
BULL. AUSTRAL. MATH. SOC. 39B10, 58F25

VOL. 39 (1988) [351-356]

A CLASS OF FUNCTIONAL EQUATIONS
WHICH HAVE ENTIRE SOLUTIONS

PETER L. WALKER

We consider the Abelian functional equation

g(-t>(z))=g(z) + l

where 0 is a given entire function and g is to be found. The inverse function f = g-1 (if
one exists) must satisfy

f(w + 1) = *(f (*>))•

We show that for a wide class of entire functions, which includes <j>(z) = e* — 1, the latter
equation has a non-constant entire solution.

1. INTRODUCTION

A functional equation of the form

(1) g(4>(z))=g(z) + l

where <f> is given, and g is to be found, is said to be of Abelian type, following the
paper of Abel [1].

The inverse function / = g~* satisfies

(2) f(w + 1) = 0 ( / H )

where we have put w = g(z)-
Solutions of these equations are of importance in studying the flow in a set X

determined by a map <j> of X to itself, since the family of functions

satisfies the formal identities

<f>0(z) = z, (/>i(z) - <f>(z), and <£t(<£u(z))

When X = C and <j) is entire, there are obvious difficulties in the analytic con-
tinuation of solutions of (1) because of the complicated nature of the singularities of g
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which occur near any fixed point of <j>. By contrast we show in this paper that for a
reasonably wide class of entire functions <f>, the equation (2) has an entire solution: the
result is stated as Theorem 2 below.

An important special case is given by 4>o(z) = ez — 1. Solutions go(z) of (1) are
constructed in [3] for real positive argument, and in [4] for certain regions in C. Some
other special cases where one can give explicit solutions of (2) are given for constants
a, c > 1, by 4>{z) = cz, f(z) = cz , and by <j>(z) — zc, f(z) = ac* . These illustrate the
general situation in which solutions of (2) tend to increase much more rapidly than <j>

itself.

2. CONSTRUCTION OF SOLUTIONS

We begin by stating the following important theorem of Fatou.
oo

THEOREM A. (Fatou [2]) Let 4>{z) = z + £ cnz
n+1 be an entire function with

n=l
Cj > 0, and let N be a neighbourhood of 0 on which <j> is invertible.

Then there is an open subset S of N with the following properties:

(i) the origin is a boundary point of S, and (0,t) C S for some t > 0;
(ii) <f>~1(S) C S;

(iii) if for any z £ S, we put z0 = z, zn+1 = <p~1(zn), n > 0, then we have
the asymptotic expansion

(3) - = an + 6 iogn-<*<?(*)+ o ( ^ Y
zn \ n /

In (3) we have a = c\, b — ̂ -(cj — c\) , and g is an analytic function on S which

satisfies y(<^~1(z)) = g(z) — 1 for all z € S. The order term is uniform on compact

subsets of S.

Note:. Fatou proves the result in much greater generality: the above is sufficient for
our needs. One can be more explicit about the set 5 , whose boundary is the image of
a parabolic arc x + y2 — constant(> 0) under the inversion mapping z —* ^ ; thus the
boundary of 5 is tangent to the negative real axis at the origin.

We can now state our method for constructing solutions of (2). Equation (3) defines
g(z) as a limit

w=g(z)= lim [n + - l o g n - ( a z n ) ~ 1 ]

= lim [n + — logn — {&(<£"*) C-2)}"1]
n—»oo Q,

— lim gn(z) say.
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(For any function, we use /l"l to denote the n-fold iterate of / . )

We invert this relation to get

(4) z = f{w)=g~\w)= limjn-1(w)= Km 4>[n]({a{n - w) + blogn}'1).
n—*oo n—>oo

Thus our aim is to show the existence of the limit in (4) for all w £ C, which then
defines a non-constant entire solution of (2).

We begin with the following result.

oo

THEOREM 1. Let <j> be an entire function of the form <j>(z) = z + ̂ ,cnz
n+1, with

l

C\ > 0 and cn ^ 0 for n ^ 2. Put a = Ci, b = ^-{c2 — cj) , rn = n + £logn, and
define

fn(w) = <£W ({a(n -w) + 61ogn}-1).

Then fn is analytic on C \ {r n } , and for any M > 0, tie sequence (fn)rn>M l s

uniform/y bounded on 5(0, M) = {z: \z\ ^ M}, provided that either (i) C2 ^ c\ , or
(ii) c3<c\.

PROOF: Since cn ^ 0 for all n, the Maclaurin coefficients of /„ are also non-
negative. In particular for |w| < rn, we have |/n(w)| < /n( |w|). Thus it will be
sufficient to show that the sequence (fn(w)) is convergent for w > 0. In fact we shall
show, subject to either of the conditions (i) or (ii), that for w > 0 the sequence (fn(w))
is eventually decreasing. Since <j> ls monotone increasing on [0, oo) it is sufficient to
prove, for w > 0 and sufficiently large n, that

(5) <f>{an) < an_!

