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Abstract

We consider an initial–boundary value problem that involves a partial differential
equation with a functional term. The problem is motivated by a cell division model
for size structured cell cohorts in which growth and division occur. Although much
is known about the large time asymptotic behaviour of solutions to these problems for
constant growth rates, general solution techniques are rare. We analyse the case where
the growth rate is linear and the division rate is a monomial, and we develop a method
to determine the general solution for a general class of initial data. The large time
dynamics of solutions for this case are significantly different from the constant growth
rate case. We show that solutions approach a time-dependent attracting solution that is
periodic in the time variable.

2010 Mathematics subject classification: 35F16.

Keywords and phrases: functional partial differential equations, nonlocal partial
differential equations.

1. Introduction

In this paper, we study a special case of a cell division equation that models cell
populations structured by size. This model was presented by Hall and Wake [12] in
1989, based on an earlier work by Sinko and Streifer [24]. In these models “size” can
be DNA content or mass. The model considers cells that are growing and dividing such
that a cell of size x divides into α > 1 daughter cells of equal size (in most applications,
α = 2). Let n(x, t) denote the number density of cell of size x at time t. If cells are
growing at a rate G(x) and dividing at a rate B(x), then the cell division equation is

nt(x, t) + (G(x)n(x, t))x + B(x)n(x, t) = α2B(αx)n(αx, t). (1.1)
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294 B. van Brunt et al. [2]

A solution to this equation must satisfy

lim
x→0+

G(x)n(x, t) = 0, lim
x→∞

G(x)n(x, t) = 0, (1.2)

for t ≥ 0, and
n(x, 0) = n0(x).

The cell division problem is thus a partial differential equation with a functional term,
accompanied by conditions of the initial–boundary value type.

Hall and Wake studied a special class of solutions to equation (1.1) for the case
where G(x) and B(x) are constant functions [12] and for the case where G(x) = gx and
B(x) = bxr, where g, b and r are positive numbers [13]. The solutions they studied were
called “steady size distributions” (SSDs). Such solutions correspond to the separable
solutions to equation (1.1) that satisfy condition (1.2). Their study was motivated by
experimental data on size structured cell populations in certain plant tissues [14]. The
observation that motivated the study was that the cell size distribution (number density)
evolved to a certain shape that did not depend on the initial distribution n0. In other
words, for t sufficiently large, the distribution assumed the same shape regardless of the
initial distribution. At least for constant growth rates, the SSD solutions matched the
data. The long time asymptotic behaviour of solutions to the cell division equation for
certain cases was studied prior to the work of Hall and Wake. For instance, Diekmann
et al. [8] studied the case where cells were limited to a maximum size and could divide
only after a minimum size was reached.

The cell division problem is a special case of the growth-fragmentation problem,
namely,

nt(x, t) + (G(x)n(x, t))x =

∫ ∞

x
B(ξ)∆(x, ξ)n(ξ, t) dξ − B(x)n(x, t)

∫ x

0

τ

x
∆(τ, x) dτ,

where the division kernel ∆ is given by

∆(x, ξ) = αδ
(
ξ

α
− x

)
.

Here, δ denotes the Dirac delta function. The above kernel models division of a cell at
size ξ > x into α daughter cells of the same size. Division occurs only when ξ is an α
multiple of x and division produces α new cells each of size x.

In the framework of the growth-fragmentation, much progress has been made
on the long time asymptotic behaviour of solutions and the existence of SSD-type
solutions for a broad class of functions B(x) and constant growth rates [6, 10, 19,
20, 23]. Although much is known about SSD solutions to equation (1.1), there are
few techniques for solving initial–boundary value problems that involve a functional
argument. Certain general results for the Cauchy problem, such as uniqueness, are
given by Borok and Zitomirskii [4] and Derfel and Zitomirskii [7] for a general class
of functional partial differential equations, but solution techniques for the initial–
boundary value problem are lacking. Recently, Zaidi et al. [27] have developed a
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technique whereby the problem can be solved for general initial data when B(x) and
G(x) are constant functions.

In this paper, we study the case when G(x) = gx and B(x) = bxr, where g, b and r
are positive numbers. We thus consider the equation

nt(x, t) + g(xn(x, t))x + bxrn(x, t) = bα2+r xrn(αx, t), (1.3)

which can be put into a simpler form as follows. Let

n(x, t) =
egt

x2 θ(x, t).

Then equation (1.3) yields

θt(x, t) + gxθx(x, t) + bxrθ(x, t) = bαr xrθ(αx, t). (1.4)

Let z = xr/r and ψ(z, t) = θ(x, t). Then θ(αx, t) = ψ(αrz, t), and from equation (1.4)

ψt(z, t) + g̃zψz(z, t) + b̃zψ(z, t) = b̃νzψ(νz, t), (1.5)

where g̃ = rg, b̃ = rb and ν = αr > 1. Equation (1.5) shows that it is sufficient to study
the case r = 1.

