Y .

Because inw U is invariant under the (μ�, v)-action, Remark 4·12 implies that Y is invariant
under the μ�-action on Ow induced by ϕ1. By Lemma 4·11, Y is invariant under the μ�-
action on Ow induced by ϕ2, and by Remark 4·12, this implies that inw U is invariant under
the (μ�, v−w)-action.

Before we complete the proof of Proposition 4·6, we make the following observation,
which follows from [KU22, lemma 7·1] and the fact that dim Tw = 1.
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Remark 4·14. The class in Kμ�0 (Vark) of Tw with the μ�-action induced by ψ1 (resp. ψ2)
is equal to L− 1.

We now complete the proof of Proposition 4·6.

PROPOSITION 4·15. We have that[(
V

(
χu − 1

)∩ inw U
)v
�

,μ�
]= [(

V
(
χu − 1

)∩ inw U
)v−w
�

,μ�
]
∈Kμ�0 (Vark).

Proof . By Proposition 4·9, there exists a closed subscheme Z of Ow such that V(χu −
1)∩ inw U is equal to the pre-image of Z under the morphism T→Ow. Then under the
identification T ∼= Tw ×k Ow, we have that

V(χu − 1)∩ inw U = Tw ×k Z.

Because V(χu − 1)∩ inw U is invariant under the (μ�, v)-action, Remark 4·12 implies that
Z is invariant under the μ�-action on Ow induced by ϕ1.

Now endow Z with the μ�-action given by restriction of the μ�-action on Ow induced by
ϕ1, which by Lemma 4·11 is the same as the μ�-action given by restriction of the μ�-action
on Ow induced by ϕ2. Then by Remarks 4·12 and 4·14,[(

V
(
χu − 1

)∩ inw U
)v
�

,μ�
]= (L− 1)[Z,μ�]

=
[(

V
(
χu − 1

)∩ inw U
)v−w
�

,μ�
]

.

5. Motivic zeta functions and smooth initial degenerations

The purpose of this section is to prove Corollary 5·4, which provides formulas for
the motivic zeta functions that will specialise, in the case where X is a linear space, to
Theorem 1·3. Because the proof is long and technical, we provide here a brief outline of our
approach.

We begin, in subsection 5·1, by showing that Corollary 5·4 follows from Proposition 5·1
and Theorem 5·2. In subsection 5·2, we identify certain motivic volumes, the computation
of which will give Theorem 5·2. The remaining subsections are devoted to computing these
volumes via the change of variables formula. Specifically, in subsection 5·3, we construct the
maps to which we will apply the change of variables formula. The main result of subsection
5·4 is a technical computation of a jacobian ideal. Finally, in subsection 5·5, we assemble
these results to prove Proposition 5·1 and Theorem 5·2.

Let n ∈Z>0, let An
k = Spec(k[x1, . . . , xn]), and let Gn

m,k = Spec
(

k
[
x±1

1 , . . . , x±1
n

])
. Let

X be a smooth pure dimension d closed subscheme of A
n
k such that U = X ∩Gn

m,k is
nonempty and such that for all w ∈ Trop(U)∩Zn

≥0, the initial degeneration inw U is smooth
and there exist f1, . . . , fn−d ∈ k[x1, . . . , xn] that generate the ideal of X in A

n
k such that

inw f1, . . . , inw fn−d ∈ k
[
x±1

1 , . . . , x±1
n

]
generate the ideal of inw U in G

n
m,k.

Let u ∈Zn
>0, let Zμ̂X,u(T) ∈Mμ̂

X [[T]] be the Denef–Loeser motivic zeta function of the

restriction (x1, . . . , xn)u|X , and let Znaive
X,u (T) ∈MX[[T]] be the motivic Igusa zeta function

of (x1, . . . , xn)u|X .

PROPOSITION 5·1. Let w= (w1, . . . , wn) ∈ Trop(U)∩Zn
≥0, and let ϕ : Gn

m,k→A
n
k be the

morphism whose pullback is given by xi �→ 0wixi. Then the restriction of ϕ to inw U factors
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through X, and if w �= 0, the induced map (inw U)w
u·w→ X is μu·w-equivariant with respect

to the trivial μu·w-action on X.

Proposition 5·1 allows us to state the following theorem.

