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Abstract

We introduce in this paper a hypercohomology version of the resonance varieties and
obtain some relations to the characteristic varieties of rank one local systems on a
smooth quasi-projective complex variety M . A logarithmic resonance variety is also
considered and, as an application, we determine the first characteristic variety of the
configuration space of n distinct labeled points on an elliptic curve. Finally, for a
logarithmic 1-form α on M we investigate the relation between the resonance degree
of α and the codimension of the zero set of α on a good compactification of M . This
question was inspired by the recent work by Cohen, Denham, Falk and Varchenko.

1. Introduction

Let M be a connected CW-complex with finitely many cells in each dimension and let
T(M) = Hom(π1(M), C∗) be the character variety ofM . This is an algebraic group whose identity
irreducible component is an algebraic torus T0(M) = (C∗)b1(M).

The characteristic varieties of M are the jumping loci for the cohomology of M , with
coefficients in rank one local systems:

Vjk(M) = {L ∈ T(M) | dimHj(M, L) > k}. (1)

When j = 1, we use the simpler notation Vk(M) = V1
k(M). The characteristic varieties of M are

Zariski closed subvarieties in T(M).
It is usual to consider the following ‘linear algebra’ approximation of the characteristic

varieties. The resonance varieties of M are the jumping loci for the cohomology of the complex
H∗(H∗(M, C), α∧), namely

Rjk(M) = {α ∈H1(M, C) | dimHj(H∗(M, C), α∧) > k}. (2)

When j = 1, we use the simpler notation Rk(M) =R1
k(M).

If M is 1-formal, then the tangent cone theorem (see [DPS09, Theorem A]) says that the
exponential mapping

exp :H1(M, C)→H1(M, C∗) = T(M)
induces a germ isomorphism (Rk(M), 0) = (Vk(M), 1). On the other hand, when M is not
1-formal, strange things may happen, for example the irreducible components of the resonance
varieties Rk(M) may fail to be linear, see § 5.

In this paper, we assume that M is a connected smooth quasi-projective variety and investi-
gate to what extent (a version of) the above statement is true without any formality assumption.
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A. Dimca

Our idea is to regard Rjk(M) as an upper bound for the tangent cone TC1(Vjk(M)) of the
corresponding characteristic variety at the trivial representation 1 ∈ T(M) and to determine
a lower bound ETC1(Vjk(M)) of this tangent cone TC1(Vjk(M)) by using a hypercohomology
version of the resonance varieties.

More precisely, the inclusion

TC1(Vjk(M))⊂Rjk(M) (3)

is known to hold in general, see [Lib02]. On the other hand, for any subvariety W ⊂ T(M)
with 1 ∈W we define the exponential tangent cone ETC1(W ) such that ETC1(W )⊂ TC1(W ).
Our first main result says that one can determine to a certain extent the exponential tangent
cone ETC1(Vjk(M)) using the hypercohomology group Hj(Ω∗X(log D), α∧) (see Theorem 3.1 and
Corollary 3.2). Here X is a good compactification of M and (Ω∗X(log D), α) is the corresponding
logarithmic de Rham complex with the differential given by the cup-product by the 1-form
α ∈H0(X, Ω1

X(log D)).
The relation between the usual resonance varieties and the new hypercohomology ones

is explained in Corollary 4.2, in terms of the E2-degeneration of a twisted Hodge–Deligne
spectral sequence. We introduce next the first logarithmic resonance variety LR1(M) and restate
the logarithmic Castelnuovo–de Franchis theorem due to Bauer (see [Bau97, Theorem 1.1])
using this notion in Proposition 4.5. (For the classical version of the Castelnuovo–de Franchis
theorem see [Cat91].) The relation of this new logarithmic resonance variety to the tangent cone
TC1(Vk(M)) is described in Corollary 4.6.

The similarity in structure of LR1(M), for M an arbitrary variety, to the structure ofR1(M),
for M an 1-formal variety, is surprising: both of them are unions of linear subspaces Vi with
Vi ∩ Vj = 0 for i 6= j.

As a first application, we determine in Proposition 5.1 the positive dimensional irreducible
components of the characteristic variety V1(M1,n), where M1,n is the configuration space of n
distinct labeled points on an elliptic curve C. This example exhibits the special role played by the
two-dimensional isotropic subspaces coming from fibrations f :M → S, where S is a punctured
elliptic curve. The fact that these subspaces are special was noticed by Catanese in [Cat00,
Theorem 2.11].

In the final section we apply our results to the following problem of current interest. Let A=
{H1, . . . , Hd} be an essential central arrangement of hyperplanes in Cn+1. Let fj = 0 be a linear
form defining Hj and consider the logarithmic 1-form αj = (dfj/fj) on M0 = Cn+1\

⋃
j=1,d Hj .

For λ= (λ1, . . . , λd) ∈ Cd consider the logarithmic 1-form

αλ = λ1α1 + · · ·+ λdαd.

If
∑

j=1,d λj = 0, then αλ can be regarded as a 1-form on the corresponding projective hyperplane
arrangement complement M =M0/C∗. The study of the zero set Z(αλ) of this 1-form αλ on M is
obviously related to the study of the critical locus of the associated multi-valued master function

Φλ =
∏
j=1,d

f
λj

j .

This in turn is related to the solutions of the s`n Knizhnik–Zamolodchikov equation via the
Bethe ansatz, see [SV91, SV03].

The results in the final section have been inspired by the joint work of Cohen, Denham, Falk
and Varchenko, see [Den07, Fal07]. They investigate the relation between the dimension of the
zero set Z(αλ) and the resonance properties of the logarithmic 1-form αλ. Our setting is more
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general and the new idea is to consider the zeroes of 1-forms not only on M , but also on a good
compactification X of M ; see Theorem 6.1 and the following corollaries.

We say that α ∈H1,0(M) ∪H1,1(M) is resonant in degree p if Hj(H∗(M, C), α∧) = 0 for
j < p and Hp(H∗(M, C), α∧) 6= 0. Theorem 3.1, Corollary 4.2, Remark 4.3 and Theorem 6.1
yield the following result, where this time Z(α) denotes the zero set of α on X.