ProblemA. We focus on the initial–boundary value problem consisting of the equation

mt(x, t) + gxmx(x, t) + bxm(x, t) = bαxm(αx, t) (1.6)

along with the conditions

lim
x→0+

m(x, t)
x

= 0, lim
x→∞

m(x, t)
x

= 0, (1.7)

for any t ≥ 0, and

m(x, 0) = m0(x), (1.8)

where m0(x) = x2n0(x).

The choice G(x) = gx corresponds to the “exponential growth” of a cell.
Biologically, this means that the cell size grows at a rate proportional to its size.
In contrast, some models assume “linear growth”, which corresponds to the choice
G(x) = constant. There are arguments and data that support both choices. Cooper [5]
gave an overview of the two growth types and argued in favour of exponential growth;
Kubitschek [18], on the other hand, argued that the growth is linear, at least for
Escherichia coli. Koch [17] provided a review (as of 1993) explaining what led
biologists to choose one growth rate over the other. Abner et al. [1] compared and
contrasted the two growth rates in the context of the Cooper–Helmstetter (CH) theory
for prokaryotic cell cycles.

The long time asymptotic behaviour of solutions for the exponential growth case
differs markedly from that for the linear growth case. In particular, it can be shown
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[22, 23] for a general class of functions B and constant G that there is a unique
eigenvalue λ and a corresponding positive eigenfunction y such that, for any initial
distribution n0,

‖e−λtn(x, t) − y(x)‖ → 0,

as t→∞. Here ‖ · ‖ is a weighted L1 norm that depends on B. In contrast, it has been
shown for the exponential growth case that there is no dominant eigenvector [8] and
that long time asymptotic solutions may include time-dependent oscillations [3]. In
fact, there are choices for B (for example, constant division rate) that lead to critical
cases where there is no eigenvalue leading to a positive eigenfunction [9].

In the next section, we show that if Problem A has a solution, then it is unique and
nonnegative for nonnegative initial data. In Section 3, we derive a general solution to
Problem A using the Mellin transform. This solution contains an arbitrary function w0
that is determined by the initial data m0. In Section 4, we obtain an explicit relation
defining w0 in terms of m0 for x > 0, and we show that the behaviour of w0 as x→ 0+ is
oscillatory. In Section 5, we determine the eigenvalues and eigenfunctions associated
with Problem A and show that there is no dominant eigenvalue. We confirm that the
solution constructed in Section 3 satisfies the boundary conditions in Section 6 and
show that this solution converges in the L1 norm to a certain “limiting” solution that
contains time-dependent oscillatory terms.

2. Some qualitative results

We show that if Problem A has a solution, then it is unique and that any such
solution must be nonnegative if the initial function m0 is nonnegative. Let Ω = {(x, t) |
0 ≤ x, 0 ≤ t} and let N denote the set of functions h : N → R with the following
assumption.

Assumption 2.1. Suppose that:

(1) hx and ht are continuous on Ω;
(2) there is a positive number ` such that, for any fixed T ≥ 0,

h(x,T ) ∼ O(1/x1+`) as x→∞;

(3) for any ε > 0 and T ≥ 0, there is a corresponding δ > 0 and X such that
|xh(x, t)| < ε, whenever 0 < t − T < δ and x > X.

Theorem 2.2 (Uniqueness). Suppose that m ∈ N is a solution to Problem A. Then m is
unique among functions in N .

Proof. We first transform equation (1.6). Let

m(x, t) =
egt

x
m̃(x, t).

Then m̃ satisfies

m̃t(x, t) + gxm̃x(x, t) + bxm̃(x, t) = bxm̃(αx, t). (2.1)
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Suppose that there are two solutions, m1 and m2, in N . Then there are two
corresponding solutions m̃1 and m̃2 to equation (2.1). Let u = m̃1 − m̃2. The function u
satisfies (2.1) along with the conditions

u(0, t) = 0, (2.2)
u(x, 0) = 0. (2.3)

Suppose that m1 and m2 are distinct. Then there is a point (x̂0, t0) at which
u(x̂0, t0) , 0. Without loss of generality, we can assume that u(x̂0, t0) > 0. Since m1

and m2 are in N , we know that u and ux and ut are continuous on Ω and that, for any
fixed t ≥ 0, u(x, t)→ 0 as x→∞.

Now u(0, t0) = 0, and u(x, t0) is continuous for all x ≥ 0. Since m1 and m2 are inN ,
we know that m1(x, t0)→ 0 and m2(x, t0)→ 0 as x→∞. This means that u(x, t0)→ 0
as x→∞, and therefore u(x, t0) must have a global maximum, say, L0 > 0 at some
0 < x < ∞. Let x0 denote the largest value of x at which u(x, t0) achieves its global
maximum. Thus u(x0, t0) = L0, ux(x0, t0) = 0 and u(x0, t0) > u(αx0, t0); hence, equation
(2.1) implies that

ut(x0, t0) < 0. (2.4)

The above inequality indicates that u(x0, t) > u(x0, t0) for some t < t0.
Consider now the compact set Ω0 = {(x, t) | 0 ≤ x ≤ αx0, 0 ≤ t ≤ t0}. The function u

must achieve a global maximum in Ω0, and it is clear from equations (2.2) and (2.3)
that this maximum will not occur on the x- or t-axes. Inequality (2.4) precludes the
maximum being achieved on the line t = t0. The maximum either occurs on the line
segment {(αx0, t) | 0 < t < t0} or in the interior of Ω0. If it occurs on the line segment,
then there is a point (αx0, t1) with 0 < t1 < t0 at which u achieves a value greater than
L0.