where we have put an = {a(n — w) + t logn}"1 .
To prove (5), we expand both sides asymptotically and compare terms. For ease

of calculation, we put k = £ , and wn = w — k log n, so that an = ain]_ % , and the
result to be proved is that

oo

an-i/an > <f>(an)/an — 1 + ^2 cr(an)r or

(6) n - w n 2
> 1

n - 1 — wn_i

Now wn-i = w — fclog(n — 1) = w — fclogn — Hog ^ ^ = wn + ksn, say, where
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Hence on the left hand side of (6) we have

n-wn (i ) (i
n — wn — 1 — ksn \ n ) \ n

which we expand as far as terms in n~3, to get

(*) (l - — ) fl + -{wn + 1 + kan) + -i- ((wn + I)2 + 2ksn(wn + 1))
\ n / \_ n n \ /

n°

i i k- + - T I K + if - wn(wn + 1)} + -s
n n n

= 1 + - + ±(wn + 1) + - (- + ±) + I-(wn + I)2 - -
n n* n\n 2n2) n3 n

2fc
+ —{wn + l) + O

2k, ^ ?^ logn\4 N

+ 0{my
Similarly on the right hand of (6), we substitute an = a/n^w ^ and c\ = a, C2

a 2 ( l + fc) to get

(**)
1 + C l a n

= 1 + (n - Wn)-1 + (1 + k)(n - wn)~
2 + ̂ (n - wny

3 + 0(n-4)
a

C l a n + c2a
2

n + c3a
3

n

n ) a3n3 \ n
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If we compare (*) and (**) we see that (6) is equivalent (for sufficiently large n ) to the
inequality

{wn + I)2 + k(wn + | J > w2
n + 2(1 + k)wn + ^|,

or to l + 5Jfc/2 > k(w - klogn) + % .
But this inequality is evidently satisfied for all n sufficiently large, if either (i)

k £ 0, (equivalently C2 ^ c\), or (ii) if fc = 0, then C3 < a3 = c\. Hence either
condition (i) or (ii) is sufficient to establish (6), which completes the proof of Theorem
1- I

The uniform boundedness which we have just proved enables us to deduce our main
theorem on existence of solutions of (2).

00

THEOREM 2. Let <f> be an entire function of the form <£(z) = z + ^ cnz
n+1 , where

1

c\ > 0, cn > 0 for all n, and either (i) C2 ^ c\ or (ii) C3 < c\ .
Then the sequence (fn) defined in Theorem 1 converges uniformly on every

5(0, M) to a function f which is an entire non-constant solution of (2).

PROOF: Theorem 1 shows that the sequence (/n) forms a normal family on each
5(0, M) . In the course of the proof we also showed that for any M > 0 and sufficiently
large n , the restrictions of /„ to [—M, M] form a sequence of positive functions which
decreases with increasing n, and so converges on [—M, M] to a limit ip say. Hence
any subsequence of (/n) which converges on 5(0, M) must have a limit which agrees
with ij> on the real axis, from which we deduce the convergence of the whole sequence
to an entire function / , whose restriction to [—M, M] is tp. Moreover, since /„ is
defined as the inverse of the function gn for which gn(z) —» g(z) for z 6 5 (Fatou's
Theorem A), / must equal g~*, on some open subset U, say, of g(S), (for instance a
neighbourhood of g(S n (0, 00))), so / cannot be constant. Again since / = g~l , we
must have (2) at least on j ( 5 n ( 0 , 00)). But both sides of (2) are entire, and so the
equation must hold generally and the proof of Theorem 2 is complete. |

To conclude, we mention some general properties of the function / which we have

constructed. Since fn(w) = ^ n | ( a ( n . m ) ' + M o 8 n ) , and <f>(t) = t + £cn<», cn ^ 0,

it follows that / is a positive increasing function on R, whose Maclaurin coefficients
are again non-negative. We can deduce the asymptotic rate at which f(x) —+ 0 as
x —1 —00, from the corresponding expansion for g(t) as t —> 0+ , in the following
way. First simplify the asymptotic expansion (3) of Fatou's Theorem to read y- =
an + 61ogn — ag(t) + o(l), for t > 0, t £ S. The functional equation satisfied by g
shows that g(tn) = g(t) - n, and hence if we put x = tn , y — g(tn) so that x —> 0+ ,
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y —* —oo as t i - t o o , then we obtain

d(x) = 9(t) -n = 1-Hog n +o(l)
ax

= +Hog ( fclogn + ag(t) + o(l))
ax \ax /

as x —> 0+.
ax ~ \ax/ * ' ^

Similarly, we can show that lim x2g'(x) = i , which is sufficient for the unique deter-

mination of a solution of (1) (up to an additive constant), as is pointed out by Szekeres

in [3, Lemma 1].

Then the get the asymptotic expansion of f(x) as x —> —oo, we invert the above
expansion for g to obtain

af(x) = + — log \x\ + o(x~2) :

in particular xf(x) —*• — i a s i - » —oo.

In the special case when <j>(t) = e* — 1, the hypotheses of Theorem 2 are satisfied
and we can deduce the existence of an entire non-constant solution of the equation
f(w + 1) = e^w^ — 1. This function is inverse to the function g constructed in [4],
Theorem 2, which is analytic on 5 = C \ (—oo, 0] and satisfies p(log (1 + z)) = g(z) - 1
for all z in 5. Hence the family of mappings <f>t{z) = f(g{z) — t), t > 0, determines
the flow of the map z —> log (1 + z) in S.
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