
ONTARIO MATHEMATICAL MEETINGS - Winter, 1969 

The details of the two meetings (time, place and invited address) are 
given as follows: 

Tenth meeting: January 18, University of Waterloo (Abstracts 69.1 to 69.7) 
R. M. Redheffer (U. C. L. A. ), Some recent results on inequalities. 

Eleventh meeting: March 15, University of Toronto (Abstracts 69.8 to 69.15) 
G.-C. Rota (M.I. T.), Foundations of combinatorial theory, a progress report. 

69.1 F.V. Atkinson (University of Toronto) 
Definiteness Properties of Arrays of Operators 

Let G , . . . , G be complex linear spaces, endowed with conjugate-linear 

maps to their duals (indicated by asterisks), and let 

(1) A , r = 1 k , s = 0 k, 
rs 

be hermitian- symmetric endomorphisms of the G , respectively, so 
r 

that the quadratic forms 

(2) g*A g , g e G 
r rs r r r 

are real-valued. We suppose the array (1) of operators to be definite in 
the sense that the matrix (2), with k rows (r = 1, . . . , k) and k+1 
columns (s = 0, . . . , k) has its maximal rank k , for all choices of 
g. € G. , . . . , g, e G, , none being zero. The question is posed of whether 
1 1 k k ^ 

we can then augment (2) to a square array by a row of k+1 real scalars, 
so that this array has determinant of fixed sign. The answer is affirmative 
in the cases k = 1,2 only. The counter-example for k = 3 is based on a 
geometrical interpretation in terms of convex bodies. It is necessary to 
find three such bodies with the properties that no line meets all three, 
while through every point a plane can be drawn to meet all three bodies. 

69.2. B. Banaschewski (McMaster University) 
Essential Extensions and Injectivity for Metric and Banach Spaces 

In some categories K (e.g. abelian groups; see also [2, 3, 4, 6]) one 
has the following situation with respect to injectivity and essential 
extensions : 

I. The following are equivalent for X e K: 

(1) X is injective. 

(2) For any extension Y D X there exists a morphism 
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f: Y -** X mapping X ident ica l ly . 

(3) X has no p rope r e s sen t i a l ex tens ions , i . e . no p rope r extensions 
Y D X for which any f: Y -» Z whose r e s t r i c t i o n to X is an 
embedding is itself an embedding. 

II. F o r any X e K and any extension Y of X in K, the following a r e 
equivalent : 

(1) Y is injective and an e s sen t i a l extension of X. 

(2) Y is a m a x i m a l e s sen t i a l extension of X. 

(3) Y is a m i n i m a l inject ive extension of X. 

III. Any X e K has an injective e s sen t i a l extension Y 3 X in K . (Such 
an extension is e s sen t i a l ly unique; it is called the injective hull of X. ) 

In [1 ] it is shown that a c e r t a i n se t of conditions on a c l a s s E of m o r p h i s m s 
in a ca tegory K impl ies that E- inject iv i ty and e s sen t i a l E -ex tens ions have 
p r o p e r t i e s analogous to those desc r ibed by I - III , where E-inject ivi ty is 
inject ivi ty with r e s p e c t to the f e E in place of a r b i t r a r y m o n o m o r p h i s m s , 
and an e s sen t i a l E-ex tens ion of X is given by f: X-»-Y where f e E and 
gf e E impl ies g e E , for any g. The conditions a r e as fol lows: 

(E l ) E is closed under composi t ion . 

(E2) If f € E is a left i n v e r s e of a g e E then f is an i s o m o r p h i s m ; 
converse ly , an i s o m o r p h i s m belongs to E . 

(E3) F o r any f e E t he r e ex i s t s a g e K such that gf £ E*, i . e . 
gf e E and, for a l l h € K, hgf e E impl ies h e E . 

(E4) K has pushouts , and these p r e s e r v e E in the s ense that for any 
pushout d i a g r a m 

f 

g 

u 
u ç E whenever f e E. 

(E5) Any w e l l - o r d e r e d d i r e c t s y s t e m in E has an upper bound in E . 

(E6) F o r any X € K, the c l a s s e s of all f : X -* Y in E* and of a l l 
f: Y -*• X in E* a r e smal l , and a l l f € E* a r e m o n o m o r p h i s m s . 