Suppose that the global maximum is achieved at some point (x̂1, t1) in the interior
of Ω0 and not on the line segment. We can always take x̂1 to be the largest value
of x at which u(x, t1) achieves this maximum and (x̂1, t1) is in the interior of Ω0.
Thus u(x̂1, t1) > L0 and ux(x̂1, t1) = ut(x̂1, t1) = 0. Equation (2.1) thus implies that
u(x̂1, t1) = u(αx̂1, t1), and we know from the definition of x̂1 that αx̂ > αx0. In any
event, there exists a point (x̄1, t1) with x̄1 ≥ αx0 and t1 < t0 at which u(x̄1, t1) > L0. Let
x1 be the largest value of x at which the function u(x, t1) achieves its global maximum
L1 > L0. Then we can repeat the construction above to deduce the existence of a point
(x̄2, t2) with x̄2 ≥ αx1 and t2 < t1, where u achieves a value greater than L1. Repeating
these arguments, it is clear that we can construct sequences {x j}, {t j} such that x j →∞

and t j → T as j→∞. Here 0 ≤ T < t0 and u(x j, t j) > L0 > 0. Now m1 and m2 are in
N , which means that u must satisfy the uniform decay condition (3) in Assumption
2.1. If this condition is applied to the limit T of {t j}, then u cannot meet this
condition. �

Theorem 2.3 (Nonnegative solutions). Suppose that m ∈ N is a solution to Problem A.
If m0 ≥ 0, then m(x, t) ≥ 0 for all (x, t) ∈ Ω.
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Proof. Suppose that there is a point (x̂, t0) at which m(x̂, t0) < 0. Then m̃(x̂, t0) < 0,
where m̃ is as defined in the proof of Theorem 2.2. Clearly, the boundary and initial
conditions preclude m̃ taking negative values on the x and t axes. We can proceed in
a similar way to the proof of uniqueness to first note that the function m̃(x, t0) must
have a global minimum l0 < 0 and then let x0 be the largest value at which m̃(x, t0)
achieves this minimum. It thus follows that m̃t(x0, t0) > 0. We follow the construction
in the proof of Theorem 2.2, and we deduce the existence sequences {x j}, {t j} such that
x j→∞ as j→∞ and {t j} converges to some limit T , where 0 ≤ T < t0. For each j ≥ 1,
m̃(x j, t j) < l0 < 0, and hence m̃(x,T ) cannot satisfy the uniform decay condition (3). �

3. A Mellin transform solution

In this section, we derive a solution to equation (1.6) that satisfies condition (1.7).
The solution contains an arbitrary function that will be used in the next section to
ensure that the solution satisfies the initial condition (1.8).

The Mellin transform of m with respect to x is given by

M(s, t) =

∫ ∞

0
xs−1m(x, t) dx.

Assuming that m ∈ N , we know that xm(x, t)→ 0 as x→ ∞ for all t ≥ 0, so that
equation (1.6) yields the partial differential difference equation

Mt(s, t) − gsM(s, t) + b
(
1 −

1
αs

)
M(s + 1, t) = 0. (3.1)

Let M(s, t) = P(s)W(s, t), where

P(s) =

∞∏
k=0

(
1 −

1
αk+s

)
. (3.2)

The choice of P is strategic because

P(s) =

(
1 −

1
αs

)
P(s + 1).

In fact, the partition function P arises in a number of applications with pantograph-type
equations [26]. Equation (3.1) implies that

Wt(s, t) − gsW(s, t) + bW(s + 1, t) = 0. (3.3)

Rather than solving equation (3.3), we solve the corresponding partial differential
equation in the original (x, t) space. This equation is not functional in character. Let
w(x, t) denote the inverse Mellin transform of W(s, t). Then equation (3.3) corresponds
to the partial differential equation

wt(x, t) + gxwx(x, t) + bxw(x, t) = 0, (3.4)

which is equation (1.6) without the functional term.
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We now pose the Cauchy problem of solving (3.4) subject to an initial condition
of the form w(x, 0) = w0(x). The characteristic projections are t = ξ and x = ηegξ, and
hence equation (3.4) has solutions of the form

w(x, t) = w0(xe−gt)e−γx(1−e−gt),

where γ = b/g.
The infinite product defining P can be converted into an infinite series using the

Euler identity [2, p. 17]
∞∏

k=0

(1 + zqk) = 1 +

∞∑
k=1

qk(k−1)/2zk∏k
j=1(1 − q j)

, (3.5)

which is valid for |q| < 1 and z ∈ C. The Euler identity with q = 1/α and z = −1/αs

indicates that

P(s) = 1 +

∞∑
k=1

ck

( 1
αs

)k
,

where

ck =
(−1)kαk∏k

m=1(αm − 1)
=

(−1)kqk(k−1)/2∏k
j=1(1 − q j)

. (3.6)

The inverse of P(s) is

p(x) = δ(x − 1) +

∞∑
k=1

ckδ(αk x − 1).