THEOREM 5·2. Let Vu be the subscheme of Gn
m,k defined by (x1, . . . , xn)u − 1. For any

w ∈ Trop(U)∩Zn
≥0, endow the initial degeneration inw U and the intersection Vu ∩ inw U

with the X-scheme structure given by Proposition 5·1.
Then there exists a function ordjac : Trop(U)∩Zn

≥0→Z that satisfies the following.

(a) If w= (w1, . . . , wn) ∈ Trop(U)∩Zn
≥0 and f1, . . . , fn−d ∈ k[x1, . . . , xn] are a generat-

ing set for the ideal of X such that inw f1, . . . , inw fn−d ∈ k
[
x±1

1 , . . . , x±1
n

]
generate

the ideal of inw U, then

ordjac(w)=w1 + · · · +wn − (trop(f1)(w)+ · · · + trop(fn−d)(w)) ∈Z.

(b) We have that

Zμ̂X,u(T)=
∑

w∈Trop(U)∩
(
Z

n≥0\{0}
)
[
(Vu ∩ inw U)w

u·w/X, μ̂
]
L
−d−ordjac(w)Tu·w,

and

Znaive
X,u (T)=

∑
w∈Trop(U)∩Zn≥0

[inw U/X]L−d−ordjac(w)Tu·w.

Remark 5·3. The classes above are well defined by Propositions 4·3, 4·4 and 5·1.

Let Zμ̂X,u,k(T) ∈Mμ̂
k [[T]] be the power series obtained by pushing forward each coefficient

of Zμ̂X,u(T) along the structure morphism of X, and if the origin of An
k is contained in X, let

Zμ̂X,u,0(T) ∈Mμ̂
k [[T]] be the power series obtained by pulling back each coefficient of Zμ̂X,u(T)

along the inclusion of the origin into X.

COROLLARY 5·4. Again let Vu be the subscheme of G
n
m,k defined by (x1, . . . , xn)u − 1.

Suppose there exists v ∈Zn such that u · v> 0 and such that for all w ∈Zn,

inw U = inw+v U.

Then for all w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
, we have that Vu ∩ inw U is invariant under the

(μu·v, v)-action, and there exists a function ordjac : Trop(U)∩Zn
≥0→Z that satisfies the

following.

(a) If w= (w1, . . . , wn) ∈ Trop(U)∩Zn
≥0 and f1, . . . , fn−d ∈ k[x1, . . . , xn] are a generat-

ing set for the ideal of X such that inw f1, . . . , inw fn−d ∈ k
[
x±1

1 , . . . , x±1
n

]
generate

the ideal of inw U, then

ordjac(w)=w1 + · · · +wn − (trop(f1)(w)+ · · · + trop(fn−d)(w)) ∈Z.
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(b) We have that

Zμ̂X,u,k(T)=
∑

w∈Trop(U)∩
(
Z

n≥0\{0}
)
[
(Vu ∩ inw U)v

u·v, μ̂
]
L
−d−ordjac(w)Tu·w.

(c) If the origin of An
k is contained in X, then

Zμ̂X,u,0(T)=
∑

w∈Trop(U)∩Zn
>0

[(Vu ∩ inw U)v
u·v, μ̂]L−d−ordjac(w)Tu·w.

5·1. Proof of Corollary 5·4
The following proposition will be used for Corollary 5·4(c). Its purpose is to show that

Zμ̂X,u,0 is computed by summing over lattice points in Trop(U) with strictly positive entries.

PROPOSITION 5·5. Let w ∈ Trop(U)∩Zn
≥0, suppose that the origin of An

k is contained in
X, and endow inw U with the X-scheme structure given by Proposition 5·1. Then:

(a) if w ∈Zn
>0, the fiber of inw U over the origin of An

k is equal to inw U;

(b) and if w /∈Zn
>0, the fiber of inw U over the origin of An

k is empty.

Proof . This is a direct consequence of the X-scheme structure of inw U.

Now, using the notation in the theorem’s statement, Theorem 5·2 implies

Zμ̂X,u,k(T)=
∑

w∈Trop(U)∩
(
Z

n≥0\{0}
)
[
(Vu ∩ inw U)w

u·w, μ̂
]
L
−d−ordjac(w)Tu·w,

and if in addition, the origin of A
n
k is contained in X, Proposition 5·5 and Theorem 5·2

imply

Zμ̂X,u,0(T)=
∑

w∈Trop(U)∩Zn
>0

[
(Vu ∩ inw U)w

u·w, μ̂
]
L
−d−ordjac(w)Tu·w.