Corollary 1.1. Assume that the spectral sequence αE
p,q
1 from Corollary 4.2 degenerates

at E2 for a logarithmic 1-form α ∈ (H1,0(M) ∪H1,1(M)) (for instance, this holds when M is
a hyperplane arrangement complement). If α is resonant in degree p, then codim Z(α) 6 p. In
particular, if α is resonant in degree one, then codim Z(α) = 1.

This corollary should be compared to [Fal07, Theorems 1 and 2] and [Den07, Theorem 1].
The example discussed in Remark 6.4 shows that the inequality codim Z(α) 6 p may be strict.

Moreover, Theorem 6.1(i) is similar in spirit to the generic vanishing theorem by Green and
Lazarsfeld, see [GL87, Theorem 3.1].

2. Preliminary facts

By Deligne’s work [Del72], the cohomology group H1(M,Q) of a connected smooth quasi-
projective variety M has a mixed Hodge structure (for short MHS). Forgetting the rationality
of the weight filtration, this MHS consists of two vector subspaces

W1(M) =W1(H1(M, C))⊂H1(M, C) and F 1(M) = F 1H1(M, C)⊂H1(M, C).

If we set

H1,0(M) =W1(M) ∩ F 1(M), H0,1(M) =W1(M) ∩ F 1(M)

and

H1,1(M) = F 1(M) ∩ F 1(M),

then we have H0,1(M) =H1,0(M) and the following direct sum decomposition:

H1(M, C) =H1,0(M)⊕H0,1(M)⊕H1,1(M). (4)

This direct sum decomposition is a special case of the Deligne splitting, see [PS08, Lemma-
Definition 3.4]. Suppose that W is an irreducible component of some characteristic variety Vjk(M)
such that 1 ∈W and let E = T1W be the corresponding tangent space. The first key result is
due to Arapura, see [Ara97, Theorem 1.1].

Theorem 2.1. Let M be a smooth quasi-projective irreducible complex variety and let E =
T1W be as above. Assume that either:

(i) j = 1; or

(ii) H1(M,Q) has a pure Hodge structure (of weight one if H1(M, C) =H1,0(M)⊕H0,1(M)
or two if H1(M, C) =H1,1(M)).

Then there is a (mixed) Hodge substructure EQ in H1(M,Q) such that

E = EQ ⊗Q C

and the corresponding component W is just the algebraic torus exp(E). In particular, the
irreducible components of the tangent cone TC1(Vjk(M)) are linear subspaces in H1(M, C)
coming from (mixed) Hodge substructures in H1(M,Q).
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It follows that the tangent space E = T1(W ) satisfies the following direct sum decomposition,
similar to (4):

E = (H1,0(M) ∩ E)⊕ (H0,1(M) ∩ E)⊕ (H1,1(M) ∩ E). (5)

With respect to the direct sum decomposition (4), each class α ∈H1(M, C) may be written as

α= α1,0 + α0,1 + α1,1. (6)

This yields the following.

Corollary 2.2. Let M be a smooth quasi-projective irreducible complex variety and j be an
integer such that the assumptions (i) or (ii) in Theorem 2.1 are satisfied. Then α ∈H1(M, C) is
in the tangent cone TC1(Vjk(M)) if and only if α1,0, α0,1 and α1,1 are all in the same irreducible

component of TC1(Vjk(M)).

The interest in this result comes from the fact that the condition αp,q ∈ TC1(Vjk(M)) above
can in turn be checked using our Theorem 3.1, see Corollary 3.2.

We do not know whether these results hold without the assumptions (i) or (ii) in Theorem 2.1
above. It was shown by Simpson in [Sim97, pp. 229–230] that, for a finite CW-complex M , the
characteristic variety V2

k(M) can be any subvariety defined over Q in an even-dimensional torus
T(M) = (C∗)2a. In particular, the irreducible components of the characteristic varieties are not
necessarily translated subtori in T(M).

As explained in [Sim97, pp. 229–230], we see that all the characteristic varieties Vjk(M) and
their tangent cones TC1(Vjk(M)) at the origin are defined over Q. Note, however, that this
does not imply that the irreducible components of TC1(Vjk(M)) (even assumed to be linear) are
defined over Q.

Definition 2.3. For a subvariety W ⊆ T(M), define the exponential tangent cone of W at 1 by

ETC1(W ) = {α ∈H1(M, C) | exp(tα) ∈W, ∀t ∈ C}.

Note that it is enough to require exp(tα) ∈W for t ∈ T with T a subset of C with at least
one accumulation point. One has the following general result.

Lemma 2.4. For any subvariety W ⊆ T(M), the following hold.

(i) ETC1(W )⊂ TC1(W ).

(ii) ETC1(W ) is a finite union of rationally defined linear subspaces of H1(M, C).

The first claim is left to the reader (just use the description of the tangent cone as the set
of secant limits). For the second claim above, the idea of the proof is the following. First reduce
the claim to the case where W is a hypersurface defined by a Laurent polynomial. Then use the
well-known fact that the exponential functions ey1t, . . . , eyrt are linearly independent, provided
y1, . . . , yr are all distinct. For details, see [DPS09, Lemma 4.3].

Theorem 2.1 yields the following.

Corollary 2.5. Let M be a smooth quasi-projective irreducible complex variety. Then the
equality

ETC1(Vjk(M)) = TC1(Vjk(M))

holds if either j = 1 or H1(M,Q) is a pure MHS.
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Recall also that if H1(M,Q) is pure of weight two, then M is 1-formal. For 1-formal spaces M
one has

ETC1(V1
k(M)) = TC1(V1

k(M)) =R1
k(M);

see [DPS09]. When H1(M,Q) is pure of weight one and M is not compact, the inclusion
TC1(V1

k(M))⊂R1
k(M) may be strict as shown in Proposition 5.1.