The inverse transform of M(s, t) = P(s)W(s, t) is given by the Mellin convolution

m(x, t) =

∫ ∞

0
w
( x
ξ
, t
) p(ξ)
ξ

dξ, (3.7)

from which we get a solution of the form

m(x, t) = w0(xe−gt)e−γx(1−e−gt) +

∞∑
k=1

ckw0(αk xe−gt)e−γα
k x(1−e−gt). (3.8)

It is a straightforward (albeit tedious) calculation to show directly that the function
defined in equation (3.8) is a solution to equation (1.6) for any choice of differentiable
w0 such that the series can be differentiated term by term.

4. The function w0

The function w0 is determined by the initial condition m0. Before we determine
w0, a few conditions are placed on the function m0. These conditions ensure that m0,
regarded as a function on Ω, is in the set N introduced in Section 2 and that m0 also
satisfies (1.7) for consistency.
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Assumption 4.1. We make the following assumptions on the function m0.

(1) m0(x) ≥ 0 for all x ≥ 0 and m0 is not identically zero on [0,∞).
(2) m′′0 (x) is continuous for all x ≥ 0.
(3) There exists a positive number ` such that:

(a) m0(x) ∼ O(1/x1+`) as x→∞;
(b) m0(x) ∼ O(x1+`) as x→ 0+;
(c) m′0(x) ∼ O(1/x1+`) as x→∞.

We use the Mellin transform to deduce a relationship for w0. Conditions 3(a) and
3(b) in Assumption 4.1 ensure that the Mellin transform of m0 is holomorphic in a strip
that includes {s ∈ C | −1 ≤ <(s) ≤ 1}.

Equation (3.7) implies that

m0(x) =

∫ ∞

0
w0

( x
ξ

) p(ξ)
ξ

dξ, (4.1)

and taking the Mellin transform of both sides of equation (4.1), noting that the integral
is a Mellin convolution, yields

W0(s) =
M0(s)
P(s)

, (4.2)

where W0 and M0 are the Mellin transforms of w0 and m0, respectively, and P is given
by (3.2). The function 1/P is a well-known partition function studied by Morgan [21].
We can use another partition identity [2, p. 17] to show that

1
P(s)

=

∞∑
k=0

Rk(α)
1
αks ,

where R0(α) = 1, and, for k ≥ 1,

Rk(α) =

k∏
j=1

(
1 −

1
α j

)−1
.

Equation (4.2) thus gives

W0(s) = M0(s)
∞∑

k=0

Rk(α)
1
αks

for<(s) > 0 and, since the above series is uniformly convergent in {s ∈ C | <(s) ≥ σ}
for any σ > 0, the transform can be inverted term by term to get the inverse transform

w0(x) =

∞∑
k=0

Rk(α)m0(αk x). (4.3)

Let

R(α) =

∞∏
k=1

(
1 −

1
αk

)−1
.
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The value of R can be expressed in terms of elliptic integrals, theta functions, the
Dedekind eta function or Euler’s pentagonal number series [12, 21, 26]. The sequence
{Rk(α)} is monotonically increasing and bounded above by R(α). In Assumption 4.1,
the decay condition 3(a) on m0 ensures that the series in equation (4.3) is uniformly
convergent in [x0,∞) for any x0 > 0. However, the behaviour of w0(x) as x→ 0+ is
not clear. (Note that the series

∑∞
k=0 Rk(α) diverges.)

The behaviour of w0(x) near zero can be gleaned directly from the Mellin transform
using a well-known asymptotic relation [11, Theorem 4]. Specifically, suppose that
F is the Mellin transform of a function f , that the strip of holomorphy for F is
a <<(s) < c and that F is meromorphic for a ≤ <(s) ≤ c. The leading order terms
for f as x→ 0+ are determined by the singularities on the line<(s) = a. In particular,
suppose that F has the poles a1, . . . , a j on this line. Then

f (x) =

j∑
k=1

Res(F(s)x−s, ak) + O(x−A)

as x→ 0+, where A is some number less than a that depends on the position of the
singularities of F with real part less than a. The formula can be refined to include
more singularities (producing lower-order terms), and it can be extended to the case
where there are an infinite number of singularities on the line <(s) = a, provided the
infinite series is convergent.