Thus Corollary 5·4 follows from Theorem 5·2 and the following proposition.

PROPOSITION 5·6. Suppose there exists v ∈Zn such that u · v> 0 and such that for all
w ∈Zn,

inw U = inw+v U.

Let w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
, and let Vu be the subscheme of G

n
m,k defined by

(x1, . . . , xn)u − 1. Then Vu ∩ inw U is invariant under the (μu·v, v)-action and[
(Vu ∩ inw U)w

u·w, μ̂
]= [(Vu ∩ inw U)v

u·v, μ̂] ∈Kμ̂0 (Vark).

Proof . Because u ·w> 0, there exist �, �′ ∈Z>0 and w′ ∈Zn such that u ·w′ = 0 and

�w= �′v+w′.
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By Proposition 4·5, Vu ∩ inw U is invariant under the (μu·�w, �w)-action and

[
(Vu ∩ inw U)w

u·w, μ̂
]= [

(Vu ∩ inw U)�wu·�w, μ̂
]
∈Kμ̂0 (Vark).

By the hypotheses on v, we have that

inw′ U = in�w U,

so by Proposition 4·3, inw′ U is invariant under the (μu·�w, �w)-action. Then by
Proposition 4·6, inw′ U is invariant under the (μu·�′v, �′v)-action, and noting that u · �w=
u · �′v, [

(Vu ∩ inw′ U)�wu·�w,μu·�w
]
=

[
(Vu ∩ inw′ U)�

′v
u·�′v,μu·�′v

]
∈K

μu·�′v
0 (Vark).

Again by Proposition 4·5, Vu ∩ inw′ U is invariant under the (μu·v, v)-action and[
(Vu ∩ inw′ U)�

′v
u·�′v, μ̂

]
= [

(Vu ∩ inw′ U)v
u·v, μ̂

] ∈Kμ̂0 (Vark).

All together, noting that inw U = in�w U = inw′ U,

[
(Vu ∩ inw U)w

u·w, μ̂
]= [

(Vu ∩ inw U)�wu·�w, μ̂
]

=
[
(Vu ∩ inw′ U)�wu·�w, μ̂

]
=

[
(Vu ∩ inw′ U)�

′v
u·�′v, μ̂

]
= [

(Vu ∩ inw′ U)v
u·v, μ̂

]
= [

(Vu ∩ inw U)v
u·v, μ̂

]
.

5·2. Fibers of tropicalisation

For the remainder of Section 5, fix � ∈Z>0 and endow R with the μ�-action where
each ξ ∈μ� acts on R by the π-adically continuous k-morphism π �→ ξ−1π . Let A

n
R =

Spec(R[x1, . . . , xn]), let X= X ×k Spec(R)⊂A
n
R, and endow A

n
R (resp. X) with theμ�-action

induced by the μ�-action on R and the trivial μ�-action on A
n
k (resp. X).

Let A� ⊂ G(X) be the subset of arcs where (x1, . . . , xn)u|X has order �, and let A�,1 ⊂ G(X)
be the subset of arcs where (x1, . . . , xn)u|X has order � and angular component 1.

Let trop : G(X)→ (Z≥0 ∪ {∞})n be the function
(
ordx1|X , . . . , ordxn|X

)
. Any arc that

tropicalises to a point in Z
n
≥0 has generic point in U ×k Spec(R), so

trop(G(X))∩Zn
≥0 ⊂ Trop(U).

Also because u ∈Zn
>0 and � �= 0,

trop(A�)⊂ trop(G(X))∩ (
Z

n
≥0 \ {0}

)⊂ Trop(U)∩ (
Z

n
≥0 \ {0}

)
.

Thus

A� =
⋃

w∈Trop(U)∩
(
Z

n≥0\{0}
)

u·w=�

trop−1(w).
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This union is disjoint, and because u ∈Zn
>0, it is also finite. By Proposition 3·4, for each w ∈

Z
n
≥0, we have that the fiber trop−1(w) and the intersection trop−1(w)∩ A�,1 are μ�-invariant

cylinders in G(X). We have thus proved the following.