3. The main result

Let X be a good compactification of the smooth quasi-projective irreducible complex variety M .
Then X is smooth, projective and there is a divisor with simple normal crossings D ⊂X such
that M =X\D. Let (Ω∗X(log D), d) denote the logarithmic de Rham complex corresponding to
the pair (X, D). It is a locally free sheaf complex on X whose hypercohomology is H∗(M, C).
One may replace the differential d by the wedge product by some logarithmic 1-form α ∈
H0(X, Ω1

X(log D)) = F 1(M) to get a new sheaf complex K∗ = (Ω∗X(log D), α∧).

Theorem 3.1. Let M be a smooth quasi-projective irreducible complex variety and α ∈
H0(X, Ω1

X(log D)) = F 1(M) be a cohomology class in H1,0(M) or in H1,1(M). Then

α ∈ ETC1(Vjk(M)) if and only if dim Hj(Ω∗X(log D), α∧) > k.

More precisely, denote by Lt = exp(tα) ∈ T(M) the one-parameter subgroup associated to
α ∈ F 1(M).

(i) If α ∈H1,0(M), then dimHj(M, Lt) = dim Hj(Ω∗X(log D), α∧) for any t ∈ C∗.
(ii) If α ∈H1,1(M), then dimHj(M, Lt) > dim Hj(Ω∗X(log D), α∧) for any t ∈ C and the

equality holds for t in a punctured neighborhood of 0 in C.

Proof. Consider first the case α ∈H1,0(M). Then we apply [Ara97, Theorem 2.1 in § IV] to the
trivial unitary line bundle OM on M with the trivial connection dM :OM → Ω1

M . The Deligne
extension in this case is of course (OX , dX). In this first case, one has α ∈H0(X, Ω1

X) and we
regard α as the regular Higgs field denoted by θ in [Ara97, Theorem 2.1]. It follows that

Hj(Ω∗X(log D), α∧) = Hj(Ω∗X(log D), d− α∧) = Hj(Ω∗X(log D), d− tα∧)

for all t ∈ C∗ (see [Ara97, Corollary 2.2 in § IV]). Since the connection ∇= d− tα∧ has trivial
residues along the Dm, it follows from Deligne [Del70] that

Hj(M, Lt) = Hj(Ω∗X(log D), d− tα∧)

for any t ∈ C∗. This proves the result in this case.
Consider now the case α ∈H1,1(M). Then we apply [Ara97, Theorem 2.4 in § IV], again to

the trivial unitary line bundle OM on M with the trivial connection dM :OM → Ω1
M . Here α is

identified with a representative in H0(X, Ω1
X(log D)) = F 1(M), which is denoted by φ in loc.cit.

It follows as above that

Hj(Ω∗X(log D), α∧) = Hj(Ω∗X(log D), d− α∧) = Hj(Ω∗X(log D), d− tα∧)

for all t ∈ C∗ (see [Ara97, Corollary 2.5 in § IV]). For t in a punctured neighborhood of 0
in C, the residues of ∇= d− tα along the Dj are not strictly positive integers. Using again
Deligne’s results in [Del70] yields the claim in this case, since one has Lt ∈ Vjk(M) for all t if
k = dim Hj(Ω∗X(log D), α∧). 2
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The above theorem yields the following hypercohomology description of the tangent cones
TC1(Vjk(M)).

Corollary 3.2. Let M be a smooth quasi-projective irreducible complex variety. Assume that
either j = 1 or H1(M,Q) is a pure MHS. Let α= α1,0 + α0,1 + α1,1 be the type decomposition
of α ∈H1(M, C).

If α ∈ TC1(Vjk(M)) then dim Hj(Ω∗X(log D), β∧) > k for any β ∈ {α1,0, α1,1, α0,1}.

Remark 3.3.

(i) For j = 1, if E and E′ are two distinct irreducible components of TC1(V1(M)), then
E ∩ E′ = 0 (see [DPS09, Theorem C, (2)]). It follows that any non-trivial one-parameter
subgroup Lt = exp(tα) with α ∈ TC1(V1(M)) is contained in exactly one irreducible
component W of V1(M). This property fails for j > 1. We have been informed by Suciu
that for the central hyperplane arrangement in C4 given by

xyzw(x+ y + z)(y − z + w) = 0 (7)

the resonance variety R2
1(M) = TC1(V2

1 (M)) consists of two three-dimensional components

E1 : x1 + x2 + x3 + x6 = x4 = x5 = 0 and E2 : x2 + x3 + x4 + x5 = x1 = x6 = 0

(the hyperplanes are numbered according to the position of the corresponding factor in the
product (7) and xj is associated with the hyperplane Hj). It follows that the intersection
E1 ∩ E2 is one-dimensional.

(ii) Again, for j = 1 and any irreducible component W of V1(M), dimH1(M, L) is constant
for L ∈W except for finitely many L (see [DPS09, Dim07]). We do not know whether this
result holds for j > 1.

Example 3.4. If M is a hyperplane arrangement complement (or, more generally, a pure
variety M , i.e. a smooth quasi-projective irreducible complex variety such that the Hodge
structure Hk(M,Q) is pure of type (k, k) for all k), then the Hodge–Deligne spectral sequence,
see Theorem 4.1 below, shows that

Hj(Ω∗X(log D), α∧) =Hj(H∗(X), α∧)

for all j and the result is known, see for instance [DM07, ESV92].
More generally, if M is a smooth quasi-projective irreducible complex variety such that the

Hodge structure Hk(M,Q) is pure of type (k, k) for all k 6m, then we get

Hj(Ω∗X(log D), α∧) =Hj(H∗(X), α∧)

for all j 6m and an inclusion Hm(Ω∗X(log D), α∧)⊂Hm(H∗(X), α∧), see for instance [DM07].