Now M0(s) is holomorphic for −1 ≤ <(s) ≤ 1, and P(s) is an entire function with
first-order zeros at s = −` + iτ j, where ` = 0,1,2, . . . and τ j = 2π j/ logα for any integer
j. The function W0(s) is thus holomorphic in a strip that includes <(s) = 1 and has
simple poles along the imaginary axis at iτ j. These poles will determine the behaviour
of w0 near 0.

Res(W0(s)x−s, iτ j) = Res
( M0(s)

P(s)
x−s, iτ j

)
=

R(α)
logα

M0(iτ j)x−iτ j

=
R(α)
logα

M0(iτ j){cos(τ j log x) − i sin(τ j log x)},

and hence, as x→ 0+,

w0(x) =
R(α)
logα

∞∑
−∞

M0(iτ j){cos(τ j log x) − i sin(τ j log x)} + O(xσ0 ). (4.4)

Here 0 < σ0 < 1, since the “next” poles of W0 in the left half-plane are on the line
<(s) = −1. We have made the strong assumption that m0 is twice continuously
differentiable. Under this assumption, we can appeal to the Riemann Lebesgue lemma
[25] to assert that

|M0(iτ j)| ∼ O(|τ j|
−2),
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as j→ ±∞, and this ensures the convergence of the series
∑∞
−∞ |M0(iτ j)|. Clearly, this

condition can be relaxed, but we will not pursue this. The Riemann Lebesgue lemma
can also be used to refine the O(xσ0 ) term in (4.4). In particular, this term arises from
the contour integral of the inverse transform along the line<(s) = −σ0. Now∣∣∣∣∣ ∫ −σ0+i∞

−σ0−i∞
W0(−σ0 + iη)x−(−σ0+iη) dη

∣∣∣∣∣≤ xσ0

∫ −σ0+i∞

−σ0−i∞

∣∣∣∣∣ M0(−σ0 + iη)
P(−σ0 + iη)

∣∣∣∣∣ dη
≤ ρ0xσ0 ,

where

ρ0 =
1

|P(−σ0)|

∫ −σ0+i∞

−σ0−i∞
|M0(−σ0 + iη)| dη.

Equation (4.4) can thus be written as

w0(x) = h0(x) + xσ0 r0(x), (4.5)

where

h0(x) =
R(α)
logα

∞∑
−∞

M0(iτ j){cos(τ j log x) − i sin(τ j log x)}, and |r0(x)| ≤ ρ0.

The asymptotic behaviour of w0 as x→ 0+ can be further refined by using a contour
that also encloses the poles along the line<(s) = −1. We know that M0 is holomorphic
along the line<(s) = −1 so that there is a σ1, 1 < σ1 < 2, such that W0 is holomorphic
along the line <(s) = −σ1. If we incorporate the poles on <(s) = −1, following the
above approach, w0 can be expressed in the form

w0(x) = h0(x) + xh1(x) + xσ1 r1(x), (4.6)

where

h1(x) =
R(α)

(1 − α) logα

∞∑
−∞

M0(−1 + iτ j){cos(τ j log x) − i sin(τ j log x)},

and there is a constant ρ1 such that |r1(x)| ≤ ρ1. This form will be used later to show
that m meets the boundary condition (1.7).

The next lemma summarises some of the important properties of w0 that will be
needed in Section 6.

Lemma 4.2. Let w0 be defined by equation (4.3). Under conditions (1)–(3) on m0 in
Assumption 4.1:

(1) w0 is bounded on (0,∞);
(2) w′0 ∈ C1(0,∞); and
(3) w′0 is bounded on [x0,∞) for any x0 > 0.

https://doi.org/10.1017/S1446181117000591 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000591


[11] On a cell division equation with a linear growth rate 303

Proof. The Mellin transform can also be used to examine the decay rate of w0(x) as
x→∞. Briefly, 1/P is holomorphic in the right half-plane and M0 is holomorphic
in the strip −1 ≤ <(s) ≤ 1. This means that the strip of holomorphy for the Mellin
transform W0 must include a strip of the form 0 <<(s) < c, for some c > 1, and this
implies that

w0(x) ∼ O(x−c) (4.7)

as x→∞. Condition 3(c) in Assumption 4.1 yields a similar result for w′0.
The decay conditions on m0 as x→∞ show that in any interval of the form [x0,∞),

where x0 > 0, the series in (4.3) is uniformly convergent, and the continuity of m0

implies that w0 is also continuous in that interval. Relation (4.7) implies that w0 must
be bounded on [x0,∞) and relation (4.4) shows that w0 is bounded on the interval
(0,∞).

To show that w0 ∈ C1(0,∞), we note that m0 ∈ C1(0,∞), and condition 3(c) ensures
that the series

∑∞
k=0 Rk(α)αkm′0(αk x) is uniformly convergent in [x0,∞) for any x0 > 0.