PROPOSITION 5·7. We have that

μ
μ�
X (A�,1)=

∑
w∈Trop(U)∩

(
Z

n≥0\{0}
)

u·w=�

μ
μ�
X

(
trop−1(w)∩ A�,1

)
,

and

μX(A�)=
∑

w∈Trop(U)∩
(
Z

n≥0\{0}
)

u·w=�

μX

(
trop−1(w)

)
.

5·3. Morphisms for computing volumes

Throughout subsection 5·3, we will fix some w= (w1, . . . , wn) ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
such that u ·w= �. We will construct a smooth, pure relative dimension d, finite type, sep-
arated R-scheme Xw with good μ�-action making the structure morphism equivariant, and
we will construct a μ�-equivariant morphism ψw : Xw→X that will eventually be used to
compute the motivic volumes of trop−1(w)∩ A�,1 and trop−1(w).

Let Gn
m,R = Spec

(
R
[
x±1

1 , . . . , x±1
n

])
=G

n
m,k ×k Spec(R), and endow it with the μ�-action

induced by the μ�-action on Spec(R) and the (μ�, w)-action on G
n
m,k. Let ϕw : Gn

m,R→A
n
R

be the R-scheme morphism corresponding to the R-algebra morphism

ϕ∗w : Spec(R[x1, . . . , xn])→ Spec
(

R
[
x±1

1 , . . . , x±1
n

])
: xi �→ πwixi.

PROPOSITION 5·8. The morphism ϕw : Gn
m,R→A

n
R is μ�-equivariant.

Proof . Let ξ ∈μ�, and let ξ1 : R
[
x±1

1 , . . . , x±1
n

]
→ R

[
x±1

1 , . . . , x±1
n

]
and

ξ2 : R[x1, . . . , xn]→ R[x1, . . . , xn] be its actions. We will show that

ξ1 ◦ ϕ∗w = ϕ∗w ◦ ξ2.

Because the structure morphisms of Gn
m,R and A

n
R are μ�-equivariant, it is sufficient to show

that if i ∈ {1, . . . , n}, then

ξ1
(
ϕ∗w(xi)

)= ϕ∗w(ξ2(xi)),

which holds because

ξ1
(
ϕ∗w(xi)

)= ξ1
(
πwixi

)
=

(
ξ−1π

)wi
ξwixi

= πwixi

= ϕ∗w(xi)

= ϕ∗w(ξ2(xi)).
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Now let Xη be the generic fiber of X, let ϕw,η : Gn
m,K→A

n
K be the base change of ϕw to the

fraction field K of R, let Xw
η ⊂G

n
m,K be the pre-image of Xη under ϕw,η, and let Xw ⊂G

n
m,R

be the unique closed subscheme of Gn
m,R that is flat over R and has generic fiber Xw

η , see
for example [Gub13, section 4]. By construction, the generic fiber of Xw is isomorphic
to U ×k Spec(K), and its special fiber is equal to inw U ⊂G

n
m,k, which is smooth by the

hypotheses on X. Thus Xw is smooth and pure relative dimension d over R. Note that by
uniqueness, Xw is equal to the closed subscheme of ϕ−1

w (X) defined by its R-torsion ideal.
Thus we have a morphism ψw : Xw→X induced from ϕw by restriction.

Remark 5·9. Note that if ψw,η : Xw
η →Xη is the base change of ψw to K, we have that

ψw,η is isomorphic to the open immersion U ×k Spec(K)→ X ×k Spec(K). In particular, ψw

induces an open immersion on generic fibers.

To obtain a generating set for the ideal defining Xw in G
n
m,R, we first need to prove the

following lemma.

LEMMA 5·10. Let Y be a finite type R-scheme, and let Y� be the closed subscheme of Y
defined by its R-torsion ideal. If as closed subschemes of Y, the special fiber of Y� is equal
to the special fiber of Y, then Y is a flat R-scheme.

Proof . We may assume Y= Spec(A) for some finite type R-algebra A. Let I ⊂A be the
π-torsion ideal of A. Because I is finitely generated, there exists m ∈Z≥0 such that πmI = 0.
By the hypotheses,

I ⊂ πA.

Let f ∈ I. Then there exists g ∈A such that f = πg. But πg ∈ I implies that g ∈ I. Thus

I = πI = πmI = 0.

Therefore A is π-torsion free, so it is flat over R.

