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Abstract

This paper is concerned with properties of the algebraic degree of the Laplace–Stieltjes
transform of phase-type (PH) distributions. The main problem of interest is: given a
PH generator, how do we find the maximum and the minimum algebraic degrees of all
irreducible PH representations with that PH generator? Based on the matrix exponential
(ME) order of ME distributions and the spectral polynomial algorithm, a method for
computing the algebraic degree of a PH distribution is developed. The maximum algebraic
degree is identified explicitly. Using Perron–Frobenius theory of nonnegative matrices,
a lower bound and an upper bound on the minimum algebraic degree are found, subject
to some conditions. Explicit results are obtained for special cases.
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1. Introduction

The distribution of the time to absorption in a finite-state continuous-time Markov chain
with a single absorbing state is known as a phase-type (PH) distribution. Any PH distribution
is completely defined by an initial state probability vector α of order m and an m × m PH
generator T . The pair (α, T ) is said to be an order-m representation for the PH distribution.

Since their introduction by Neuts in 1975, PH distributions have been used in a wide range of
stochastic modeling applications in areas as diverse as telecommunications, teletraffic modeling,
biostatistics, queueing theory, reliability theory, and health and social care modeling. PH
distributions have enjoyed such popularity because they constitute a very versatile class of
distributions defined on the nonnegative real numbers that lead to models that are algorithmically
tractable. Stochastic models that incorporate PH distributions retain a Markovian structure, but
have considerably greater flexibility in modeling individual lifetimes.

A number of performance measures of models involving PH distributions can be written
in terms of the Laplace–Stieltjes transform (LST) of the distributions (see Botta et al. (1987)
and Neuts (1984)). Thus, it is convenient and useful to consider the LST of a PH distribution.
The LST of any PH distribution is a rational function, and its algebraic degree is defined to
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be the degree of the denominator polynomial when the LST is expressed as the ratio of two
coprime polynomials (see O’Cinneide (1990)). In this paper we are interested in finding the
algebraic degree for a given PH representation (α, T ) and specifically in the following question:
given a PH generator T , how can we choose an α so that the algebraic degree is maximized
or minimized? The answer to this question is not simple. To find the minimum algebraic
degree, an obvious first suggestion is to choose α to be the (stochastic) left eigenvector that
corresponds to the eigenvalue of maximal real part, in which case the algebraic degree will be 1.
However, the resultant PH representation may not be irreducible and so some of the phases
in the representation (α, T ) may be superfluous. If we stipulate that the representation that
gives the minimal algebraic degree must be irreducible, then the problem becomes much more
interesting and challenging.

The algebraic degree has also been studied for matrix exponential (ME) distributions (see, for
example, O’Cinneide (1990), van de Liefvoort (1990), Asmussen and Bladt (1997), Commault
and Chemla (1996), and He and Zhang (2007)). In He and Zhang (2006), a spectral polynomial
method was introduced for studying PH and ME representations. He and Zhang (2007) called
the algebraic degree the ME order. They developed an approach using Hankel matrices
for computing the ME order of ME distributions. Perron–Frobenius theory has been used
extensively in the study of all kinds of stochastic models (see Gantmacher (1959), (1960),
Berman and Plemmons (1979), and Seneta (2006)) and can be applied here. We combine these
three approaches to obtain results for the algebraic degree, and the maximum and minimum
algebraic degrees.

The remainder of the paper is organized as follows. In Section 2, PH distributions and PH
representations are introduced, and the algebraic degree is defined. Section 3 gives a number
of properties of the algebraic degree and develops an algorithm for computing it. In Section 4,
the maximum algebraic degree is identified. It is shown that the poles of the LSTs of all PH
distributions with maximum algebraic degree are the same. Section 5 gives a lower bound and
an upper bound for the minimum algebraic degree, subject to some conditions. Some exact
results are also obtained for the algebraic degree and the corresponding poles.

2. PH distributions, PH representations, and the algebraic degree

We refer the reader to Neuts (1981) and Latouche and Ramaswami (1999) for the material
in this section concerning PH distributions and to Gantmacher (1960) for the material on the
Jordan canonical form.

A (continuous-time) PH generator T of order m is an invertible m × m matrix with negative
diagonal elements, nonnegative off-diagonal elements, and nonpositive row sums. A sub-
stochastic vector α of order m is such that α ≥ 0 and αe ≤ 1, where e is a column vector of 1s.
A vector α is called stochastic if it is substochastic and αe = 1. The pair (α, T ) is called a PH
representation of a PH distribution. The distribution function corresponding to (α, T ) is given
by 1 − α exp(T t)e, t ≥ 0. Let T 0 = −T e, a nonnegative column vector. A PH representation
(α, T ) is irreducible if the matrix T + T 0α/(αe) is an irreducible infinitesimal generator of a
continuous-time Markov chain with m states.

Let f ∗(s) be the LST of the PH distribution with PH representation (α, T ). For convenience,
we also call f ∗(s) the LST of (α, T ). It is well known that f ∗(s) is a rational function that can
be written in the form

f ∗(s) = 1 − αe + α(sI − T )−1T 0 = p(s)

q(s)
, s ≥ 0, (2.1)
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where I is the identity matrix, and p(s) and q(s) are polynomial functions. If p(s) and q(s)

are coprime polynomial functions, then the degree of q(s) is called the algebraic degree of
the PH distribution, which is denoted by κ(α, T ) in this paper. For convenience, we also call
κ(α, T ) the algebraic degree of the PH representation (α, T ). By (2.1), it is easy to see that
κ(α, T ) = κ(α/(αe), T ) if αe > 0. Thus, without loss of generality, we assume that α is
stochastic.

Some results on the algebraic degree can be obtained immediately from the Jordan canonical
form of the matrix T . Denote by {−λ1, −λ2, . . . ,−λm} the eigenvalues of T (counting
multiplicity) and by {−µ1, . . . ,−µN } the distinct eigenvalues of T , with N ≤ m. Throughout
the paper, we will order the eigenvalues according to their increasing moduli. Thus, −λ1 = −µ1
is the maximal (Perron–Frobenius) eigenvalue of T , which will be denoted by ρ(T ). Let Ni be
the algebraic number of −µi (that is, the multiplicity of −µi as a zero of det(sI −T )), let mi be
the geometric number of eigenvalue −µi (that is, the number of Jordan blocks corresponding to
−µi in the Jordan canonical form of T ), let ni,j be the size of the j th Jordan block corresponding
to −µi· , and let νi = max{1≤j≤mi }{ni,j } be the degree of −µi (that is, the size of the largest
Jordan block associated with −µi). Then Ni = ∑mi

j=1 ni,j and
∑N

i=1 νi is the degree of the
minimal polynomial of T , which is the monic polynomial g(x) of the smallest degree satisfying
g(T ) = 0.