Remark 3.5. Let T(M)e denote the connected component of the unit element e in the algebraic
group T(M). It is well-known, see for instance [Ara97], that any local system L ∈ T(M)e can be
represented as exp(α), for some closed smooth differential 1-form α on M . More precisely, if we
denote by

∇α : E0
M →E1

M , ∇α(f) = d(f)− f · α
the corresponding connection on the trivial smooth line bundle E0

M , then L is just the sheaf of
horizontal sections, i.e. L= ker∇α. Here EkM denotes the sheaf of smooth C-valued differential
k-forms on M . Let d= d′ + d′′ and α= α′ + α′′ be the decompositions according to (1, 0) and
(0, 1) types respectively. In order to use the algebraic/analytic geometry, one has to replace the
trivial smooth line bundle E0

M by a holomorphic line bundle L on M . This is done by saying that
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the holomorphic sections of L are given locally by the smooth functions s such that ∇′′α(s) = 0,
where ∇′′α(f) = d′′(f)− f · α′′. Then ∇′α(f) = d′(f)− f · α′ becomes a holomorphic connection
on L. The problem is that in general L is no longer a trivial line bundle, i.e. L 6=OM , and hence
the corresponding Deligne extension (L,∇′α) to a logarithmic connection on X is not easy to
describe.

Remark 3.6. Simpson has introduced in [Sim08] a Deligne–Hitchin twistor moduli space of
logarithmic λ-connections MDH(X, log D), which is an analytic stack and a group relative
to P1. Moreover, Simpson has defined a weight filtration on MDH(X, log D) such that the
exponential morphism sends the usual weight filtration on H1(M, C) to the induced weight
filtration on MDH(X, log D)0, the connected component of the identity representation in
MDH(X, log D) (see [Sim08, Lemma 6.9]). We have seen above that, when H1(M, C) is pure
of weight two, the study of the characteristic varieties is simpler, since M is 1-formal. Under
the same purity hypothesis, several results in [Sim08] get a simpler form, since then one has
GrW2 MDH(X, log D) =MDH(X, log D).

4. Relation to the resonance varieties

The complex Ω∗X(log D) has decreasing Hodge filtration F ∗ which is just the trivial filtration
F p = σ>p. The following is one of the key results of Deligne, see [Del72, Corollaire 3.2.13].

Theorem 4.1. Let M be a smooth quasi-projective irreducible complex variety. The spectral
sequence

FE
p,q
1 =Hq(X, Ωp

X(log D))
associated to the Hodge filtration F on Ω∗X(log D) converges to H∗(M, C) and degenerates at the
E1-level. The filtration induced by this spectral sequence on each cohomology group Hj(M, C)
is the Hodge filtration of the canonical MHS on Hj(M, C).

This result yields the following.

Corollary 4.2. Let M be a smooth quasi-projective irreducible complex variety and α ∈
H0(X, Ω1

X(log D)) = F 1(M) be a cohomology class. Then there is a spectral sequence

αE
p,q
1 =Hq(X, Ωp

X(log D))

associated to the Hodge filtration F on (Ω∗X(log D), α∧). This spectral sequence converges to
Hp+q(Ω∗X(log D), ∧α) and the differential d1 is induced by the cup-product by α. Moreover, one
has

dim Hj(Ω∗X(log D), α∧) 6 dimHj(H∗(X, C), α∧)
and equality holds if and only if this spectral sequence degenerates at E2 (e.g. M is a pure
variety).

Proof. First note that by Theorem 4.1 we get αE
p,q
1 =GrpFH

p+q(M, C).
Since α ∈ F 1(M) and the cup-product is compatible with the MHS on H∗(M, C) (see [PS08]),

it follows that fm = α∧ :Hm(M, C)→Hm+1(M, C) is strictly compatible with the Hodge
filtration F , i.e. for any m, p ∈ N one has the following:

(i) fm(F pHm(M, C))⊂ F p+1Hm+1(M, C); and
(ii) if β ∈Hm(M, C) satisfies fm(β) ∈ F p+1Hm+1(M, C), then there is β0 ∈ F pHm(M, C) such

that fm(β0) = fm(β).
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Set Km = ker fm, Im = im fm−1 and Hm =Km/Im. Then Hm has an induced F -filtration

F pHm =
Km ∩ F pHm(M, C)
Im ∩ F pHm(M, C)

.

Let gpm :GrpFH
m(M, C)→Grp+1

F Hm+1(M, C) be the mapping induced by fm. Then ker gpm can
be identified with

Km ∩ F pHm(M, C) + F p+1Hm(M, C)
F p+1Hm(M, C)

and the image im gp−1
m−1 can be identified with

Im ∩ F pHm(M, C) + F p+1Hm(M, C)
F p+1Hm(M, C)

.

It follows that one has
GrpFHp+q = ker gpp+q/ im gp−1

p+q−1 = αE
p,q
2 .

This proves all the claims in Corollary 4.2. 2

Remark 4.3. Assume that the irreducible components of Rjk(M) are all linear and come from
MHS substructures. (In view of [Voi04, Lemma 2], it is enough to ask that these components are
linear and defined over Q or R.) Then, if the spectral sequence αE

p,q
1 degenerates at E2 for all

α ∈ (H1,0(M) ∪H1,1(M)), and either j = 1 or H1(M,Q) is pure, we get

TC1(Vjk(M)) =Rjk(M).

To see this, let E be an irreducible component of Rjk(M). If α ∈ (E1,0 ∪ E1,1) is a non-
zero element, then by Theorem 3.1 we get α ∈ E1, where E1 is an irreducible component of
TC1(Vjk(M)). Now Theorem 3.1 implies that E1,0 = E1,0

1 and E1,1 = E1,1
1 . This clearly implies

E = E1. This proves our claim in view of the inclusion (3).
Conversely, if we know that TC1(Vjk(M)) =Rjk(M) for all k, j > 0, then the spectral sequence

αE
p,q
1 degenerates at E2 for all α ∈ (H1,0(M) ∪H1,1(M)). This is the case, for instance, for the

hyperplane arrangement complements, see [CS99].
The example discussed in the § 5 below shows that this spectral sequence does not necessarily

degenerate at E2.