We can now prove the following two propositions.

PROPOSITION 5·11. Let f1, . . . , fm ∈ k[x1, . . . , xn] be a generating set for the ideal defin-

ing X in A
n
k such that inw f1, . . . , inw fm ∈ k

[
x±1

1 , . . . , x±1
n

]
form a generating set for the ideal

of inw U in G
n
m,k. Then

π−trop(f1)(w)ϕ∗w(f1), . . . , π−trop(fm)(w)ϕ∗w(fm) ∈ R
[
x±1

1 , . . . , x±1
n

]
form a generating set for the ideal defining Xw in G

n
m,R.

Proof . Let Y be the closed subscheme of Gn
m,R defined by the ideal generated by

π−trop(f1)(w)ϕ∗w(f1), . . . , π−trop(fm)(w)ϕ∗w(fm).

Then by construction, the generic fiber of Y is equal to Xw
η , and Xw is equal to the closed

subscheme of Y defined by its R-torsion ideal. The special fiber of Y is the closed subscheme
of Gn

m,k defined by inw f1, . . . , inw fm and thus is equal to inw U, which is also the special
fiber of Xw. Therefore by Lemma 5·10, Y is flat over R, so Xw is equal to Y.
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PROPOSITION 5·12. The closed subscheme Xw ⊂G
n
m,R is μ�-invariant.

Proof . By the hypotheses on X, we know there exist f1, . . . , fn−d ∈ k[x1, . . . , xn] that
generate the ideal of X such that inw f1, . . . , inw fn−d generate the ideal of inw U, so by
Proposition 5·11,

π−trop(f1)(w)ϕ∗w(f1), . . . , π−trop(fn−d)(w)ϕ∗w(fn−d) ∈ R
[
x±1

1 , . . . , x±1
n

]
generate the ideal defining Xw in G

n
m,R.

Thus it will be sufficient to show that if f ∈ k[x1, . . . , xn], ξ ∈μ�, and

ξ1 : R
[
x±1

1 , . . . , x±1
n

]
→ R

[
x±1

1 , . . . , x±1
n

]
is its action, then ξ1(π−trop(f )(w)ϕ∗w(f )) is in

the ideal of R
[
x±1

1 , . . . , x±1
n

]
generated by π−trop(f )(w)ϕ∗w(f ). Write

f =
∑

u′∈Zn≥0

au′(x1, . . . , xn)u′ ,

where each au′ ∈ k. Then

π−trop(f )(w)ϕ∗w(f )=
∑

u′∈Zn≥0

πu′·w−trop(f )(w)au′(x1, . . . , xn)u′ ,

so

ξ1(π−trop(f )(w)ϕ∗w(f ))=
∑

u′∈Zn≥0

(
ξ−1π

)u′·w−trop(f )(w)
au′ξ

u′·w(x1, . . . , xn)u′

= ξ trop(f )(w)
∑

u′∈Zn≥0

πu′·w−trop(f )(w)au′(x1, . . . , xn)u′

= ξ trop(f )(w)π−trop(f )(w)ϕ∗w(f ).

We now endow Xw with the restriction of the μ�-action on G
n
m,R. Because Xw is affine,

this μ�-action is good, and by construction, this μ�-action makes the structure morphism
equivariant. By Proposition 5·8, we have that the morphism ψw : Xw→X is μ�-equivariant.

Remark 5·13. By construction, the special fiber of Xw with its induced μ�-action is equal
to (inw U)w

� .

5·4. Preparing for the change of variables formula

We establish some results which will be used in the application of Theorem 2·8.
For the remainder of Section 5, let Vu be the subscheme of G

n
m,k defined by

(x1, . . . , xn)u − 1, and if w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
is such that u ·w= �, let Xw and

ψw : Xw→X be as constructed in subsection 5·3.

PROPOSITION 5·14. Let w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
be such that u ·w= �. Noting that

Vu ∩ inw U ⊂ inw U =Xw
0 , the subset θ−1

0 (Vu ∩ inw U)⊂ G(Xw) is a μ�-invariant cylinder,
and

μ
μ�
Xw

(
θ−1

0 (Vu ∩ inw U)
)
= [
(Vu ∩ inw U)w� /X

w
0 ,μ�

]
L
−d ∈Mμ�

Xw
0
.
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Proof . By Proposition 4·4 and Remark 5·13, we have that Vu ∩ inw U is a μ�-invariant
subscheme of Xw

0 , and with the restriction of this μ�-action, it is equal to (Vu ∩ inw U)w
� . The

proposition then follows from the fact that the truncation morphism θ0 : G(Xw)→ G0(Xw)=
Xw

0 is μ�-equivariant and the definition of the μ�-equivariant motivic measure.