Equation (2.1) leads to the following results.

(R1) 1 ≤ κ(α, T ) ≤ ∑N
i=1 νi ≤ m.

(R2) The set of poles of the LST of (α, T ) is a subset of {−µ1, . . . , −µN }. The multiplicity
of each pole is less than or equal to its degree as an eigenvalue of T .

In addition to the above, the following results can be obtained easily.

(R3) For any PH generator T satisfying T e = −λe, κ(α, T ) = 1 for any stochastic vector α.

(R4) For any PH generator T , if the stochastic vector α is an eigenvector corresponding to
ρ(T ), then κ(α, T ) = 1.

In general, however, finding the algebraic degree for a given PH representation is not
straightforward. Consider the following examples.

Example 2.1. Consider the PH generator

T =

⎛
⎜⎜⎜⎜⎜⎝

−τ1
τ2 −τ2

τ3 −τ3
. . .

. . .

τm −τm

⎞
⎟⎟⎟⎟⎟⎠ , (2.2)

where τi > 0, 1 ≤ i ≤ m. Although the matrix T has a simple structure, the algebraic
degree associated with (α, T ) exhibits interesting behavior. If α = (0, . . . , 0, 1, 0, . . . , 0),
with the ith component equal to 1, it is easy to see that κ(α, T ) = i. However, such PH
representations are not irreducible except when i = m. If (α, T ) is required to be irreducible
then the algebraic degree of (α, T ) depends on the actual values of the diagonal elements in T .
For example, if τ1 > τ2 > · · · > τm then −τm is the Perron–Frobenius eigenvalue of T and the
Perron–Frobenius eigenvector α can be chosen to be positive. Then (α, T ) is an irreducible PH
representation with κ(α, T ) = 1. On the other hand, if τ1 < τ2 < · · · < τm, by Example 3.1
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or Example 5.1, below, κ(α, T ) = m for any stochastic α for which (α, T ) is an irreducible
PH representation.

Example 2.2. Consider the PH generator

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 1.5 0 0 0 0
2 −5 0 0 0 0
1 1 −3 0.5 0 0
1 0 2 −3 0 0
1 0 1 0 −10 0
1 1 0 1 0 −10

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.3)

The eigenvalues of T are {−2, −2, −4, −6, −10, −10}. The degree ν1 of the eigenvalue
−2 is equal to 2, and the degree ν4 of the eigenvalue −10 is equal to 1. Thus,

∑N
i=1 νi = 5

and, by (R1), the algebraic degree of any PH representation (α, T ) must lie between 1 and 5.
If irreducibility is required, however, we will see in Example 3.2 that the algebraic degree of
(α, T ) must lie in the range 3 to 5.

3. Properties of the algebraic degree

A triplet (β, S, u) of order m is called an ME representation of an ME if 1 − β exp(St)u,
t ≥ 0, is a probability distribution (see Lipsky (1992)). The ME order of an ME distribution is
defined as the smallest order of all the ME representations of that ME distribution. It is easy to
see that PH distributions and PH representations are special cases of ME distributions and ME
representations, respectively. Thus, every PH distribution has an ME order.

For a PH representation (α, T ) of order m, (2.1) can be written explicitly as

f ∗(s) = αadj(sI − T )T 0

det(sI − T )
=

∑κ(α,T )−1
i=0 pis

i

sκ(α,T ) + ∑κ(α,T )−1
i=0 qisi

≡ p(s)

q(s)
, s ≥ 0, (3.1)

where adj(sI − T ) is the adjoint matrix of sI − T , det(sI − T ) is the determinant of sI − T ,
q0 = det(−T ) �= 0, and p(s) and q(s) are coprime polynomials. The third expression in
(3.1) leads to an equivalent ME representation (β, S, u) of the PH representation (α, T ) (see
Asmussen and Bladt (1997)), where

β = (p0, p1, . . . , p(α,T )−1),

S =

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .

0 1
−q0 −q1 · · · . . . −qκ(α,T )−1

⎞
⎟⎟⎟⎟⎟⎠ , u =

⎛
⎜⎜⎜⎜⎜⎝

1/q0
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎠ .

From Theorem 3.1 of He and Zhang (2007), the ME order of an ME distribution can be
obtained from any of its ME representations via the expression, for any integer k,

OME(α, T ) = max{n | det(�[k]
n ) �= 0, n ≥ 1},

where �
[k]
n is an n × n Hankel matrix defined by

�[k]
n = (a

[k]
i,j ), where a

[k]
i,j = αT i+j−2+ke = βSi+j−2+ku, 1 ≤ i, j ≤ n.
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Note that the elements of the matrix �
[k]
n are independent of the ME representation and the

matrix �
[k]
n can be written as

�[k]
n =

⎛
⎜⎜⎜⎝

α

αT
...

αT n−1

⎞
⎟⎟⎟⎠ T k(e, T e, . . . ,T n−1e) =

⎛
⎜⎜⎜⎝

β

βS
...

βSn−1

⎞
⎟⎟⎟⎠ Sk(u, Su, . . . ,Sn−1u). (3.2)

For convenience, we state a known relationship between κ(α, T ) and OME(α, T ) in the
following proposition.

Proposition 3.1. For a PH representation (α, T ), κ(α, T ) = OME(α, T ). In addition, we
have κ(α, T ) ≤ dim Span{e, T e, T 2e, . . . } and κ(α, T ) ≤ dim Span{α, αT , αT 2, . . . }.

For a PH generator T and a stochastic vector α, define a (nonlinear) mapping MT : α →
αT −1/(αT −1e). Note that, since the matrix −T is an M-matrix, all elements of −T −1 are
nonnegative. It is well known that −[T −1]i,j is the expected sojourn time in state j before
absorption, given that the initial state was i, and so −αT −1e is the mean of the PH distribution
and is positive. Thus, MT (α) = αT −1/(αT −1e) is a well-defined stochastic vector. Some
properties related to the mapping MT are collected in the following proposition.

Proposition 3.2. (i) We have κ(α, T ) = κ(MT (α), T ), that is, the poles of the LST of (MT (α),

T ) (counting multiplicities) are the same as those of (α, T ).

(ii) The PH representation (α, T ) is irreducible if and only if the vector MT (α) is positive.

Proof. (i) Equation (3.2) implies that the ME orders of (α, T ) and (MT (α), T ) are equal.
By Proposition 3.1 we must have κ(α, T ) = κ(MT (α), T ).