He re , we a r e concerned with the ca tegory MS of al l m e t r i c spaces and 
mappings f : X - Y such that d(f(x), f(x')) < d(x, x ') for a l l x, x1 e X ( d ( . , . ) 
the m e t r i c e s in e i ther space) , and the analogous ca tegory BanS of all 
Banach spaces (e i ther field of s c a l a r s ) and l inear mappings f: X -*• Y with 
| |f(x)(J£ || x | | . F o r each of these it is known that every X has a m i n i m a l 
inject ive extens ion Y D X [5, 7], and that this is e s sen t i a l [8] . The proofs 

v 
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in [5] and [7] a r e ad hoc, and e s s e n t i a l ex tens ions do not occur expl ic i t ly . 
A different approach can be based on the above condi t ions , in view of: 

PROPOSITION. In MS and BanS, the i s o m e t r i c e m b e d d i n g sat isfy (E l ) -
( E 6 ) . 

It follows that I - III hold in both MS and BanS. 

R E F E R E N C E S 

1. B . Banaschewsk i , P r o j e c t i v e c o v e r s in c a t e g o r i e s of topological 
spaces and topological a l g e b r a s . P r o c e e d i n g s of the Topology 
Conference, Kanpur , 1968 (to a p p e a r ) . 

2 . B . B a n a s c h e w s k i and G. B r u n s , Ca tegor ica l c h a r a c t e r i z a t i o n of the 
MacNei l le comple t ion . A r c h . Math . 18 (1967) 369-377 . 

3 . B . B a n a s c h e w s k i and G. B r u n s , Injective hulls in the ca t egory of 
d i s t r ibu t ive l a t t i c e s . C r e l l e ' s Jou rna l (to a p p e a r ) . 

4 . P . B e r t h i a u m e , The inject ive envelope of S - s e t s . Can. M a t h . Bu l l . 
10 (1967) 261-274 . 

5. H . B . Cohen, Injective envelopes of Banach s p a c e s . Bu l l . A m e r . 
Math . Soc. 70 (1964) 723-726 . 

6. B . Eckmaim und A. Schopf, Uber injeckt ive Moduln . A r c h . Math . 
4 (1953) 7 5 - 7 8 . 

7 . J . R. Isbel l , Six t h e o r e m s about inject ive m e t r i c s p a c e s . Commant . 
Math . Helv. 39 (1964) 65 -76 . 

8 . J . R. Isbel l , Th ree r e m a r k s on inject ive envelopes of Banach s p a c e s 
(to a p p e a r ) . 

69 .3 J . B . Mi l l e r (Tren t Univers i ty ) 
Some F o r m u l a e for Reso lven t s 

In some c a s e s , continuous l inea r o p e r a t o r s mapping a Banach a lgeb ra 
with unit into itself can be shown to sat isfy one or m o r e a lgeb ra i c ident i t ies 
involving the e l emen t s of the a l g e b r a . It is then usual ly pos s ib l e to deduce 
f rom the ident i t ies a fo rmula for the r e so lven t , and some s p e c t r a l p r o p e r t i e s 

Known c a s e s include averag ing o p e r a t o r s , Reynolds o p e r a t o r s , and Bax t e r 
o p e r a t o r s , specified r e s p e c t i v e l y by the ident i t ies 

T(Tx.y) = Tx. Ty = T(x. Ty) , 

Tx. Ty = T (Tx .y + x . Ty - Tx. Ty) , 

T x . T y = T (Tx .y + x. Ty •• O . x . y ) . 

Here T is the o p e r a t o r , and x and y r ange over the Banach a lgebra ; 
8 is a fixed p a r a m e t e r f rom the a l g e b r a . 

1 1 8 

https://doi.org/10.1017/S0008439500030228 Published online by Cambridge University Press

https://doi.org/10.1017/S0008439500030228


The formulae for the resolvents can be put in forms not involving the 
lgebra elements, other than the unit e, its image t - Te, and functions 
f t of t . 