If M and N are quasi-projective varieties, a fibration f :M →N is a surjective morphism
with a connected general fiber (this is called an admissible morphism in [Ara97]). Two fibrations
f :M → C and f ′ :M → C ′ over quasi-projective curves C and C ′ are said to be equivalent if
there is an isomorphism g : C→ C ′ such that f ′ = g ◦ f .

Beauville’s paper [Bea92], in the case where M is proper, and Arapura’s paper [Ara97], in the
case where M is non-proper, establish a bijection between the set E(M) of equivalence classes
of fibrations f :M → C from M to curves C with χ(C)< 0 and the set IC1(M) of irreducible
components of the first characteristic variety V1(M) passing through the unit element 1 of the
character group T(M) of M .

More precisely, the irreducible component associated to an equivalence class [f ] ∈ E(M) is
Wf = f∗(T(C)). The corresponding tangent space is given by Ef = T1Wf = f∗(H1(C, C)). The
union of all these tangent spaces is the tangent cone TC1(V1(M)), and the tangent cone theorem
(see [DPS09, Theorem A]) implies that, when M is 1-formal, one has the equality

TC1(V1(M)) =R1(M).
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This equality imposes very strong conditions on R1(M), which may be regarded as special
properties enjoyed by the cohomology algebras of 1-formal varieties, in particular of compact
Kähler manifolds as in [Voi08]. See also Remark 5.2(ii).

To get a similar result in the general case one may proceed as follows.

Definition 4.4. For any smooth complex quasi-projective variety M , consider the graded
subalgebra F ∗(M)⊂H∗(M, C) given by F k(M) = F kHk(M, C) =H0(M, Ωk

X(log D)). We define
the first logarithmic resonance variety of M by the equality

LR1(M) = {α ∈ F 1(M) |H1(F ∗(M), α∧) 6= 0}.

Note that LR1(M)⊂R1(M) ∩ F 1(M), but the inclusion may be strict, as in the case
M =M1,n described in § 5. On the other hand, LR1(M) =R1(M) if H1(M,Q) is pure of weight
two, for example when M is a hypersurface complement in Pn. Corollary 4.2 yields

dimH1(F ∗(M), α∧) 6 dim H1(Ω∗X(log D), α∧) (8)

for any α ∈ LR1(M).
The first logarithmic resonance variety is not defined topologically, but it enjoys the following

very nice property.

Proposition 4.5. For any smooth connected complex quasi-projective variety M , the following
hold.

(i) The (strictly positive dimensional) irreducible components of LR1(M) are exactly the
maximal isotropic subspaces I ⊂ F 1(M) satisfying dim I > 2.

(ii) If I and I ′ are distinct irreducible components of LR1(M), then I ∩ I ′ = 0.

(iii) The mapping

[f ] 7→ If = f∗(F 1(C)) = f∗(H0(C̃, Ω1
C̃

(log B)))

induces a bijection between the set E0(M) of equivalence classes of fibrations f :M → C
with g∗(C) > 2 and the set of (strictly positive dimensional) irreducible components of the
first logarithmic resonance variety LR1(M).

Here C̃ is a smooth projective model for C, B = C̃\C is a finite set and g∗(C) = b1(C)−
g(C̃) = dimH0(C̃, Ω1

C̃
(log B)).

Proof. Assume that α ∈ LR1(M) is a non-zero 1-form. Let I be a maximal isotropic subspace in
F 1(M) (with respect to the usual cup-product) such that α ∈ I. Then d= dim I > 2.

We can apply the logarithmic Castelnuovo–de Franchis theorem obtained by Bauer in [Bau97,
Theorem 1.1], and get a fibration f :M → C such that I = If . In particular, g∗(C) = d > 2. Note
that If ∩ Ig = 0 for [f ] 6= [g] (see Remark 3.3). It follows that

LR1(M) =
⋃

[f ]∈E0(M)

If . (9)

Since E0(M) is a finite set, it follows that (9) is precisely the decomposition of LR1(M) into
irreducible components. 2

Note that χ(C)< 0 is equivalent to either g∗(C) > 2 or g(C̃) = 1 and |B|= 1. It is precisely
this latter case that is not covered by the above bijective correspondence, which occurs in the
example treated in § 5. For more on this exceptional case refer to [Dim08].
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Corollary 4.6. Let M be a smooth connected complex quasi-projective variety. If I 6= 0 is
an irreducible component of LR1(M), then I + I is an irreducible component of TC1(V1(M)).
Conversely, any irreducible component E = Ef 6= 0 of TC1(V1(M)), not coming from a fibration
f :M → S onto a once-punctured elliptic curve S, is of this form, with I = E ∩ F 1(M).

In particular, α ∈ LR1(M) if and only if both Hodge type components α1,0 and α1,1 of α are
in the same irreducible component of LR1(M).

5. A first application: configuration spaces of n points on elliptic curves

In this section let C be a smooth compact complex curve of genus g = 1. Consider the
configuration space of n distinct labeled points in C,

M1,n = Cn
∖⋃

i<j

∆ij ,

where ∆ij is the diagonal {s ∈ Cn | si = sj}. It is straightforward to check that:

(i) the inclusion ι :M1,n→ Cn yields an isomorphism ι∗ :H1(Cn, C)→H1(M1,n, C), in
particular W1(H1(M1,n, C)) =H1(M1,n, C);

(ii) using the above isomorphism, the cup-product map

2∧
H1(M1,n, C)→H2(M1,n, C)

is equivalent to the composite

µ1,n :
2∧
H1(Cn, C)

⋃
Cn // H2(Cn, C) // // H2(Cn, C)/〈{[∆ij ]}i<j〉, (10)

where [∆ij ] ∈H2(Cn, C) denotes the dual class of the diagonal ∆ij , and the second arrow
is the canonical projection. See [DPS09, § 10] for more details.