By Section 2, the poles of the LSTs are contained in the set of eigenvalues of T (counting
multiplicities). For each pole, we need only show that the multiplicity of that pole as a zero of
the function q(s) is the same for (α, T ) and (MT (α), T ). We use the identity

(sI − T ) adj(sI − T ) = det(sI − T )I

to prove the result. Define h∗(s) = adj(sI − T )T 0. Then we obtain (sI − T )h∗(s) =
det(sI − T )T 0. Differentiating both sides of the equation with respect to s, we obtain, for any
eigenvalue −µ of T ,

(sI − T )h∗(0)(s)|s=−µ = 0,

(sI − T )h∗(n)(s)|s=−µ = −nh∗(n−1)(s)|s=−µ if 1 < n ≤ N−µ − 1,
(3.3)

where h∗(n)(s) is the nth derivative of h∗(s) and N−µ is the algebraic number of the eigen-
value −µ. Multiplying on the left by T −1 in (3.3) yields

sT −1h∗(0)(s)|s=−µ = h∗(0)(s)|s=−µ,

sT −1h∗(n)(s)|s=−µ = h∗(n)(s)|s=−µ − nT −1h∗(n−1)(s)|s=−µ if 0 < n ≤ N−µ − 1.
(3.4)

By (3.4), for µ �= 0 and 0 ≤ k ≤ N−µ − 1, it is easy to show that αT −1h∗(n)(s)|s=−µ = 0
for 0 ≤ n ≤ k if and only if αh∗(n)(s)|s=−µ = 0 for 0 ≤ n ≤ k. This implies that the
multiplicities of −µ as zeros of αh∗(s) and αT −1h∗(s) are equal. By (3.1), the multiplicities
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of −µ as poles of the LSTs of (α, T ) and (MT (α), T ) are equal. Consequently, the LSTs
of (α, T ) and (MT (α), T ) have the same set of poles, each with the same multiplicity. This
completes the proof of part (i).

(ii) First note that MT (α)(T +T 0α) = 0, that is, MT (α) is the Perron–Frobenius eigenvector
of the infinitesimal generator T +T 0α. If (α, T ) is an irreducible representation then T +T 0α

is an irreducible matrix, and, by Perron–Frobenius theory, MT (α) is positive.
Now, we assume that MT (α) is positive. If (α, T ) is reducible then T +T 0α must have the

structure (
A1,1 A1,

0 A2,2

)
,

where A1,1 is a j × j matrix with 1 ≤ j < m. Since T 0α is nonnegative and all off-diagonal
elements of T are nonnegative, it is clear that T must also have the same structure, so that T

can be written in the form (
T1,1 T1,2

0 T2,2

)
.

From the structure of the matrix T 0α, it is clear that we must have either α1 = α2 = · · · =
αj = 0 or t0

j+1 = t0
j+2 = · · · = t0

m = 0, where αn is the nth element of α and t0
n is the nth

element of T 0. If t0
j+1 = t0

j+2 = · · · = t0
m = 0, we must have T2,2 = A2,2. Since T +T 0α is an

infinitesimal generator, T2,2 must be an infinitesimal generator, which is a singular matrix. This
implies that the matrix T is not invertible, which contradicts the fact that T is a PH generator.
If α1 = α2 = · · · = αj = 0 then the relationship MT (α)T = (MT (α)T e)α leads to

((MT (α))1, (MT (α))2, . . . , (MT (α))j )T1,1 = (α1, α2, . . . , αj ) = 0.

Since T1,1 is invertible, this leads to ((MT (α))1, (MT (α))2, . . . , (MT (α))j ) = 0, which
contradicts the assumption that MT (α) is positive. This completes the proof of Proposition 3.2.

There are some interesting implications of Proposition 3.2. Let the stochastic vector θ be an
eigenvector of T corresponding to ρ(T ). Then (θ , T ) represents an exponential distribution
and κ(θ , T ) = 1. For any stochastic vector α[0], define α[n] = MT (α[n − 1]), n > 0. By
Proposition 3.2, κ(α[n], T ) = κ(α[0], T ) and the LST of (α[n], T ) has the same poles for all
n ≥ 0. However, it is well known that, if T is irreducible, {α[n], n ≥ 0} converges pointwise
to θ . The implication is that there are PH distributions of any possible algebraic degree that are
arbitrarily close to the exponential distribution associated with ρ(T ). From a topological point
of view, in the m-dimensional space parameterized by {α1, . . . , αm}, distributions of lower
degree fall on a finite number of hyperplanes. Thus, the exponential distribution is arbitrarily
close to distributions of maximal algebraic degree. Our result extends this observation to
distributions of any possible algebraic degree. In addition, the poles of the LSTs of these PH
distributions can be quite different from that of the exponential distribution.

Combining parts (i) and (ii) of Proposition 3.2, we obtain the following useful result.

Corollary 3.1. For any n between 1 and m, if there exists a stochastic vector α such that
κ(α, T ) = n and (α, T ) is an irreducible PH representation, then there exists a positive θ (e.g.
θ = MT (α)) such that κ(θ , T ) = n.

Next, we adopt a method introduced in He and Zhang (2008) for finding κ(α, T ). This
is performed in three steps. To begin with, we establish a relationship between the algebraic
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degree and a linear space generated by the matrix T and e, which leads to an algorithm for
computing the algebraic degree. Define

χ(T ) = dim Span{e, T e, T 2e, . . . }. (3.5)

By Proposition 3.1 we know that κ(α, T ) ≤ χ(T ). Definition (3.5) implies that χ(T ) ≤
ν1 + · · · + νN , the degree of the minimal polynomial function of T . Since T is invertible, it is
easy to show that the set of vectors {T e, T 2e, T 3e, . . . ,T χ(T )e} is linearly independent, while
the set {e, T e, T 2e, T 3e, . . . ,T χ(T )e} is linearly dependent. This implies that there exists
{a0, a1, . . . , aχ(T )} such that aχ(T ) = 1, a0 �= 0, and

∑χ(T )
n=0 anT

ne = 0. Define

gT (x) =
χ(T )∑
n=0

anx
n.

Let −γ = {−γ1, . . . ,−γχ(T )} contain the χ(T ) roots of the polynomial gT (x) (counting
multiplicities), and let the distinct roots of gT (x) be denoted by {−δ1, . . . ,−δM}, with δj

repeating itself mg,j times in {−γ1, . . . ,−γχ(T )}. Then mg,1 + · · · + mg,M = χ(T ) and

gT (T )e =
(χ(T )∑

n=0

anT
n

)
e =

(χ(T )∏
n=1

(γnI + T )

)
e = 0. (3.6)

Using the Jordan canonical form of T and (3.6), it can be shown that {−γ1, . . . , −γχ(T )} is a
subset of the eigenvalues of T .

Second, we use the spectral polynomial algorithm (SPA) (see He and Zhang (2006)) to find
an equivalent bidiagonal ME representation of the order χ(T ) for the PH representation (α, T ).
For {−γ1, . . . ,−γχ(T )}, define

p1 = −T e

γ1
, pn = (γn−1I + T )pn−1

γn

, 2 ≤ n ≤ χ(T ),

pχ(T )+1 = (γχ(T )I + T )pχ(T ).