69.4 M.A. McKiernan (University of Waterloo) 
A Less Formal Approach to Kaluza-Klein Formalism 

Ti , — — 
The "action" integrals (a) \ ( T . ) = f s/g., y1 yJ dT and 

1 J ij 
To 

(b) X(T ) = f \ vh . . x x - B. y f d-r, corresponding respectively 

T 0 ( . J 

to gravitational and gravitational-electromagnetic phenomena, are shown 
to be related under continuous groups of null translations. This relation 
motivates a modified Kaluza-Klein formalism for which the classical 

cylindrical metric preserving transformations (c) y = x + f (x ), y = 
i j 5 5 i i j 5 

f (x ) for i = 1,2,3,4 are replaced by (d) y = x , y = f (x , x ). The 

cylindrical metric of V is nevertheless preserved under (d), since it 

is assumed that V admits a metric of the form (y ) - g..(y ) y y 

(corresponding to (a)) and that (d) defines a continuous group of null 
4 5 

translations in the V metric defined by g.. when x is considered 
ij 

the group parameter. Application of (d) leads to the cylindrical metric 

(x + B .x ) - h . .xx corresponding to (b). The resulting electromagnetic 
1 XJ 4 

fields F . . = B. . - B. . are then related to the curvatures of the V 
i j i . J J * 1 

corresponding to g.. and h..; 'in particular it is shown that 
& i j ij 

B. B. Rlj = - i F . . F 1 J and F1^ = B. R l j . When R-- = 0 it is shown 
i J g iJ »J J g g*J 

that F . . is a null electromagnetic field which is generally non-trivial. 

Some physical and geometric interpretations of the mathematical results 
are also presented. 

69.5 Tomasz Pietrzykowski (University of Waterloo) 
A Language for the Computer Assisted Theorem Proving 

The paper outlines the main features of a proposed language (called the 
TPL language) for the computer assisted theorem proving. The TPL is 
destined to describe formal theories in a form suitable for an eventual 
computer processing. The class of theories which can be written in the 
TPL includes the predicate calculus of an arbitrary high (but finite) order. 
The possible applications of the TPL are: mechanical theorem proving, 
computer theorem checking, algebraic symbol manipulation. 

A theory written in the TPL consists of a sequence of statements. There 
are the following kinds of statements: letter and separator stt (stt denotes 
statements) for optional expanding the standard TPL alphabet, type stt 
for declaring the types of objects of a theory, generality stt for establishing 
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the h i e r a r c h y of gene ra l i ty between types , s c h e m a s t t for providing ; e 
r u l e s of c rea t ing objec ts , and cons tan t s t t for specifying the cons tan ' 
the theo ry . The objects of a T P L theory a r e the modified functional 
e x p r e s s i o n s whe re the function head m a y be placed a r b i t r a r i l y (not c -y 
on the r igh t m o s t end of the e x p r e s s i o n ) . The r igh t p a r e n t h e s e s a r e 
c o m p a l s o r y , the left a r e opt ional . 

P roo f s a r e rea l i zed by m e a n s of the proof s t a t emen t , which cons i s t s >f a 
sequence of s u b s t a t e m e n t s of the following k inds : a s sumpt ion , ins tance , 
deduction, conclus ion and t h e o r e m . The proof p r o c e d u r e of the T P L is 
v e r y tedious and cannot be expected to be used p r a c t i c a l l y by a human. 
But t h e r e a r e many ways of defining a reduced proof p r o c e d u r e , where the 
u s e r will only wr i t e c e r t a i n proof s u b s t a t e m e n t s and the r e s t wil l be 
au tomat ica l ly produced by an a p p r o p r i a t e m e c h a n i c a l t h e o r e m proving 
p r o c e d u r e . 

69 .6 V. Dlab (Car le ton Univers i ty ) 
La t t i ce R e p r e s e n t a t i o n of Algebra ic Dependence 

The l inear dependence in vec to r spaces can be studied in t e r m s of 
LA-dependence s t r u c t u r e s (cf. [1]): 

A LA-dependence s t r u c t u r e is a pa i r (S: J ) of the fundamenta l se t S and 
a s y s t e m rr of (" independent") subse t s I , I , I , . . . which (i) is induct ive 

and (ii) , defining 

c(I) = I U { x | x G S & I U {x} t 3" } , 

s a t i s f i e s the following impl ica t ion 

I C e ( I ) - c(l.) C cOL) . 
1 — 2 1 — Z 

In o r d e r to m e e t needs for wider appl icabi l i ty the concept of a LA-dependence 
s t r u c t u r e has been gene ra l i zed to that of a GA-dependence s t r u c t u r e 
(cf. [1]): 

A GA-dependence s t r u c t u r e is a t r i p l e (S, U, 3") of the fundamenta l s e t S, 
g 

"canonic zone" U C S and a s y s t e m 3" CI 2 which sa t i s f i es (i), (ii) for 
I C U and (iii) which has a m a x i m a l I* c 3" such that F C U . 