Let {a, b} be the standard basis of H1(C, C) = C2. Note that the cohomology algebra
H∗(Cn, C) is isomorphic to

∧∗(a1, b1, . . . , an, bn). Denote by (x1, y1, . . . , xn, yn) the coordinates
of z ∈H1(M1,n, C). Using (10), it was shown in [DPS09, § 10] that

R1(M1,n) =
{

(x, y) ∈ Cn × Cn

∣∣∣∣ n∑
i=1

xi =
n∑
i=1

yi = 0, xiyj − xjyi = 0, for 1 6 i < j < n

}
.

Suppose n > 3. Then R1(M1,n) is the affine cone over the (n− 1)-fold scroll S1,...,1, with 1
repeated (n− 1)-times, see [Har92, Exercise 8.27]. In particular, R1(M1,n) is an irreducible,
nonlinear variety.

Let ΩC = (1, λ) be a normalized period matrix for the projective curve C. Then λ ∈ C and
Im(λ)> 0. It can be shown easily that

F 1(M1,n) =H1,0(M1,n) = {(x, y) ∈ Cn × Cn | y = λx} (11)

and similarly H0,1(M1,n) = {(x, y) ∈ Cn × Cn | y = λx}.
This implies that

F 1(M1,n)⊂R1(M1,n). (12)
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Let α= (x, λx) with x 6= 0. It is easy to see that α ∧ (x′, λx′) = 0 if and only if x′ ∈ Cx. It follows
that

LR1(M1,n) = 0. (13)

In other words, one has

αE
1,0
2 = 0.

Similarly, α ∧ (x′, λx′) = 0 if and only if x′ ∈ Cx. Hence

αE
0,1
2 = C.

We set as above Lt = exp(tα). It follows that dimH1(M1,n, Lt) 6 1 for all t ∈ C∗ and α ∈
F 1(M1,n), with equality exactly when d2 : αE

0,1
2 → αE

2,0
2 is zero. If we assume that this is the

case for all α, then V1(M1,n) = T(M1,n), a contradiction, since TC(V1(M))⊂R1(M) always
(see [Lib02]).

In fact, if W is any component of V1(M1,n) passing though the origin and containing Lt with
dimH1(M1,n, Lt) = 1, then it follows from [Ara97] that dimW = 2 and W = f∗(T(S)) where
f :M1,n→ S is an admissible map onto an affine curve S with b1(S) = 2. In other words, S is
obtained from a P1 by deleting 3 points, or S is obtained from a projective genus 1 curve C ′

by deleting a point, say the unit element 1 of the group structure on C ′. The former case is
discarded easily by Hodge theory, see the subcase (iia) in the proof below. The next result says
that the mappings in the latter case can be completely described.

Proposition 5.1. With the above notation, let f :M1,n→ S be an admissible map onto a
curve S obtained from a projective genus 1 curve C ′ by deleting a point. Then C ′ = C and,
up to an isomorphism of C, the map f coincides to one of the maps fij :M1,n→ C\{1},
(s1, . . . , sn) 7→ sis

−1
j for some 1 6 i < j 6 n.

In particular, Wij = f∗ij(T(S)) are all the irreducible components of V1(M1,n) passing through
the origin. More precisely, for 1 6 i < j 6 n consider the two projections πi, πj : Cn→ C onto the
ith (respectively jth) factor. Then

Wij = {π∗i (L)⊗ π∗j (L−1) | L ∈ T(C\{1})}.

And there are no translated positive dimensional components in V1(M1,n).

Proof. For any quasi-projective smooth variety Y such that H1(Y, Z) is torsion free and H1(Y,Q)
is a pure Hodge structure of weight one, one may define a (generalized) Albanese variety

Alb(Y ) =
H1,0(Y )∨

H1(Y, Z)

and a natural mapping aY : Y →Alb(Y ), y 7→
∫ y
y0

. Here ∨ denotes the dual vector space and
y0 ∈ Y is a fixed point. This Albanese variety is a compact torus and, if Y itself is an abelian
variety, the map aY is an isomorphism.

If g : Y → Z is a regular mapping between two varieties as above, there is a functorial induced
(regular) homomorphism g∗ : Alb(Y )→Alb(Z).

Set for simplicity M =M1,n. Then the inclusion jM :M → Cn induces an isomorphism
jM∗ : Alb(M)→Alb(Cn). Similarly, the inclusion jS : S→ C ′ is an isomorphism jS∗ : Alb(S)→
Alb(C ′).

The mapping f :M → S induces, via these isomorphisms, a homomorphism f∗ : Alb(Cn)→
Alb(C ′). Since aCn and aC′ are isomorphisms, this yields, up to a translation in C ′, a
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homomorphism h(f) : Cn→ C ′ such that f :M → S is just the restriction of this homomorphism.
This may happen if and only if the kernel of h(f) is contained in

⋃
i<j ∆ij . Since ker(h(f)) is a

codimension one irreducible subgroup in Cn, this is possible if and only if there exists i < j with

ker(h(f)) = ∆ij .

Note that we have h(f)(s1, . . . , sn) = h1(s1) · · · · · hn(sn), where hj : C→ C ′ are homomorphisms
for j = 1, . . . , n. Let ∆′ij be the subset of ∆ij consisting of all the points (s1, . . . , sn) ∈ Cn such
that si = sj = t and sm = 1 for m /∈ {i, j}. Then ∆′ij ⊂ ker(h(f)) implies that hj(t) = (hi(t))−1

for all t ∈ C.
By considering the subset ∆′ijk of ∆ij consisting of all the points (s1, . . . , sn) ∈ Cn such that

si = sj = t, sk = u and sm = 1 for k /∈ {i, j} and m /∈ {i, j, k}, we see that fk(u) = 1 for all u ∈ C.
It follows that the image of the morphism h(f)∗ :H1(Cn)→H1(C ′) is exactly im hi∗ = im hj∗.

Since f is admissible, the fibers of h(f) have to be connected, and this implies that h(f)∗ is
surjective. Hence hi∗ is surjective, and this implies that hi : C→ C ′ is an isomorphism. Moreover,

h(f)(s1, . . . , sn) = hi(si)hj(sj) = hi(si)hi(s−1
j ) = hi(sis−1

j ),

which completes the proof of our proposition, except for the last claim.
The translated components W in V1(M) may be of one of the following types.