(3.7)

Let P = (p1, p2, . . . ,pχ(T )), which is an m × χ(T ) matrix. Equation (3.6) implies that

(χ(T )∏
n=1

γn

)
pχ(T )+1 = −T gT (T )e = 0.

Then (3.7) can be rewritten as T P = PS(γ , χ(T )), where

S(γ , χ(T )) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−γ1 0 · · · . . . 0

γ2 −γ2
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . . γχ(T )−1 −γχ(T )−1 0
0 · · · 0 γχ(T ) −γχ(T )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.8)

Since pχ(T )+1 = 0 and T is invertible, it can be shown that Pe = e (see Proposition 2.1
and Propositions 3.1 of He and Zhang (2006)). Then (αP , S(γ , χ(T )), e) represents the same
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PH distribution as (α, T ), that is, 1 − αP exp(S(γ , χ(T ))t)e = 1 − α exp(T t)e, t ≥ 0.
Thus, (αP , S(γ , χ(T )), e) is an ME representation of order χ(T ). Since a0 �= 0, none of the
roots {−γ1, . . . ,−γχ(T )} is zero. Since the vectors {T e, T 2e, T 3e, . . . ,T χ(T )e} are linearly
independent, the vectors {p1, p2, . . . ,pχ(T )} are also linearly independent. Therefore, the rank
of P must be χ(T ).

Define

J (γ ) =
⎛
⎜⎝

J (δ1)

. . .

J (δM)

⎞
⎟⎠ , J (δn) =

⎛
⎜⎜⎜⎜⎝

−δn

δn

. . .

. . .
. . .

δn −δn

⎞
⎟⎟⎟⎟⎠

mg,n×mg,n

for 1 ≤ n ≤ M . Applying the spectral polynomial algorithm to J (γ ), we obtain J (γ )Q =
QS(γ , χ(T )) and Qe = e, where the columns {q1, q2, . . . , qχ(T )} of Q are defined by

q1 = −J (γ )e

γ1
, qn = (γn−1I + J (γ ))qn−1

γn

, 2 ≤ n ≤ χ(T ),

and all matrices are of order χ(T ). By direct calculations, it can be shown that the matrix
Q is invertible. Then we have Q−1J (γ ) = S(γ , χ(T ))Q−1 and Q−1e = e. Together with
T P = PS(γ , χ(T )) and Pe = e, we obtain

T PQ−1 = PQ−1J (γ ), PQ−1e = e.

Thus, for any stochastic vector α, the PH representation (α, T ) is equivalent to

(αPQ−1, J (γ ), e).

It is easy to see that mg,j is less than or equal to the degree of −δj as an eigenvalue of T .
Let

β = αPQ−1 = (β(1), . . . , β(M)),

where β(j) = (β(j, 1), . . . ,β(j, mg,j )). By routine calculations, the LST of the PH distribu-
tion (α, T ) can be expressed in the form

f ∗(s) = β(sI − J (γ ))−1(−J (γ ))e =
M∑

j=1

mg,j∑
n=1

β(j, n)

(
δj

s + δj

)n

. (3.9)

Finally, we find κ(α, T ). Define, for 1 ≤ j ≤ M ,

ξj (α, T ) =

⎧⎪⎨
⎪⎩

0 if the set{i : β(j, i) �= 0, 1 ≤ i ≤ mg,j }
is empty,

max{i : β(j, i) �= 0, 1 ≤ i ≤ mg,j } otherwise.

The above analysis leads to the following results.

Proposition 3.3. For a PH representation (α, T ), the following statements hold.

(i) κ(α, T ) = ξ1(α, T ) + ξ2(α, T ) + · · · + ξM(α, T ).
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(ii) The set of poles of the LST of (α, T ) is a subset of {−γ1, . . . , −γχ(T )}, which is a subset
of the set of eigenvalues of T .

(iii) The multiplicity of the pole −δj of the LST of (α, T ) is less than or equal to mg,j , 1 ≤
j ≤ M .

Proof. Part (i) follows from an argument similar to the proof of Lemma 3 of He and Zhang
(2008), noting that {−δ1, . . . ,−δM} are distinct, and using (3.9). Parts (ii) and (iii) can be
obtained from the structure of the matrix J (γ ). This completes the proof.

Example 3.1. (Example 2.1 continued.) For the generator T defined in (2.2), it is easy to
verify that χ(T ) = m. Proposition 3.3 shows that, without the irreducibility requirement, the
algebraic degree of (α, T ) can be any integer from 1 to m. If irreducibility is required, the
following two cases can be solved.

If τ1 > τ2 > · · · > τm, we set γi = τi, 1 ≤ i ≤ m. By (3.7), it can be verified that
P = I and Q is a lower triangular matrix with all the elements on the diagonal and in the lower
triangular part positive. Since β = αQ−1, we obtain α = βQ. For any 1 ≤ i ≤ m, choose
a stochastic vector β with exactly i positive elements. Then (β, J (γ ), e) represents a mixture
of i exponential distributions. If βm > 0 then αm > 0, which implies that (α, T ) is irreducible
and κ(α, T ) = i. Thus, with the irreducibility requirement, the algebraic degree of (α, T ) can
be any integer from 1 to m.

If τ1 < τ2 < · · · < τm, we set γi = τm−i+1, 1 ≤ i ≤ m. By routine calculations, it can be
shown that PQ−1 is a lower triangular matrix with elements given by

(PQ−1)i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if i < j,

1 if i = j = 1,

i∏
{n=1 : n�=j}

τn

τn − τj

if i ≥ 2, i ≥ j.

Thus, the nonzero elements in each column of PQ−1 have the same sign and all elements in the
last row of PQ−1 are nonzero. Consequently, all elements of β = αPQ−1 are nonzero if and
only if αm > 0. Note that (α, T ) is irreducible if and only if αm > 0. Therefore, κ(α, T ) = m

if and only if (α, T ) is irreducible.

Example 3.2. (Example 2.2 continued.) For the PH generator T defined in (2.3), by applying
Proposition 3.3, we conclude that χ(T ) = 5, (−γ1, . . . ,−γχ(T )) = (−2, −2, −4, −6, −10),

M = 4, (−δ1, . . . ,−δM) = (−2, −4, −6, −10), and

PQ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.1250 0 0 −0.1250 0
0.7500 0 0 0.2500 0
0.4766 0.6094 −0.0312 −0.0547 0

−0.3594 1.2187 0.0625 0.0781 0
0.1812 0.0762 −0.0052 −0.0449 0.7928
0.1514 0.1523 0.0104 0.0508 0.6351

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The ordering of the rows is the same as the ordering of the states in the original matrix T ,
while the ordering of the columns is determined by the order in which the roots of gT (x) were
inserted into J (γ ). The structure of T implies that (α, T ) is irreducible if and only if α5 and
α6 are both positive. Since the second column (corresponding to the second occurrence of −2
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as a root of gT (x)) and the last column (corresponding to the root −10) of the matrix PQ−1

are nonnegative with positive fifth and sixth components, it is clear that β(1, 2) and β(4, 1)

are nonzero for any irreducible (α, T ). Therefore, by Proposition 3.3, the algebraic degree
of any irreducible (α, T ) is greater than or equal to 3, and there must be at least three poles
{−2, −2, −10}. In fact, algebraic degrees of three, four, and five are possible, as the following
examples illustrate.