LEMMA 5·15. Let w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
be such that u ·w= �, let ϕw : Gn

m,R→A
n
R

be as in subsection 5·3, and let k′ be an extension of k. Then ϕw induces a bijection

G
(
G

n
m,R

)
(k′)→ {

x ∈ G
(
A

n
R

)
(k′) |w= (

ordx1(x), . . . , ordxn(x)
)}

.

Proof . Let R′ = k′[[π]], and let K′ be its field of fractions. Because ϕw induces an open
immersion on generic fibers, it induces an injection G

n
m,R(K′)→A

n
R(K′). Because G

n
m,R is

separated, this implies that ϕw induces an injection G
(
G

n
m,R

)
(k′)→ G

(
A

n
R

)
(k′). We thus

only need to show that the image of this injection is
{
x ∈ G

(
A

n
R

)
(k′) |w= (ordx1(x), . . . ,

ordxn(x))
}
.

Let y : Spec(R′)→G
n
m,R. Then for each i ∈ {1, . . . , n}, we have that xi(y) is a unit in R′, so

by construction,

ϕw(y) ∈ {
x ∈ G

(
A

n
R

)
(k′) |w= (

ordx1(x), . . . , ordxn(x)
)}

.

Write w= (w1, . . . , wn), and let x : Spec(R′)→A
n
R be such that ordxi(x)=wi for each

i ∈ {1, . . . , n}. Then for each i ∈ {1, . . . , n}, we have that π−wixi(x) is a unit in R′, so we may
set y : Spec(R′)→G

n
m,R to be the morphism whose pullback is given by xi �→ π−wixi(x) ∈ R.

By construction ϕw(y)= x, and we are done.

PROPOSITION 5·16. Let w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
be such that u ·w= �. Then

ψw : Xw→X induces bijections G(Xw)(k′)→ trop−1(w)(k′) and θ−1
0 (Vu ∩ inw U) (k′)→(

trop−1(w)∩ A�,1
)

(k′) for all extensions k′ of k.

Proof . Fix an extension k′ of k. Because ψw induces an open immersion on generic
fibers and because Xw is separated, we have that ϕw induces an injection from G(Xw)(k′)
to G(X)(k′). Thus we need to show that the image of G(Xw)(k′) is trop−1(w)(k′) and that the
image of θ−1

0 (Vu ∩ inw U)(k′) is (trop−1(w)∩ A�,1)(k′).
Let y ∈ G(Xw)(k′)⊂ G

(
G

n
m,R

)
(k′). By Lemma 5·15, ψw(y) ∈ trop−1(w)(k′). Let x ∈

trop−1(w)(k′)⊂ {
x′ ∈ G

(
A

n
R

)
(k′) |w= (

ordx1 (x′), . . . , ordxn(x′)
)}

. By Lemma 5·15, x is in
the image of ϕw, where ϕw is as in Subsection 5·3. Because Xw is the closed subscheme
of ϕ−1

w (X) defined by its R-torsion ideal, this implies that x is in the image ψw. Thus ψw

induces a bijection G(Xw)(k′)→ trop−1(w)(k′).
Let y ∈ G(Xw)(k′). We only need to show that ψw(y) ∈ A�,1(k′) if and only if θ0(y) ∈ (Vu ∩

inw U)(k′). Write w= (w1, . . . , wn), and let R′ = k′[[π]]. Then

ψw(y) ∈ A�,1(k′) ⇐⇒ (x1, . . . , xn)u(ψw(y))= π�(1+ πr) for some r ∈ R′

⇐⇒ (πw1x1, . . . , πwnxn)u(y)= πu·w(1+ πr) for some r ∈ R′

⇐⇒ (x1, . . . , xn)u(y)= 1+ πr for some r ∈ R′

⇐⇒ ((x1, . . . , xn)u − 1)(θ0(y))= 0

⇐⇒ θ0(y) ∈ (Vu ∩ inw U)(k′).
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PROPOSITION 5·17. Let w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
be such that u ·w= �, and let

f1, . . . , fn−d ∈ k[x1, . . . , xn] be a generating set for the ideal defining X in A
n
k such that

inw f1, . . . , inw fn−d ∈ k
[
x±1

1 , . . . , x±1
n

]
form a generating set for the ideal of inw U in G

n
m,k.