As in the c a s e of a LA-dependence s t r u c t u r e , one can p rove the i n v a r i a n c e 
of a c e r t a i n c a r d i n a l a t tached to (S, U, 3") - the rank of the s t r u c t u r e 
(see [1]). 

Now, the LA-dependence s t r u c t u r e s can be c h a r a c t e r i z e d in t e r m s of 
c -dependence in c e r t a i n l a t t i c e s . 

A subse t I of a toms of a la t t ice Z is said to be c - independent if 

x £ N / ( I \ {x}) for every x e I. 

1 2 0 
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The c h a r a c t e r i z a t i o n can be formulated as follows (comp. [2]): 

THEOREM. Given a r egu la r ( i . e . c{6) = 6 ) LA-dependence s t r u c t u r e 
(S, 3), the re exis ts a complete a lgebra ic atomic semimodula r lat t ice Z and 

5 
an ( o r d e r - p r e s e r v i n g ) mapping è of the power se t 2 into Z such that 

(a) fc ((b) = 0, 8>{S) = 1 and, for every sys t em {X |u)çŒ} of subse t s of S , 

&( U X ) = \ / 4(X ) ; 
CO ^ CO 

co € " to e O 

(b) { 5 ( { x } ) | x e S } Ç G - the subset of all a toms of Z; 

(c) I e 3* if and only if {2>({x}) | x e l } is c- independent . 

A na tu ra l extension of the definition of c- dependence 
concept of d -dependence . 

A subse t I of a lat t ice Z (with 0 ) is said to be d-independent if 

x A \ / ( F ) = 0 for eve ry x e I and every finite F C I \ { x } . 

And, using this concept we can der ive the following two THEOREMS. 

GA-dependence s t r u c t u r e (S, U, 0 ' ) | 
Given a r e g u l a r 

LA-dependence s t r u c t u r e (S, 3" ) 

f a tomic "^ 

) s emimodu la r balanced j 
t h e r e ex is t s a complete a lgebra ic ^ y la t t ice Z 

g 
and a one- to -one (o rde r -p re se rv ing ) mapping è of the p o w e r - s e t 2 
into X such that (a) holds ; 

(b') {<&({x} ) | x e S } C XL - the subset of a l l uniform, e lements of Z i 

(c1) I e 3" if and only if {&({x} ) | x e 1} is d- independent . 

REFERENCES 

1. V. Dlab, Algebra ic dependence s t r u c t u r e s . Z . Math. Logik 
Grundlagen Math. 12 (1966) 345-377. 

2 . S. MacLane , A lat t ice formula t ion for t r anscendence deg ree s and 
p - b a s e s . Duke Math. J . 4 (1933) 455-468. 

69.7 D. Sol i tar (York Univers i ty) 
On F in i te ly Generated Subgroups of a F r e e Group 

M. Hall, J r . [ T r a n s . A . M . S . 67 (1949) 421-432] proved the following 
t h e o r e m : 
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Let H be a finitely generated subgroup of a free group F and suppose 
g , . , . g are in F but no A. is in H. Then we may construct a 

subgroup H of finite index in F containing H and not containing any p . . 

His proof ac tual ly shows m o r e , v i z . , that H is a f r ee factor of H . in 
p a r t i c u l a r , taking the se t of P.1 s to be empty one obtains the following: 

K H is a finitely genera ted subgroup of a f r ee group F , then H is a 
f r ee factor of a subgroup H of finite index in F . 