The boundedness of w′0 in [x0,∞) can be established in the same manner as for w0. �

5. Dominant eigenvalues and eigenfunctions

The eigenvalues and eigenfunctions associated with Problem A can be derived by
studying the class of nontrivial solutions of the form m̄(x, t) = A(t)y(x). Substituting
this solution form into equation (1.6) yields

At(t)
A(t)

=
1

y(x)
(−xyx(x) − γxy(x) + γαxy(αx)) = λ,

where λ is a constant. The above expression implies that

A(t) = κeλt,

where κ is a constant, and y satisfies the equation

xy′(x) + (γx + λ)y(x) = γαxy(αx), (5.1)

where ′ denotes the first derivative. There is precisely one real eigenvalue λ0,0 such that
m̄ ∈ N is nonnegative in Ω and satisfies condition (1.7). Since m̄ ∈ N , y is integrable
on [0,∞). Moreover, condition (1.7) indicates that

lim
x→0+

y(x)
x

= 0,

so that y(0) = 0, and y(x)/x is also integrable on [0,∞). Since m̄(x, t) ≥ 0 and m̄(x, t)
is nontrivial,

∫ ∞
0 y(x) dx , 0 and

∫ ∞
0 y(x)/x dx , 0. These observations allow us to

glean a value for λ0,0. Specifically, if we divide both sides of equation (5.1) by x
and integrate from 0 to ∞, we find that λ0,0 = 0, and hence equation (5.1) yields the
pantograph equation

y′(x) + γy(x) = γαy(αx). (5.2)
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A detailed analysis of this equation can be found in [15, 16]. The probability density
function (pdf) solution to this equation was derived by Hall and Wake in [12], where
they showed that there is a unique pdf solution y. In fact, they studied the exponential
growth case [13], and they used their solution to the pantograph equation to construct
what they called an SSD solution to Problem A. Briefly, the solutions to equation (5.2)
are of the form

y(x) = CD(x, γ),

where C is a positive constant and

D(x, γ) = e−γx +

∞∑
k=1

cke−γα
k x,

where ck is given by equation (3.6). The constant C is generally chosen to normalize
the corresponding separable solution to the original equation (1.3) to be a pdf at t = 0.
For the original partial differential equation, however, the normalization comes from
the initial data.

Note that the value of D(0, γ) can be determined from the Euler identity (3.5) with
z = −1. This gives

D(0, γ) = 1 +

∞∑
k=1

ck =

∞∏
k=0

(1 − α−k) = 0.

Since D is a solution to equation (5.2), it follows that all the derivatives of D with
respect to x also vanish at x = 0. This can also be deduced directly from the Euler
identity because

1 +

∞∑
k=1

ckα
jk =

∞∏
k=0

(1 − α j−k) = 0

for any positive integer j. The next lemma gives a summary of some important
properties of the Dirichlet series. The proof of these properties can be found in [12].

Lemma 5.1. For any positive constant β, the Dirichlet series

D(x, β) = e−βx +

∞∑
k=1

cke−βα
k x

is a solution to
Dx(x, β) + βD(x, β) = βαD(αx, β).

The function D has the following properties.

(1) D has derivatives of all orders with respect to x.
(2) D and all the derivatives of D with respect to x vanish at x = 0 and as x→∞.
(3) D(x, β) > 0 for all x > 0.
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Returning to equation (5.1), it is a straightforward calculation to show that, for
any integer j, λ(0, j) = iτ j is also an eigenvalue with a corresponding eigenfunction
y j(x) = xiτ j y(x). (In fact, all the zeros of P are eigenvalues.) The dominant real
eigenvalue is 0, but<(λ(0, j)) = 0 for all integers j, so there is no dominant eigenvalue,
and this is the source of oscillatory terms in the long time asymptotic behaviour of the
solutions to Problem A.

6. The solution and long time dynamics

We first establish that equation (3.8) provides the solution to Problem A.

Theorem 6.1. Let m0 satisfy conditions (1)–(3) of Assumption 4.1. Then the function
m defined by (3.8), where w0 is given by equation (4.3), is the solution to Problem A.

Proof. The uniqueness and positivity of the solution was established in Section 2.
Lemma 4.2 shows that the series in (3.8) is uniformly convergent in the quadrant
{(x, t) | (x, t) ∈ [x0,∞) × (0,∞)} for any x0 > 0 and is differentiable. By construction,
the series satisfies the partial differential equation (1.6) and the initial condition (1.8).
It remains, however, to show that the boundary conditions (1.7) are satisfied for t > 0.

Let

Φ0(x, t) = h0(xe−gt),
R(α)
logα

∞∑
−∞

|M0(iτ j)| = Υ0,

Φ1(x, t) = h1(xe−gt),
R(α)

(α − 1) logα

∞∑
−∞

|M0(−1 + iτ j)| = Υ1,

and note that Φk(x, t) = Φk(αx, t) for k = 0, 1. Equation (4.5) implies that

m(x, t) = Φ0(x, t)D(x, β(t)) + xσ0 e−σ0gtR0(x, t), (6.1)

where β(t) = γ(1 − e−gt), 0 < σ0 < 1, and

R0(x, t) = r0(x)e−β(t)x +

∞∑
k=1

ckα
σ0kr0(αk x)e−β(t)αk x.