• If α = (0.1704, 0.1185, 0.237, 0.1185, 0.237, 0.1185) then (α, T ) is irreducible,

β = (0.4118, 0.325, 0, 0, 0.2632), κ(α, T ) = 3,

and the poles are {−2, −2, −10}.
• If α = (0, 0, 0, 0, 2

3 , 1
3 ) then (α, T ) is irreducible,

β = (0.1713, 0.1016, 0, −0.013, 0.7402), κ(α, T ) = 4,

and the poles are {−2, −2, −6, −10}.
• If α = (0, 0, 0, 0, 0.5, 0.5) then (α, T ) is irreducible,

β = (0.1663, 0.1142, 0.0026, 0.0029, 0.7139), κ(α, T ) = 5,

and the poles are {−2, −2, −4, −6, −10}.

4. Maximum algebraic degree

For a given PH generator T , define

κmax(T ) = max{κ(α, T ) : (α, T ) is an irreducible PH representation, αe > 0}.
The following theorem characterizes κmax(T ), and the PH distributions at which κmax(T ) is

attained.

Theorem 4.1. For any PH generator T , we have κmax(T ) = χ(T ). In addition, the poles of
the LST of any PH distribution (α, T ) with maximum algebraic degree are {−γ1, . . . ,−γχ(T )}.

Proof. By Proposition 3.1 we have κmax(T ) ≤ χ(T ). Thus, we need only prove that
κmax(T = χ(T ). First, we mention two observations: (i) if every element of α is positive then
(α, T ) is an irreducible PH representation; (ii) if β(j, mg,j ) �= 0 for all 1 ≤ j ≤ M then the
algebraic degree of (β, J (γ ), e) is χ(T ). Define, for 1 ≤ j ≤ M ,

�j = {x : x ∈ R
m, (xPQ−1)mg,1+···+mg,j

= 0},
where R

m is the Euclidean space of dimension m. Since the rank of P (χ(T )) is χ(T ) and Q

is invertible, the rank of PQ−1 is χ(T ). Since PQ−1 is an m × χ(T ) matrix, then PQ−1 has
no zero column. Thus, the dimension of �j is m − 1, 1 ≤ j ≤ M . Define � = ⋃M

j=1 �j .

The set R
m − � is dense in R

m. Thus, there exists α with all elements being positive such
that αPQ−1 /∈ �, i.e. it has the property that β(j, mg,j ) �= 0 for 1 ≤ j ≤ M . Therefore, the
algebraic degree κ(α, T ) is equal to χ(T ). This completes the proof.

O’Cinneide (1989) defined a PH generator T to be PH simple if, for any two different
stochastic vectors α and β, the PH distributions represented by (α, T ) and (β, T ) are different.
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By Theorem 1 of O’Cinneide (1989), T is PH simple if and only if χ(T ) = m. Consequently,
if the PH generator T is PH simple then we have κmax(T ) = χ(T ) = m.

For Example 2.1, by applying Theorem 4.1, we find that κmax(T ) = χ(T ) = m for the PH
generator T given in (2.2), and that the corresponding poles are {−τ1, −τ2, . . . ,−τm}. For
Example 2.2, we find that κmax(T ) = χ(T ) = 5 for the PH generator T given in (2.3), and that
the corresponding poles are {−2, −2, −4, −6, −10}.

5. Minimum algebraic degree

For a given PH generator T , define

κmin(T ) = min{κ(α, T ) : (α, T ) is an irreducible PH representation, αe > 0}.
Unlike κmax(T ), κmin(T ) has much to do with the special structure of T . For instance, there

are explicit results for the following special cases.

• There exists λ such that T e = −λe. Then κmin(T ) = 1.

• There is no λ such that T e = −λe, but T is irreducible. Then κmin(T ) = 1.

If there is no λ such that T e = −λe, and T is reducible, the problem is complicated. In the rest
of this section, under some conditions, we give a lower bound and an upper bound on κmin(T ).

First, we need to introduce a number of concepts. We use the notation from Section 2.3 of
Berman and Plemmons (1979). Assume that A is a nonnegative matrix of order m and write
An = (a

(n)
i,j ). We say that state j is accessible from state i if a

(n)
i,j > 0 for some n. A class of

states consists of all states for which any two states are accessible from each other. Class ϕ is
accessible from class φ if any state in φ has access to any state in ϕ. A class is initial if no other
class has access to it. Class ϕ is basic if ρ(A[ϕ]) = ρ(A), where A[ϕ] is the submatrix of A

based on the states in ϕ, and nonbasic if ρ(A[ϕ]) < ρ(A).
A collection of basic classes {ϕ1, ϕ2, . . . , ϕn} is a chain from ϕ1 to ϕn if ϕk has access to

ϕk+1, k = 1, 2, . . . , n − 1. The length of a chain is the number of basic classes it contains.
A class ϕ has access to a class φ in j steps if the length of the longest chain from ϕ to φ is j .
The height of a class ϕ is the length of the longest chain of classes that begins in ϕ.

The degree of eigenvalue ρ(A), denoted as ν(A), is defined as the size of the largest Jordan
block corresponding to ρ(A). The null space, N ((ρ(A)I − A)ν(A)), is called the algebraic
eigenspace of A and its elements are called generalized eigenvectors. From Rothblum (1975)
(or Exercise (3.28) of Berman and Plemmons (1979)), ν(A) equals the length of the longest
chain. Assume that the geometric number of ρ(A) is L. Then there are L Jordan blocks
associated with ρ(A). Denote by {mρ(A),i , 1 ≤ i ≤ L} the sizes of the L Jordan blocks.