We show how a number of r e s u l t s about finitely genera ted subgroups of a 
f r ee group follow in a n a t u r a l way f rom the above spec ia l c a se of the 
t h e o r e m of M . H a l l J r . In p a r t i c u l a r , we d e r i v e the following: a finitely 
genera ted subgroup H is of finite index F if and only if H has a non-
t r i v i a l i n t e r s e c t i o n with eve ry n o n - t r i v i a l n o r m a l subgroup of F (this 
includes the c a s e , when H contains a n o n - t r i v i a l n o r m a l subgroup of F 
[ P r o c . A. M . S . 8 (1957) 6 9 6 - 6 9 7 ] , and the ca se , when H contains a 
n o n - t r i v i a l s u b - n o r m a l subgroup of F [Canad. J . Math . 12 (1960) 414-425] ; 
a gene ra l i za t ion of this for a pa i r of subgroups H# K ; o ther types of 
condit ions for a f initely genera ted H to be of finite index in F ( f i rs t proved 
by L. G r e e n b e r g for d i s c r e t e g roups of mo t ions of the hyperbol ic p lane 
(which include f ree groups) ; and Howson 's r e s u l t that the i n t e r s e c t i o n of 
two finitely genera ted subgroups of F is finitely g e n e r a t e d . We a l so de r ive 
a quick way of obtaining the p r e c i s e index of H in F f rom inspec t ion of a 
Nie lsen reduced se t of g e n e r a t o r s for H. 

69 .8 W a i - M e e Ching (L.ouisianna State Univers i ty ) 
Non- i somorph ic Non-hyperf in i te F a c t o r s 

A von Neumann a lgeb ra is cal led hyperf ini te if it is the weak c l o s u r e of 
an inc reas ing sequence of f i n i t e -d imens iona l von Neumann s u b a l g e b r a s ; 
both hyperf ini te and non-hyperf in i te f ac to r s of type II ex i s t . M u r r a y 

1 
and von Neumann proved that a l l hyperf ini te f ac to r s of type II a r e 

i s o m o r p h i c ; J . T. Schwar tz has shown that t h e r e ex is t s a pa i r of non-
i somorph ic non-hyper f in i te f ac to r s of type II . We wil l show the 

ex i s t ence of t h r e e non - i somorph i c non-hyper f in i te f ac to r s of type II . 

In o rde r to c o n s t r u c t the new fac tor , we f i r s t study the notion of c r o s s e d 
p roduc t of a von Neumann a lgebra with a c e r t a i n g roup . E a r l i e r , Nakamura 
and Takeda, Suzuki, and T u r u m a r u developed the idea of c r o s s e d produc t 
for a finite von Neumann a lgeb ra with the coupling cons tan t equal to one, 
gene ra l i z ing M u r r a y - v o n Neumann ' s m e a s u r e cons t ruc t ion of f a c t o r s . We 
extend the notion of c r o s s e d p roduc t to a von Neumann a lgebra with a cyclic 
sepa ra t ing v e c t o r . This extens ion includes the m e a s u r e cons t ruc t ion and 
the group cons t ruc t ion of f ac to r s both due to M u r r a y and von Neumann. We 
give a s y s t e m a t i c cons t ruc t ion of the c r o s s e d p roduc t . We then es t ab l i sh 
a se t of sufficient condit ions for a c r o s s e d p roduc t of a von Neumann 
a lgebra to be a fac tor ; and c lass i fy the type of a factor obtained by the 
c r o s s e d p roduc t . 

We in t roduce the following a lgeb ra i c p r o p e r t y of a von Neumann a l g e b r a : 

Definit ion. A von Neumann a lgeb ra R is said to have p r o p e r t y C, if 
for each sequence U (k = 1 , 2 , . . . ) of un i ta ry o p e r a t o r s in R with the 

p r o p e r t y that s t rong l im U*TU = T for each T e R , t h e r e ex i s t s a 
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sequence V^(k = 1 , 2 , . . . ) of mutua l ly commuting o p e r a t o r s in R such 

that s t rong lim(U - V ) = 0 . 