Now

|R(x, t)| ≤ ρ0

(
1 +

∞∑
k=1

|ck|α
σ0k

)
,

and since the above series converges, there is thus a number κ0 such that |R(x, t)| ≤ κ0.
Hence, for any t > 0, ∣∣∣∣∣m(x, t)

x

∣∣∣∣∣ ≤ Υ0

x
D(x, β(t)) +

κ0

x1−σ0
.

We know from Lemma 5.1 that D(x, β(t))→ 0 as x→∞, and since σ0 < 1, the above
inequality indicates that

lim
x→∞

m(x, t)
x

= 0 for any t > 0.
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Equation (4.6) shows that, for t > 0,

m(x, t) = Φ0(x, t)D(x, β(t)) +
xe−gt

−β(t)
Φ1(x, t)Dx(x, β(t)) + xσ1 e−σ1gtR1(x, t),

where 1 < σ1 < 2, and

R1(x, t) = r1(x)e−β(t)x +

∞∑
k=1

ckα
σ0kr1(αk x)e−β(t)αk x.

A bound for the term |R1| can be obtained in a manner similar to that for |R0|, so that
there is a number κ1 such that |R1(x, t)| ≤ κ1. Hence,∣∣∣∣∣m(x, t)

x

∣∣∣∣∣ ≤ Υ0

x
D(x, β(t)) +

Υ1

β(t)
|Dx(x, β(t))| + xσ1−1κ1.

Lemma 5.1 shows that Dx(x, β) → 0 as x → 0+; consequently, D(x, β(t))/x → 0
(l’Hôpital’s rule) and |Dx(x, β(t))| → 0 as x→ 0+. Since σ1 > 1, xσ1−1 also vanishes in
this limit, and thus, for any t > 0

lim
x→0+

m(x, t)
x

= 0. �

We now consider the behaviour of m for large time. The main result is the following
theorem.

Theorem 6.2. Under the conditions of Theorem 6.1,∫ ∞

0
|m(x, t) − Φ0(x, t)D(x, γ)| dx→ 0 (6.2)

as t→∞.

Proof. Using equation (6.1),

m(x, t) − Φ0(x, t)D(x, γ) = Φ0(x, t)(D(x, β(t)) − D(x, γ)) + xσ0 e−σ0gtR0(x, t).

Consequently,

|m(x, t) − Φ0(x, t)D(x, γ)| ≤ Υ0|D(x, β(t)) − D(x, γ)| + xσ0 e−σ0gt |R0(x, t)|. (6.3)

Now β(t) = γ(1 − e−gt) < γ; therefore,

|D(x, β(t)) − D(x, γ)|=
∣∣∣∣∣(e−β(t)x − e−γx) +

∞∑
k=1

ck(e−β(t)αk x − e−γα
k x)

∣∣∣∣∣
≤ (e−β(t)x − e−γx) +

∞∑
k=1

|ck|(e−β(t)αk x − e−γα
k x),
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so that, by integrating,∫ ∞

0
|D(x, β(t)) − D(x, γ)| dx ≤Υ0

(e−gt

β(t)
+

∞∑
k=1

|ck|
e−gt

αkβ(t)

)
≤

Υ0e−gt

β(t)

(
1 +

∞∑
k=1

|ck|

)
. (6.4)

We know that β(t)→ 1 as t→∞, so that, for (say) t > (log 2)/g, β(t) > 1/2. The series
in (6.4) converges so that, for t > (log 2)/g,∫ ∞

0
|Φ0(x, t)||D(x, β(t)) − D(x, γ)| dx ≤ Υ̃0e−gt, (6.5)

where

Υ̃0 = 2Υ0

(
1 +

∞∑
k=1

|ck|

)
.

Also, for t > (log 2)/g,

|R0(x, t)| ≤ |r0(xe−gt)|e−β(t)x +

∞∑
k=1

|ck|α
σ0k|r0(αk xe−gt)|e−β(t)αk x

≤ ρ0e−γx/2
(
1 +

∞∑
k=1

|ck|α
σ0k

)
. (6.6)

The series in (6.6) converges and xσ0 e−γx/2 ∈ L1[0,∞), and hence there is a number ρ̃0
such that ∫ ∞

0
xσ0 |R0(x, t)| dx ≤ ρ̃0. (6.7)

Equations (6.3), (6.5) and (6.7) imply that∫ ∞

0
|m(x, t) − Φ0(x, t)D(x, γ)| dx ∼ O(e−gσ0t) as t→∞. �

7. Discussion

In this paper, we developed a method for solving an initial–boundary value problem
that involves a partial differential equation with a functional term. The problem was
originally presented as a model for cell division by Hall and Wake [13], who studied
the separable solution. Although the results were tailored to Problem A, it is clear
from the transformations leading to equation (1.6) that the method can be used for
solving the differential equation (1.3), provided r > 0. The results can be refined for a
broader class of initial data. However, it is not clear that the approach used in Section
3 can be adapted to division rates that are not monomials. A key step in deriving the
solution form (3.8) is the identification of a “partition function”, P, that yields a Mellin
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Figure 1. Solution for m0(x) = x2e−(x−4)2/2.

tranform equation corresponding to a partial differential equation without a functional
term (equation (3.4)). A number of pantograph-type ordinary differential equations
have this structure. For example, the basic model with constant growth and division
rates leads to the same partition function P [26], but the general solution for the partial
differential equation reflects this structure only in the long time asymptotic behaviour
of solutions [27].