(i) If dimW > 2, then W should be either a translate of one of the components Wij ,
or be associated to an admissible mapping f :M → C ′, with C ′ an elliptic curve.
Exactly as above one may argue that then f is the restriction of a homomorphism
h(f) : Cn→ C ′ with connected fibers. Both cases are impossible, since the corresponding
admissible mappings fij (respectively f) have no multiple fibers. For details, see [Dim07,
Theorems 3.6(vi) and 5.3].

(ii) Suppose that dimW = 1. Then using Corollary 5.9 in [Dim07], we see that there are two
subcases.

(iia) The component W is associated to an admissible mapping f :M → C∗. This subcase is
impossible in the situation at hand, since this would give an injection f∗ :H1(C∗,Q)→
H1(M,Q), in contradiction with the Hodge types of these two cohomology groups.

(iib) The component W is associated to an admissible mapping f :M → C ′, with C ′ an elliptic
curve. This case was already discarded in (i) above.

Remark 5.2.

(i) Let X be a compactification of the smooth quasi-projective irreducible complex variety
M . Assume that the inclusion j :M →X induces an isomorphism j∗ :H1(X)→H1(M)
and a monomorphism j∗ :H2(X)→H2(M). Then D =X\M has codimension at least
two and hence j] : π1(M)→ π1(X) is an isomorphism. In particular, V1(M) = V1(X) and
R1(M) =R1(X).
To see this, note that the conditions on j∗ are equivalent to H2(X,M) = 0. Let T be a
closed tubular neighborhood of D in X. Then, by excision and duality we get

dimH2(X,M) = dimH2(T, ∂T ) = dimH2n−2(T\∂T ) = dimH2n−2(D) = n(D)

where n(D) is the number of (n− 1)-dimensional irreducible components in D.

(ii) Consider a smooth quasi-projective irreducible complex variety M such that the cohomology
group H1(M,Q) is a pure Hodge structure of weight one. It can be shown that if α ∈R1(M),
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then the Hodge components α1,0 and α0,1 are both in R1(M). The converse implication
fails, as shown by our discussion above of the case M =M1,n, where F 1(M)⊂R1(M) and
F 1(M)⊂R1(M), but R1(M) is strictly contained in H1(M) = F 1(M) + F 1(M).

6. A second application: twisted cohomology and zeroes of logarithmic 1-forms

As above, let X be a good compactification of the smooth quasi-projective irreducible complex
variety M . Let (Ω∗X(log D), d) denote the logarithmic de Rham complex of the pair (X, D)
and take a logarithmic 1-form α ∈H0(X, Ω1

X(log D)) = F 1(M). For any point x ∈X, choose
α1, . . . , αn to be a basis of the free module Ω1

X(log D)x over the corresponding local ring OX,x.
Then α= a1α1 + · · ·+ anαn for some function germs aj ∈ OX,x. The complex

K∗x : 0→ Ω0
X(log D)x→ Ω1

X(log D)x→ · · · → Ωn
X(log D)x→ 0

where the differential is the wedge product by the germ of α at x can be identified with the
Koszul complex of the sequence (a1, . . . , an) in the ring OX,x. Let Ix be the ideal generated by
the germs aj in the local ring OX,x.

Let Z(α)⊂X be the zero set of α regarded as a section of the locally free sheaf Ω1
X(log D).

In other words, for all x ∈X, the germ of Z(α) at x is exactly the zero set of the ideal Ix.

Let cx be the codimension of the closed analytic subset Z(α) at the point x ∈X, i.e. cx =
codim(Ix). Using the relation between codimension and depth in regular local rings (see [Eis99,
Theorem 18.7, p. 455], as well as [Eis99, Theorem 17.4, p. 428 and Theorem 17.6, p. 430]), it
follows that

Hj(K∗x) = 0 for all j < cx and Hcx(K∗x) 6= 0. (14)

Now we use our Theorem 3.1. Let K∗ denote the sheaf complex Ω∗X(log D) with differential α∧.
Then there is an E2-spectral sequence with

Ep,q2 =Hp(X,Hq(K∗))

converging to the hypercohomology groups Hp+q(X, K∗). Here Hq(K∗) denotes the qth
cohomology sheaf of the complex K∗ and one clearly has

Hq(K∗)x =Hq(K∗x) (15)

for any point x ∈X and any integer q. Let c(α) = minx∈X cx and d(α) = n− c(α) = dim Z(α).
Equations (14) and (15) imply that Hp(X,Hq(K∗)) = 0 for all q < c(α). Since all the coherent
sheaves Hq(K∗) are supported on Z(α), it follows by the general theory that Hp(X,Hq(K∗)) = 0
for p > d(α). These two vanishing results imply the following result.

Theorem 6.1. Let M be a smooth quasi-projective irreducible complex variety. Take a 1-form
α ∈H0(X, Ω1

X(log D)) = F 1(M) and set Lt = exp(tα) ∈ T(M). Then the following hold.

(i) If α ∈H1,0(M), then Hj(M, Lt) = 0 for any t ∈ C∗ and j < c(α) = codim Z(α) or j >
2n− c(α). Moreover, one has Hc(α)(M, Lt) =H0(X,Hc(α)(K∗)) and H2n−c(α)(M, Lt) =
Hd(α)(X,Hn(K∗)).

(ii) If α ∈H1,1(M), then the above claims hold for t ∈ C generic.

Note that M is not necessarily affine, and hence it has not necessarily the homotopy type of
a CW-complex of dimension at most n, i.e. the above vanishing for j > 2n− c(α) is meaningful.
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The following special cases are easy to handle, using the obvious fact that in these cases the
above spectral sequences degenerate at E2.

Corollary 6.2 (A logarithmic Hopf index theorem). Let M be a smooth quasi-projective
irreducible complex variety, α ∈H0(X, Ω1

X(log D)) and Lt = exp(tα) ∈ T(M). Then, if
dim Z(α) = 0, the following hold.