By Rothblum (1975), a chain of length ν(A) has ν(A) nonzero and nonnegative generalized
eigenvectors, which correspond to a Jordan block of the size ν(A). Thus, Jordan blocks of size
ν(A) correspond to disjoint chains of length ν(A). Denote by {x(i,1), x(i,2), . . . , x(i,mρ(A),i )}
the row generalized eigenvectors and by {y(i,1), y(i,2), . . . , y(i,mρ(A),i )} the column generalized
eigenvectors corresponding to the ith Jordan block. Then the vectors satisfy

x(i,1)A = ρ(A)x(i,1),

x(i,j)A = ρ(A)x(i,j) + x(i,j−1), 2 ≤ j ≤ mρ(A),i ,

Ay(i,mρ(A),i ) = ρ(A)y(i,mρ(A),i ),

Ay(i,j) = ρ(A)y(i,j) + y(i,j+1), 1 ≤ j ≤ mρ(A),i − 1.
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For any Jordan block with mρ(A),i = ν(A), assume that the basic classes on the correspond-
ing chain are {ϕi,1, ϕi,2, . . . , ϕi,mρ(A),i

}, where ϕi,1 is accessible from ϕi,2, ϕi,2 is accessible
from ϕi,3, etc. Then the class ϕi,1 has no access to any other basic class; otherwise, the length
of the chain would be greater than ν(A) and the degree of the eigenvalue ρ(A) would be greater
than ν(A). Similarly, the class ϕi,mρ(A),i

is not accessible from any basic class. Consequently,
if mρ(A),i = ν(A), the eigenvectors x(i,1) and y(i,mρ(A),i ) can be chosen to be nonnegative.
Furthermore, because all classes that can be reached from class ϕi,1 are not basic, (x(i,1))k > 0
if and only if the state k is accessible from the class ϕi,1 and, because all classes that have access
to class ϕi,mρ(A),i

are not basic, (y(i,mρ(A),i ))k > 0 if and only if the state k has access to the
class ϕi,mρ(A),i

. The generalized eigenvectors associated with Jordan blocks of order smaller
than ν(A) may not have the above property.

For a PH generator T , choose λ sufficiently large such that A = λI + T is a nonnegative
matrix. Then all of the above definitions can be applied to T by using the matrix A. It is easy
to see that the definitions are independent of λ as long as A is a nonnegative matrix. All the
results hold for the matrix T as well.

Now we are ready to state and prove a lower bound on κmin(T ).

Theorem 5.1. For any PH generator T , κmin(T ) ≥ ν(T ). For any irreducible PH represen-
tation (α, T ) with algebraic degree κmin(T ), ρ(T ) is a pole of its LST with multiplicity ν(T ).
If all initial classes of T are also basic then we have κmin(T ) = ν(T ) and ρ(T ) is the only
pole of the LST with multiplicity ν(T ) for any PH representation (α, T ) of minimal algebraic
degree.

Proof. Assume that the order of T is m. Recall that −λ = {−λ1, . . . , −λm} are the
eigenvalues of T , which are ordered by their increasing moduli. Then we have ρ(T ) = −λ1.
Let N1 = mρ(T ),1+mρ(T ),2+· · ·+mρ(T ),L, where L is the geometric number of the eigenvalue
−λ1 and N1 is the algebraic number of −λ1,

Suppose that κmin(T ) is attained by the irreducible PH representation (α, T ). Since (α, T ) is
irreducible, by Proposition 3.2, the vector MT (α) = αT −1/(αT −1e) is positive and κ(α, T ) =
κ(MT (α), T ). Let θ = MT (α), which is positive by Proposition 3.2. To prove the first part of
Theorem 5.1, we need to show that κ(θ , T ) ≥ ν(T ).

Denote the Jordan canonical form of T by J . Based on the above discussion on the algebraic
eigenspace, the matrix T can be written as

T = YJX = Y

⎛
⎜⎜⎜⎝

J1
. . .

JL

J ∗

⎞
⎟⎟⎟⎠ X,

where

Ji =

⎛
⎜⎜⎜⎝

−λ1
1 −λ1

. . .
. . .

1 −λ1

⎞
⎟⎟⎟⎠

mi×mi

, 1 ≤ i ≤ L, X =

⎛
⎜⎜⎜⎜⎜⎝

x(1,1)

x(1,2)

...

x(L,mρ(T ),L)

X∗

⎞
⎟⎟⎟⎟⎟⎠ ;

Y = (y(1,1), y(1,2), y(1,mρ(T ),1), y(2,1), . . . , y(L,mρ(T ),L), Y ∗),
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and J ∗, X∗, and Y ∗ are the remaining Jordan blocks in J , and the remaining parts of the
matrices X and Y , respectively. Note that all the eigenvalues associated with Jordan blocks in
J ∗ are different from −λ1. By the definition of Jordan canonical form we have XY = I . By
routine calculations we obtain

adj(sI − T ) = (sI − T )−1 det(sI − T )

= Y (sI − J )−1X det(sI − T )

= Y

⎛
⎜⎜⎜⎝

(sI − J1)
−1

. . .

(sI − JL)−1

(sI − J ∗)−1

⎞
⎟⎟⎟⎠ X det(sI − T ).

(5.1)

Furthermore, we have, for 1≤ i ≤ L,

(sI − Ji )
−1

=

⎛
⎜⎜⎜⎝

(s + λ1)
N1−1

(s + λ1)
N1−2 (s + λ1)

N1−1

...
. . .

. . .

(s + λ1)
N1−mρ(T ),i · · · (s + λ1)

N1−2 (s + λ1)
N1−1

⎞
⎟⎟⎟⎠ 1

(s + λ1)N1
.

(5.2)

Note that det(sI − T )(s + λ1)
−N1 is a polynomial function for which s = −λ1 is not a root.

Equation (5.2) indicates that all elements of the matrix adj(sI −T ) are polynomial functions for
which s = −λ1 is a root of multiplicity greater than or equal to N1 − ν(T ). Taking derivatives
on both sides of (5.2) and letting s = −λ1, we obtain, for 1 ≤ i ≤ L,

((sI − Ji )
−1)

(n)
s=−λ1

=
{

0 if 0 ≤ n ≤ N1 − ν(T ) − 1,

0 if n = N1 − ν(T ), mρ(T ),i < ν(T ),

((sI − J ∗)−1)
(n)
s=−λ1

= 0 if 0 ≤ n ≤ N1 − 1,

(5.3)

and

((sI − Ji )
−1)

(N1−ν(T ))
s=−λ1

=
(

1

(s + λ1)N1

)
s=−λ1

⎛
⎜⎜⎜⎜⎝

0
...

. . .

0
. . .

. . .

(N1 − ν(T ))! 0 · · · 0

⎞
⎟⎟⎟⎟⎠ if mρ(T ),i = ν(T ). (5.4)

Recall that h∗(s) = adj(sI − T )T 0. By (5.1)–(5.4), we obtain

h∗(n)(s)|s=−λ1 = 0 if 1 ≤ n ≤ N1 − ν(T ) − 1, (5.5)
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and

h∗(N1−ν(T ))(s)|s=−λ1

=
(

det(sI − T )

(s + λ1)N1

)
s=−λ1

(N1 − ν(T ))!
L∑

{i=1 : mρ(T ),i=ν(T )}
y(i,mρ(T ),i )(x(i,1)T 0). (5.6)

Equation (5.6) leads to

θh∗(N1−ν(T ))(s)|s=−λ1

=
(

det(sI − T )

(s + λ1)N1

)
s=−λ1

(N1 − ν(T ))!
L∑

{i=1 : mρ(T ),i=ν(T )}
(θy(i,mρ(T ),i ))(x(i,1)T 0).