Using the technique of c r o s s e d p r o d u c t , a fac tor of type II i s cons t ruc ted 

which is the c r o s s e d produc t of a factor of type II with an abel ian group 

of outer a u t o m o r p h i s m s . We prove that this new factor of type II has the 

new p r o p e r t y C as well as the p rope r ty T of M u r r a y and von Neumann. 
F ina l ly , we es tab l i sh the n o n - i s o m o r p h i s m of t h r ee non-hyp erf in it e fac tors 
of type II by showing that ne i ther the hyperf ini te factor of type II nor the 

non-hyper finite factor of type II of Schwartz has the p r o p e r t y C . 

69 .9 Kevin Clancey (Car le ton Univers i ty) 
An Example of a S e m i - n o r m a l Opera tor whose Spec t rum is not a Spec t ra l 
Set 

Let K be a r e a l Cantor set of posi t ive m e a s u r e . Consider for f e L (K) 
the ope ra to r 

(H Tf(s) = s f ( s ) + i [ - . / f ( t j dt ] s e K . 

If the s ingular in t eg ra l is in te rpre ted as a Cauchy p r inc ipa l value then T 
i s s e m i n o r m a l and the s p e c t r u m of T is the se t K X [ - 1 , l ] . The 
ope ra to r T has the following p r o p e r t i e s : (i) T is hyponormal and non-
s u b - n o r m a l ; (ii) t h e s p e c t r u m of T is not a s p e c t r a l se t ; (iii) f o r some 
polynomial p , the opera to r p(T) is non-normalo id . The example 
mo t iva t e s a cons t ruc t ion which p roves that every subnormal and non -no rma l 
ope ra to r is a s t rong l imit of a sequence of hyponormal and n o n - s u b n o r m a l 
o p e r a t o r s . 

69 .10 G. Gasper (Univers i ty of Toronto) 
L inear iza t ion of the P roduc t of Jacobi Po lynomia l s , II 

Let P ' (x) denote the Jacobi polynomial of deg ree n , o r d e r {a, p ) , 
n 

a, (3 > - 1 , and let g(k, m, n; a, (3 ) be defined by 

R u , p ) ( x ) R ( « . P > ( X ) = s g ( k , m , n . a i P ) * > • % ) , 
n m K K 

where R ( t t ' P ) ( x ) = P ( a ' P ) (x ) / P {a' P ) ( l ) . In [Linear iza t ion of the 
n n n 

p roduc t of Jacobi polynomials I, Can. J . Math, (to appear ) ] we proved 
that if a > (3 and a + (3 > -1 then g(k, m, n; a, p) > ° for a l l k, m, n . 
In this pape r we prove 

THEOREM 1. Let a = < * + | 3 + l , b = a - ( 3 and_ V = {{a, p ) : a ^ p , 

a(a + 5) (a + 3) 2 > (a 2 - 7a - 24)b2 } . It («, p) e V then g(k, m, n; a, p) > 0 
for a l l k, m, n . However, if (a, p) i V then the re exis t pos i t ive i n t ege r s 
k, m and n such that g(k, m , n; a, p) < 0. 
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THEOREM 2. Let W = {{a, j3) : a j> (3 > -1 , - a ( a + 3 ) < 2b2} U { ( - | - '?)} 
JH: (a, p) e W then 2 | g ( k , m , n; a, £) | < G, w h e r e G is independent 

of m and n. If {3 > a > ~1 or - j > a > -1 , then 2 |g(k, m, n; a, (3 ) I 

is unbounded. 

COROLLARY 1. Suppose (a, (3 ) e W, f(x) = S°° = 0 c(n) R ^ ' ^ ( x ) , 

n=0 
the r a n g e of f. Then (fr(f(x)) = T,™ n <5{n) R ^ ' ^ f x ) with 2 °° _ I d(n) ! < oo. 

69 .11 W.A. Coppel (Univers i ty of Toronto) 
The Asympto t ic Behaviour of Second Order Lin ear Dif ferent ia l Equat ions 

A r e s u l t of F . V. Atkinson (see Coppel, Stabil i ty and asympto t ic behaviour 
of different ia l equa t ions . D. C. Heath, B o s t o n , 1965) is given the following 
s t r o n g e r f o r m : 

THEOREM . Let g(x) be a continuous r e a l - v a l u e d function for x > x 
00 OC 

and let the i n t eg ra l s gQ(x) = J g (£)d£ , g ^ x ) = J g (£)cos 2£ d£ , g (x) = 
x 

oo 
[ [ g ( 4 ) s ^ n 2^ - h(£)]d£ converge , whe re h(x) is a continuous non-nega t ive 
x 