(i) If α ∈H1,0(M), then Hj(M, Lt) = 0 for any t ∈ C∗ and j 6= n. In addition, one has that

dimHn(M, Lt) = dimH0(X,Hn(K∗)) = |χ(M)|

is the number of zeroes of the 1-form α counted with multiplicities.

(ii) If α ∈H1,1(M), then the above claims hold for t ∈ C generic.

Since the support of the sheaf Hn(K∗) is finite in the above case, note that Hn(K∗) 6= 0
implies dimH0(X,Hn(K∗))> 0.

Corollary 6.3. Let M be a smooth quasi-projective irreducible complex variety, and α
a 1-form in H0(X, Ω1

X(log D)) = F 1(M), Lt = exp(tα) ∈ T(M). Then, if dim Z(α) = 1, the
following hold.

(i) If α ∈H1,0(M), then Hj(M, Lt) = 0 for any t ∈ C∗ and j < n− 1 or j > n+ 1. Moreover,
one has natural isomorphisms

Hn−1(M, Lt) =H0(X,Hn−1(K∗)),
Hn(M, Lt) =H0(X,Hn(K∗))⊕H1(X,Hn−1(K∗)),

Hn+1(M, Lt) =H1(X,Hn(K∗))

for any t ∈ C∗.
(ii) If α ∈H1,1(M), then the above claims hold for t ∈ C generic.

Remark 6.4. At the end of the report [Den07] there is an example of a plane line arrangement
complement M (with a one-dimensional translated component in V1(M) discovered by Suciu
[Suc02]) and of a logarithmic 1-form α such that c(α) = 1 but H1(M, Lt) = 0 for generic t. Since
χ(M) 6= 0 in this case, one has H1(M, Lt) 6= 0 for generic t, and hence α is resonant in degree
p= 2. Such a possibility is clear by our results above: the corresponding sheafH1(K∗) is definitely
non-zero by (14), but the cohomology group H0(X,H1(K∗)) may be trivial, i.e. the coherent
sheaf H1(K∗) may have no non-trivial global sections.

Moreover this situation occurs as soon as M is a hyperplane arrangement complement such
that there is a one-dimensional translated component W in V1(M). Indeed, by the results
in [Dim07], such a component is associated to a surjective morphism f :M → C∗, with a
connected generic fiber and having at least one multiple fiber, say F1 = f−1(1). Let t be
a coordinate on C and set

α= f∗
(
dt

t

)
.

Then α is a non-zero logarithmic 1-form on M of Hodge type (1, 1) and c(α) = 1 since F1 ⊂ Z(α).
On the other hand, α is not 1-resonant, as this would imply α ∈R1(M) = TC1(V1(M)). This is
a contradiction, since there is no irreducible component W0 of V1(M) such that 1 ∈W0 and W
is a translate of W0 (see [Dim07, Corollary 5.8]).
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Del72 P. Deligne, Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1972), 5–57.
Den07 G. Denham, Zeroes of 1-forms and resonance of free arrangements, Oberwolfach Report

40/2007.
Dim07 A. Dimca, Characteristic varieties and constructible sheaves, Atti Accad. Naz. Lincei Cl. Sci.

Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18 (2007), 365–389.
Dim08 A. Dimca, On the isotropic subspace theorems, Bull. Math. Soc. Sci. Math. Roumanie 51 (2008),

307–324.
DM07 A. Dimca and L. Maxim, Multivariable Alexander invariants of hypersurface complements,

Trans. Amer. Math. Soc. 359 (2007), 3505–3528.
DPS09 A. Dimca, S. Papadima and A. Suciu, Topology and geometry of cohomology jump loci, Duke

Math. J. 148 (2009), 405–457.
Eis99 D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, third edition

(Springer, Berlin, 1999).
ESV92 H. Esnault, V. Schechtman and E. Viehweg, Cohomology of local systems on the complement

of hyperplanes, Invent. Math. 109 (1992), 557–561 Erratum, ibid 112, (1993) 447.
Fal07 M. J. Falk, Resonance and zeros of logarithmic one-forms with hyperplane poles, Oberwolfach

Report 40/2007.
GL87 M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some

conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389–407.
Har92 J. Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133 (Springer, New York,

1992).
Lib02 A. Libgober, First order deformations for rank one local systems with a non-vanishing

cohomology, Topology Appl. 118 (2002), 159–168.
PS08 C. Peters and J. Steenbrink, Mixed hodge structures, Ergebnisse der Mathematik und ihrer

Grenzgebiete 3, Folge 52 (Springer, Berlin, 2008).
SV91 V. V. Schechtman and A. N. Varchenko, Arrangements of hyperplanes and Lie algebra homology,

Invent. Math. 106 (1991), 139–194.

143

https://doi.org/10.1112/S0010437X09004461 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004461


A. Dimca

SV03 I. Scherbak and A. N. Varchenko, Critical points of functions, s`2 representations, and Fuchsian
differential equations with only univalued solutions, Mosc. Math. J. 3 (2003), 621–645.

Sim97 C. Simpson, The Hodge filtration on nonabelian cohomology, Proceedings of Symposia in Pure
Mathematics, vol. 62/2 (American Mathematical Society, Providence, RI, 1997), 217–281.

Sim08 C. Simpson, A weight two phenomenon for the moduli of rank one local systems on open
varieties, Proceedings of Symposia in Pure Mathematics, vol. 78 (American Mathematical
Society, Providence, RI, 2008), 175–214.

Suc02 A. Suciu, Translated tori in the characteristic varieties of complex hyperplane arrangements.
Arrangements in Boston: a conference on hyperplane arrangements (1999), Topology Appl.
118 (2002), 209–223.

Voi04 C. Voisin, On the homotopy types of compact Kähler and complex projective manifolds, Invent.
Math. 157 (2004), 329–343.

Voi08 C. Voisin, Hodge structures on cohomology algebras and geometry, Math. Ann. 341 (2008),
39–69.

Alexandru Dimca dimca@unice.fr
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