Then the jacobian ideal of ψw is generated by

πw1+···+wn−(trop(f1)(w)+···+trop(fn−d)(w)).

Proof . Let ϕw : Gn
m,R→A

n
R be as in Subsection 5·3, and for any f ∈ R[x1, . . . , xn], we will

set

f w = π−trop(f )(w)ϕ∗w(f ) ∈ R
[
x±1

1 , . . . , x±1
n

]
.

Then by Proposition 5·11, the ideal defining Xw is generated by f w
1 , . . . , f w

n−d. Let Aw =
R
[
x±1

1 , . . . , x±1
n

]
/
(
f w
1 , . . . , f w

n−d

)
be the coordinate ring of Xw. Then we have the diagram

where the right vertical sequence is the presentation for the differentials module �Xw/R

induced by our presentation for Aw, the top horizontal sequence is the standard presentation
for the relative differentials module �Xw/X, and the top left vertical arrow picks out the
generators of ψ∗w�X,R induced by the coordinates of A

n
R. The diagonal sequence gives a

presentation for �Xw/X with matrix whose entries are the images in Aw of the entries in the
matrix ⎛

⎜⎜⎝
πw1 ∂f w

1 /∂x1 ∂f w
n−d/∂x1

. . .
... · · · ...

πwn ∂f w
1 /∂xn ∂f w

n−d/∂xn

⎞
⎟⎟⎠ .

For each i ∈ {1, . . . , n} and j ∈ {1, . . . , n− d},

∂ϕ∗w(fj)/∂xi =
n∑

i′=1

(
ϕ∗w

(
∂fj/∂xi′

)) (
∂ϕ∗w (xi′) /∂xi

)= πwiϕ∗w
(
∂fj/∂xi

)
,

so

∂f w
j /∂xi = πwi−trop(fj)(w)ϕ∗w

(
∂fj/∂xi

)
.
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For each m ∈ {0, 1, . . . , n− d} and size m subsets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n− d}, let
�J

I be the determinant of the size m minor of the matrix (∂fj/∂xi)i,j given by rows in I and
columns in J. Then the jacobian ideal of ψw is generated by the images in Aw of{

π
w1+···+wn−∑

j∈J trop(fj)(w)
ϕ∗w�J

I

}
m,I,J

.

Because X is smooth and pure relative dimension d over R, the unit ideal of X is generated
by the images in R[x1, . . . , xn]/(f1, . . . , fn−d) of{

�
{1,...,n−d}
I | I ⊂ {1, . . . , n} has size n− d

}
,

so the jacobian ideal of ψw contains

πw1+···+wn−(trop(f1)(w)+···+trop(fn−d)(w)).

Because w ∈Zn
≥0 and each fj ∈ k[x1, . . . , xn], we have that each trop(fj)(w)≥ 0. Therefore

the jacobian ideal of ψw is in fact generated by

πw1+···+wn−(trop(f1)(w)+···+trop(fn−d)(w)).

5·5. Proofs of Proposition 5·1 and Theorem 5·2
We first prove Proposition 5·1.

Proof of Proposition 5·1. This is clear if w= 0, so we may assume that w ∈ Trop(U)∩(
Z

n
≥0 \ {0}

)
is such that u ·w= �. In this case, by Remark 5·13, the special fiber of Xw

with its induced μ�-action is equal to (inw U)w
� . The proposition follows by considering

the special fiber of ψw : Xw→X, where by construction ψw is the restriction of ϕw and the
special fiber of ϕw is precisely the map ϕ from the statement of Proposition 5·1.

Now set ordjac : Trop(U)∩ (Zn
≥0 \ {0})→Z : w �→ ordjacψw(y) for any y ∈ G(Xw), noting

that by Proposition 5·17, this does not depend on the choice of y. Also set ordjac(0)= 0.