00 00 

function such that J h(x)dx = oo". If J | gg. | dx < oo (j = 0, 1, 2) then 

the equation y1' + [1 + g(x) ] y = 0 has a fundamental s y s t e m of solut ions 
Y A > Y o such that for x -** oo , 

y (x) = r(x) [cos x + o( l ) ] , y ? (x) = [r(x)] [s in x + o( l ) ] 

y ' (x) = r ( x ) [ - s i n x + o ( l ) ] , y ' 2 (x ) = [r(x)] [ c o s x + o( l ) j 

x 
w h e r e r(x) = e x p { j J g(£) s in 2 | d£ } . 

xo 

69 .12 E . S t amm (Univers i ty of Toronto) 
Sect ions of Holomorphic Vector Bundles 

P 
Let E -*• B be a ho lomorphic vec to r bundle over the connected Stein 
manifold B . A sec t ion is a ho lomorphic map s:B-** E such that p • s = id . 

B 
Let M(E) be the se t of t hese s e c t i o n s . It is a module over the r ing H(B) 
of ho lomorphic functions on B . 

THEOREM. M(E) is a finitely genera ted p ro jec t ive H(B) -module . It can 
be genera ted by N X ( l + n ) g e n e r a t o r s , whe re N=fibredimension and 
n=dimension of the basemanifold B . 

1 2 4 
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COROLLARY: a) It is poss ib le to int roduce the notion of s table equivalence 
c l a s s e s of holomorphic vec tor bundles over a Stein manifold B . 

b) One has canonical i s o m o r p h i s m s of H(B)-modules 

M(E ® E ) = M(E ) ® M(E ), M(Ak E) ^ A k M ( E ) , e t c . 

69.13 Tae Ho Choe (McMaster Univers i ty) 
Notes on a Locally Compact Connected Topological Lat t ice 

E . Dyre and A. Shields, [Pacif ic J . Math, 9] conjectured that if L is 
a compact connected m e t r i z a b l e d is t r ibut ive topological la t t ice , then 
the dimension of L is equal to the b read th of L . L. Anderson 
[Pacific J. Math. 9] showed that the b read th of the L<£ the codimension 
of L (in the sense of Cohen [Duke Math. J . 21)]. A locally compact 
topological lat t ice L of d imens ion n is called r egu la r if the subse t of 
L , m a d e up of the points at which L has d imension n , has non-void 
i n t e r i o r . We shal l show that if L is a connected d is t r ibut ive r e g u l a r 
topological la t t ice then the inductive d imension (or codimension) and the 
b read th of L a r e the s a m e . 

L. Anderson conjectured that if L is a locally compact connected 
topological la t t ice , then L is cha in-wise connected. We shal l p rove this 
conjecture is t r u e . As an immedia te co ro l l a ry of this we can extend a 
Wallace r e su l t [Summa B r a z i l M. 3] that any compact connected topological 

la t t ice L is acycl ic , i . e . , HP(L) = 0 for all p > 0, where H*( ) 
denotes the cohomology group of Alexsander Kolmogrof. Our r e s u l t is 
that any locally compact connected topological la t t ice with 0 and I is 
a cyc l i c . 

69 .14 V. Dlab (Car le ton Univers i ty) ^ 
A New Charac te r i za t ion of P e r f e c t Rings 

J. P . Jans has shown in [4] that if a r ing R is r ight per fec t (cf. H. B a s s [1]), 
then a ce r t a in to r s ion (cf. [2]) in the ca tegory Mod R of left R-modules 
is closed under taking d i r ec t p r o d u c t s . In fact, it can be eas i ly shown that 
every (hered i ta ry) to r s ion in Mod R is closed under taking d i r e c t products 
provided that R is r ight pe r fec t . Moreover , making use of a one- to -one 
co r r e spondence between to r s ions in Mod R and cer ta in se ts of left ideals 
of R (see [3]) we can give a c h a r a c t e r i z a t i o n of per fec t r ings along these 
l ines : 