(5.7)

Since the underlying Markov chain associated with the PH representation is absorbing with
probability 1, we must have x(i,1)T 0 > 0 if mρ(T ),i = ν(T ). Since θ is positive, and y(i,mρ(T ),i )

is nonzero and nonnegative, if mρ(T ),i = ν(T ), we must have θy(i,mρ(T ),i ) > 0. Therefore,
(5.5) and (5.7) lead to

θh∗(n)(s)|s=−λ1

{
= 0 if 1 ≤ n ≤ N1 − ν(T ) − 1,

�= 0 if n = N1 − ν(T ).
(5.8)

Equation (5.8) implies that s = −λ1 is a root with multiplicity N1 − ν(T ) of the polynomial
function θh∗(s). Therefore, by (3.1), the degree of the polynomial function q(s) is at least
N1 − (N1 − ν(T )) = ν(T ), which implies that κ(θ , T ) ≥ ν(T ) and the multiplicity of −λ1 as
a pole of the LST of (θ , T ) is ν(T ). This completes the first part of Theorem 5.1.

To prove the second part of Theorem 5.1, we first use the SPA introduced in Section 3 (see
(3.7)) to find an equivalent bidiagonal ME representation for (α, T ). Using the SPA, we find
an m × m matrix P such that T P = PS(λ, m) and Pe = e (see (3.8) for the definition of
S(λ, m)).

Consider any initial class ϕh. By assumption, ϕh is also a basic class. We assume that
the height of ϕh is h. Then the longest chain beginning at ϕh has exactly h basic classes
{ϕ1, ϕ2, . . . , ϕh}, where ϕi has access to ϕj if i > j . If h = ν(T ), by Theorem 3.20 of
Berman and Plemmons (1979) (also see Rothblum (1975)), there exist generalized eigenvectors
{x(1), x(2), . . . , x(h)} of −λ1, such that

x(k)(−λ1I − T )k = 0, 1 ≤ k ≤ h. (5.9)

More specifically (see Exercise (3.29) of Berman and Plemmons (1979)), we have x(1)T =
ρ(T )x(1) and x(k)T = −λ1x

(k) + x(k−1), 2 ≤ k ≤ h, so that

x(k) = (λ1I + T )h−kx(h), 1 ≤ k ≤ h − 1. (5.10)

The vectors {x(1), x(2), . . . , x(h)} are nonnegative. For any state i that can be reached from
the class ϕh, (x

(h))i > 0. If h < ν(T ), we can introduce fictitious states to extend the chain
{ϕ1, ϕ2, . . . , ϕh} to be the longest chain and ϕh is still an initial class. Then Theorem 3.20
of Berman and Plemmons (1979) still applies. Therefore, for any initial basic class ϕh, there
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exists a nonnegative generalized eigenvector x(h) such that (x(h))i > 0 for all states accessible
from the class ϕh.

Suppose that x(h) is normalized to a stochastic vector. Consider the PH representation
(x(h), T ). Equations (3.7) and (5.10) lead to an equivalent ME representation

(x(h)P , S(λ, m), e),

where

x(h)P =
(

x(h)T 0

λ1
,
x(h)(λ1I + T )T 0

λ2
1

, . . . ,
x(h)(λ1I + T )h−1T 0

λh
1

, 0, . . . , 0

)

=
(

x(h)T 0

λ1
,
x(h−1)T 0

λ2
1

, . . . ,
x(1)T 0

λh
1

, 0, . . . , 0

)
.

Note that λj = λ1 for 1≤ j ≤ N1. For any state i in a class that can be reached from the
class ϕ1, we have (x(1))i > 0. Since the underlying Markov chain associated with the PH
representation is absorbing, we must have x(1)T 0 > 0. Therefore, (x(h), T ) is a generalized
Erlang distribution of order h with parameter λ1.

Define

α =
((∑

h

x(h)

)
e

)−1(∑
h

x(h)

)
,

where the summation is over all h corresponding to basic classes ϕh. Since all initial classes are
basic, any class must be reached from at least one initial basic class. Consequently, the vector
α is positive and stochastic. Then (α, T ) is an irreducible PH representation and represents
a convex combination of generalized Erlang distributions of order ν(T ) or less with the same
parameter λ1. Since ν(T ) is the length of at least one chain, (α, T ) represents a generalized
Erlang distribution of the order ν(T ) with parameter λ1. Hence, we must have κ(α, T ) = ν(T )

and κmin(T ) = ν(T ), which leads to the second part of the lemma. This completes the proof
of Theorem 5.1.

Theorem 5.1 can be used to find the minimum algebraic degree for many PH generators and
it leads to the second main result of this section. It is easy to show (see Berman and Plemmons
(1979)) that any PH generator T can be written in the form

T =

⎛
⎜⎜⎜⎝

T1,1
T2,1 T2,2

...
. . .

. . .

TK,1 · · · TK,K−1 TK,K

⎞
⎟⎟⎟⎠ , (5.11)

where T1,1, T2,2, . . . ,TK,K satisfy the following properties.

• ρ(T1,1) > ρ(T2,2) > · · · > ρ(TK,K).

• Taken as classes of the matrix Tk,k , all initial classes are basic.

This decomposition expression for T is obtained by rearranging states of T according to the
basic classes. First, all classes that are accessible from a basic class of T are included in T1,1.
From the remaining classes, find all the classes with the largest Perron–Frobenius eigenvalue,
which are called basic classes in T2,2. All classes that are accessible from this set of basic
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classes are included in T2,2. Expression (5.11) is obtained by repeating this process until all
classes are exhausted. Note that Tk,k may not be irreducible. Let ν(Tk,k) denote the degree of
the Perron–Frobenius eigenvalue ρ(Tk,k) of the matrix Tk,k .

Theorem 5.2. Consider the PH generator T given in (5.11). Assume that ρ(Tk,k) is not an
eigenvalue of any diagonal block except Tk,k for 1≤ k ≤ K . Then we have

κmin(T ) ≤
K∑

k=1

ν(Tk,k). (5.12)

Proof. The ideas of our proof are similar to those of the proof of Theorem 5.1. Define, for
1≤ k ≤ K ,

Bk =

⎛
⎜⎜⎜⎝

Tk,k

Tk+1,k Tk+1,k+1
...

. . .
. . .

TK,k · · · TK,K−1 TK,K

⎞
⎟⎟⎟⎠ .