Theorem 6.2 shows that the solution m converges (exponentially) in the L1 norm to
the function Φ0D as t→∞. What is remarkable is that Φ0 depends on t and the initial
condition m0. For constant growth rates, the limiting solution is purely a function of
x and depends weakly on the initial data through a normalization constant [22, 23].
Another feature of Φ0 is that it is periodic in the time variable, that is,

Φ0(x, t) = Φ0(x, t + g−1 logα),

and this gives the limiting solution its oscillatory character. The amplitude of the
oscillations depend on the initial data through the Mellin transform and the value of
D. It was shown by Bernard et al. [3] that exponential growth gives rise to oscillating
solutions for a class of coagulation-fragmentation equations that includes the present
cell division equation. The extra structure of this cell division model, however, allows
one to not only solve the general problem explicitly, but also to determine the limiting
solution in detail.

A solution m can be plotted directly from equations (3.8) and (4.3) for a given initial
condition m0. We provide three examples that illustrate the influence of the initial data
and the oscillatory character of the limiting solution. In all of these examples, we use
α = 2, γ = 1 and g = 1. For the first example, let m0 = x2e−(x−4)2/2. Figure 1 depicts
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Figure 2. Solution for m0(x) = x2e−x2/2.

a graph of the solution, which clearly shows the oscillatory nature of the solution. If
we change the initial data to m0 = x2e−x2/2, then the character of the solution changes
noticeably for larger time (Figure 2).

The oscillations are still there, but the effect of the term Φ0 is less striking. As
an “extreme” case, let m0(x) = H(x − 1) − H(x − 2), where H denotes the Heaviside
function. In this case, M0(s) = (2s − 1)/s, so that the zeros of M0 coincide with those of
P(s) leaving the simple pole at s = 0. Although m0 does not satisfy the differentiability
conditions, we have that M(iτ j) = 0 for all j = ±1,±2, . . . , so there is no question about
the series defining Φ0 converging. As predicted by the analysis, the solution does not
have any oscillations (Figure 3).

In terms of the original number density n with r = 1, equation (6.2) translates to∫ ∞

0
x2|e−gtn(x, t) − Φ0(x, t)D(x, γ)| dx→ 0,

so that convergence to the limiting solution is in a weighted L1 norm. For general
r > 0, the solution to (1.3) can be recovered by calculating m as before and then
substituting z(x) = xr/r for x, αr for α and gr for g in m. This gives a solution of the
form n(x, t) = e−gtm(z(x), t)/x2. Making the same substitutions in the limiting function
Φ0D, ∫ ∞

0
xr+1|e−gtn(x, t) − Φ0(z(x), t)D(z(x), γ)| dx→ 0.

The parameter r thus determines the weighting of the norm. Note that it does not
change the period of Φ0.
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Figure 3. Solution for m0(x) = H(x − 1) − H(x − 2).

Finally, the transformations used to construct the solution rely crucially on r > 0.
If r ≤ 0, then the construction breaks down. Of special interest is the “critical case”
when r = 0. The large time asymptotic behaviour for this case was studied by Doumic
and Escobedo [9], who showed that the long time dynamics of solutions for this case
are very different.

The first signs of trouble occur when one looks for a solution of the form n(x, t) =

A(t)y(x), where y is a pdf. Substituting this solution form into equation (1.3) with r = 0
leads to the equation

g(xy(x))′ + (b + λ)y(x) = bα2y(αx), (7.1)

where λ is a constant of separation. The problem is that there are two ways of finding
λ. Integrating both sides of equation (7.1) from 0 to∞ gives λ = b(α − 1). On the other
hand, assuming that y has a first moment, then multiplying both sides of equation (7.1)
by x and integrating from 0 to∞ yields λ = g. Thus for any solution y that decays fast
enough to have a first moment, we must have g = b(α − 1), which, in general, is not
true.

Doumic and Escobedo [9] show, more generally, that there are no solutions of the
form A(t)y(x f (t)), where A and f are continuously differentiable functions on [0,∞).
They also derive an explicit solution form in terms of an inverse Mellin transform.
In fact, the problem can be solved directly if the initial condition n0 is smooth and
bounded. Note that the uniqueness and nonnegativity results of Section 2 can be
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adapted for the case r = 0. The solution in this case is

n(x, t) = e−(b+g)t
∞∑

k=0

n0(αk xe−gt)
(bα2t)k

k!
.
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