A r ing R is r ight perfec t if and only if every he r ed i t a ry to r s ion in Mod R 
is fundamental ( i . e . der ived f rom " p r i m e " to rs ions) and closed under taking 

d i r e c t p roduc t s ; then t he r e is a finite number 2 (n na tura l ) of to r s ions in 
Mod R . 
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69.15 C. T. Ng (Univers i ty of Waterloo) 
Uniqueness T h e o r e m s for a G e n e r a l Class of Func t iona l Equat ions on 
Topological Vector Spaces 

In a p rev ious paper J . Aczé l has shown the following: 

THEOREM 1 : If in the i n t e r v a l <A , B > we have 

(*) f[F(x, y ) ]= H[f(x), f(y), x, y] 

and t h e r e f, F a r e continuous , F in te rn (the value F ( x , y) l ies 
s t r i c t l y between x and y) and u -*- H(u, v, x, y) or_ v -*• H(u, v, x, y) 
a r e inject ive, then the functional equat ion (*) with the in i t ia l condit ions 

f (a) = c , f (b) = d (a , b e < A , B > ) 

has a t m o s t one solut ion. 

The above r e s u l t has been es tab l i shed for functions with r e a l v a r i a b l e s . 
In the seque l we extend the notion of i n t e r n n e s s to vec to r spaces and 
d e r i v e r e s u l t s in topological s p a c e s . 

Definitions and Nota t ions : F o r two d is t inc t points x and y of a vec to r 
space ( v . s . ) E over the r e a l field R , we denote the (open) line s e g m e n t 
joining x and y by 

L(x , y) - {y + t ( x - y) : t £ (0 , 1)} . 

A mapping F defined on some subse t S of E X E into E is said to 
be in t e rn if F ( x , y) e L(x , y) whenever (x , y) e S with x f y . 

We have the following r e s u l t s : 

THEOREM 2: JLet E be a closed subse t of a topological vec to r space 

( t . v . s . ) E and let F : E i X E J -*• E J be in te rn , continuous in both 
« : i l l ' — ~ ' 

v a r i a b l e s . Let N be a se t and f , f : E -*• N be mappings satisfying 

the functional equation 

(*) f [F(x f y)] = H[f(x) , f(y) , x, y] 

where the mapping H : N X N X E X E -*• N is inject ive e i ther in i ts f i r s t 

va r i ab l e or in its second v a r i a b l e . If f and f a r e ident ica l on some 
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E , -neighbourhood V of a point a £ E , then f, and f̂  a r e ident ica l 1 c i 1 2 
on the en t i r e domain E . 

1 

THEOREM 3: Let F : E J X E J - E i be an in te rn function defined on a —— 1 1 1 

closed subse t E of a t . v . s . E over R , and let N be a Hausdorff 

s p a c e . Suppose f , f : E -*• N a r e continuous mappings satisfying 

(*) f[F(x. y)] = H[f(x) , f(y), x, y] , 

where H is a mapping f rom N X N X E , X E J into N. Then the se t 
1 1 ~~ " ~ 

S = { x : x € E l f f ^x ) = f 2 ( x ) } 

is convex. 

THEOREM 4: Let E be a closed subse t of a t . v . s . E , and let 

F : E X E -*- E be in tern , continuous in both v a r i a b l e s . Let N be 

a Hausdorff s p a c e . Suppose f , f : E -*- N a r e continuous mappings 

satisfying the functional equation 

(*) f [F(x , y)] = H[f(x), f(y), x , y] 

whe re the mapping H : N X N X E X E -*• N is e i ther injective in i ts 

f i r s t va r i ab le or injective in its second v a r i a b l e . Jï f and f a r e 

ident ica l on some subse t A of E. whose convex hull FA has non-empty 
' • — i •• •• •• — 

i n t e r io r ( in te r io r taken in E ) , then f and f a r e ident ica l on the en t i re 

domain E , . 
• i 

COROLLARY: If in T h e o r e m 4, E is locally convex Hausdorff of d imens ion 
n and A = {a. : i = 1,2, . . . , n + 1 } is such that {a. - a : i = 2 ,3 n + 1 } 

is l inear ly independent, then the re exis ts at m o s t one continuous solution 
of (*) satisfying the n + 1 ini t ia l conditions 

f(a.) = b . i = 1,2, . . . , n + 1 
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