PROPOSITION 5·18. Let w ∈ Trop(U)∩
(
Z

n
≥0 \ {0}

)
be such that u ·w= �. Then

μX

(
trop−1(w)

)
= [inw U/X]L−d−ordjac(w),

and

μ
μ�
X

(
trop−1(w)∩ A�,1

)
= [
(Vu ∩ inw U)wu·w /X,μ�

]
L
−d−ordjac(w).

Proof . By Remark 5·9 and Propositions 5·14 and 5·16, the proposition follows from the
(equivariant) motivic change of variables formula applied to ψw.

Because u ∈Zn
>0, the monomial (x1, . . . , xn)u vanishes on all of X \U. Thus the constant

term of Znaive
X,u (T) is equal to

[U/X]L−d = [in0 U/X]L−d−ordjac(w).
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Therefore, Theorem 5·2 follows from Proposition 5·17 and the next proposition.

PROPOSITION 5·19. The coefficient of T� in Zμ̂X,u(T) is equal to

∑
w∈Trop(U)∩

(
Z

n≥0\{0}
)

u·w=�

[(Vu ∩ inw U)w
u·w/X, μ̂]L−d−ordjac(w),

and the coefficient of T� in Znaive
X,u (T) is equal to

∑
w∈Trop(U)∩

(
Z

n≥0\{0}
)

u·w=�

[inw U/X]L−d−ordjac(w).

Proof . This follows from Propositions 3·5, 3·6, 5·7 and 5·18.

6. Motivic zeta functions of hyperplane arrangements

Let d, n ∈Z>0, let M be a rank d loop-free matroid on {1, . . . , n}, and let A ∈GrM(k).
We will prove Theorems 1·3 and 1·10. Throughout this section, we will be using the notation
defined in Section 2·4.

LEMMA 6·1. Let w= (w1, . . . , wn) ∈ R
n. Then there exist f1, . . . , fn−d ∈ k[x1, . . . , xn]

that generate the ideal of XA in A
n
k such that the ideal of inw UA in G

n
m,k is generated

by inw f1, . . . , inw fn−d ∈ k
[
x±1

1 , . . . , x±1
n

]
and such that

w1 + · · · +wn − (trop(f1)(w)+ · · · + trop(fn−d)(w))=wtM(w).

Proof . Fix some B ∈B(Mw). Then by Proposition 2·10,{
LA

C(M,i,B) | i ∈ {1, . . . , n} \ B
}
⊂ k[x1, . . . , xn]

generate the ideal of XA in A
n
k and

{
inw LA

C(M,i,B) | i ∈ {1, . . . , n} \ B
}
⊂ k[x±1 , . . . , x±n ]

generate the ideal of inw UA in G
n
m,k. By Proposition 2·11,

trop
(

LA
C(M,i,B)

)
(w)=wi

for each i ∈ {1, . . . , n} \ B. Thus

w1 + · · · +wn −
∑

i∈{1,...,n}\B
trop

(
LA

C(M,i,B)

)
(w)=

∑
i∈B

wi =wtM(w).
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We now prove Theorem 1·3.

PROPOSITION 6·2. We have that

Zμ̂A,k(T)=
∑

w∈Trop(M)∩
(
Z

n≥0\{0}
) [FAw , μ̂]L−d−wtM(w)(T , . . . , T)w ∈Mμ̂

k [[T]],

and

Zμ̂A,0(T)=
∑

w∈Trop(M)∩Zn
>0

[FAw , μ̂]L−d−wtM(w)(T , . . . , T)w ∈Mμ̂
k [[T]].

Proof . By setting X = XA, u= (1, . . . , 1), and v= (1, . . . , 1), the proposition follows
directly from Corollary 5·4 and Lemma 6·1.

We end this section by proving Theorem 1·10.

PROPOSITION 6·3. We have that

Znaive
A,k (T)=

∑
w∈Trop(M)∩Zn≥0

χMw(L)L−d−wtM(w)(T , . . . , T)w ∈Mk[[T]],

and

Znaive
A,0 (T)=

∑
w∈Trop(M)∩Zn

>0

χMw(L)L−d−wtM(w)(T , . . . , T)w ∈Mk[[T]].

Proof . By setting X = XA and u= (1, . . . , 1), the proposition follows from Theorem 5·2,
Proposition 5·5, Lemma 6·1, and the fact that for each w ∈ Trop(M), the class [UAw] ∈Mk

is equal to χMw(L).
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