Denote by Nk the algebraic number of the eigenvalue ρ(Tk,k) of the matrix Tk,k, 1 ≤ k ≤ K .
By the assumption that ρ(Tk,k) is not an eigenvalue of any block except Tk,k , Nk is also the
algebraic number of the eigenvalue ρ(Tk,k) of the matrix T and the algebraic number of the
eigenvalue ρ(Tk,k) of the matrix Bk, 1 ≤ k ≤ K . Again, by the assumption, ν(Tk,k) is also the
degree of ρ(Tk,k) as an eigenvalue of T and the degree of the eigenvalue ρ(Tk,k) of the matrix
Bk, 1 ≤ k ≤ K .

To prove that κmin(T ) ≤ ∑K
k=1 ν(Tk,k), we construct a PH representation with algebraic

degree less than or equal to
∑K

k=1 ν(Tk,k). For 1 ≤ k ≤ K , by applying Theorem 5.1, there
exists a positive stochastic vector x(k,k) such that (x(k,k), Tk,k) is an irreducible PH represen-
tation of algebraic degree ν(Tk,k). In fact, the proof of Lemma 5.1 shows that (x(k,k), Tk,k)

represents a generalized Erlang distribution of order ν(Tk,k) with parameter ρ(Tk,k). Rewrite
(−ρ(Tk,k)I + T )n so that

(−ρ(Tk,k)I + T )n =

⎛
⎜⎜⎜⎜⎜⎜⎝

T
(k,n)
1,1

T
(k,n)
2,1 T

(k,n)
2,2

...
. . .

. . .

T
(k,n)
K,1 · · · T

(k,n)
K,K−1 T

(k,n)
K,K

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.13)

where T
(k,n)
i,i = (−ρ(Tk,k)I + Ti,i )

n, 1 ≤ i ≤ K . Define, for 1≤ k ≤ K and 1≤ j ≤ k-1,

x(k,j) = −
( k∑

i=j+1

x(k,i)T
(k,ν(Tk,k))

i,j

)
(−ρ(Tk,k)I + Tj,j )

−ν(Tk,k)

for 1 ≤ k ≤ K, 1 ≤ j ≤ k − 1. The inverse matrices in (5.13) are well defined since ρ(Tk,k)

is not an eigenvalue of Tj,j for j < k. Define

α(k) = (x(k,1), x(k,2), . . . , x(k,k), 0, . . . , 0) for 1 ≤ k ≤ K.

Since x(k,k)(−ρ(Tk,k)I + Tk,k)
ν(Tk,k) = 0, it is easy to verify that

α(k)(−ρ(Tk,k)I + T )ν(Tk,k) = 0.
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The SPA method (see (3.7)) implies that (α(k), T , e) is the representation of a function similar
to the generalized Erlang distribution with algebraic degree less than or equal to ν(Tk,k) and
parameter −ρ(Tk,k). This function may not be a probability distribution function since α(k)

may not be nonnegative. Nevertheless, the LST of the function is a rational function and the
denominator of that transform has a degree less than or equal to ν(Tk,k) if the denominator and
the numerator are coprime polynomials. For ε > 0, define

α =
( K∑

k=1

εk−1α(k)

)/( K∑
k=1

εk−1α(k)e

)
.

Since {x(k,k), 1 ≤ k ≤ K} are positive vectors, it is easy to see that the vector α becomes
positive if ε is sufficiently small. Then (α, T ) is a PH representation and its algebraic degree
is less than or equal to

∑K
k=1 ν(Tk,k). This completes the proof of Theorem 5.2.

Applying Theorem 5.1 or 5.2 to Example 2.1, we find that if τ1 > τ2 > · · · > τm then
κmin(T ) = 1 and the corresponding pole is −τm. Applying Theorem 5.2 to Example 2.2, we
obtain κmin(T ) ≤ 3 and the corresponding poles are in {−2, −2, −10}.

Since any PH generator can be rewritten in the form given in (5.12), Theorem 5.2 can be
used to find a bound on κmin(T ) for T that do not satisfy the conditions of Theorem 5.1. On
the other hand, there are examples that do not satisfy the conditions in Theorem 5.2, and more
work is needed to even bound κmin(T ) for these cases.

To finish the paper, we will make a few further remarks on the relationship between κmin(T )

and
∑K

k=1 ν(Tk,k).

Example 5.1. (Example 2.1 continued.) Assume that τ1 < τ2 < · · · < τm. Applying the
method used in the first part of the proof of Proposition 3.2, we show that κmin(T ) = m. By
routine calculations we obtain

αh∗(−τi) =
m∑

k=i

αk

( k∏
j=1

τj

)( m∏
j=k+1

(τj − τk)

)
> 0, i = 1, 2, . . . , m,

for any positive stochastic vector α. Therefore, {−τ1, −τ2, . . . ,−τm} are poles of the LST of
any irreducible PH representation (α, T ). Consequently, we have κmin(T ) = m. Note that
κmin(T ) = m has been shown in Example 3.1 using a different method.

Example 5.2. Consider the PH generator

T =

1
2
3
4
5
6

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 1.5 0 0 0 0
2 −5 0 0 0 0
1 1 −3 0.5 0 0
1 0 2 −3 0 0
1 0 1 0 −4 0
1 1 0 1 0 −10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The states form four irreducible classes, {1, 2}, {3, 4}, {5}, and {6}. Since the Perron–
Frobenius eigenvalues associated with classes {1, 2} and {3, 4} are both −2, in decomposition
(5.12) we see that K = 3, with the states corresponding to T1,1 given by {1, 2, 3, 4}, the
state corresponding to T2,2 equal to {5}, and the state corresponding to T3,3 equal to {6}.
The eigenvalues of T are {−2, −2, −4, −4, −6, −10}. Since −4 is the Perron–Frobenius
eigenvalue of the block T2,2, but also an eigenvalue of the block T1,1, the conditions of
Theorem 5.2 are not satisfied.
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After some calculation, we see that χ(T ) = 6, (−γ1, . . . ,−γχ(T )) = (−2, −2, −4, −4,

−6, −10), M = 4, (−δ1, . . . ,−δM) = (−2, −4, −6, −10), and

PQ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.125 0 0 0 −0.125 0
0.75 0 0 0 0.25 0

0.4766 0.6094 −0.0313 0 −0.0547 0
−0.3594 1.2188 0.0625 0 0.0781 0
0.4961 0.3047 0.1172 −0.0078 0.0898 0
0.1514 0.1523 0.0104 0 0.0508 0.6351

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By reasoning similar to that used in our consideration of Example 3.2, for an irreducible repre-
sentation (α, T ), α5 and α6 must be positive. Since columns 2 and 6 are nonnegative and column
4 is nonpositive, it follows that β(1, 2), β(2, 2), and β(4, 1) are nonzero for any irreducible
(α, T ). By Proposition 3.3, any irreducible (α, T ) must have poles {−2, −2, −4, −4, −10},
which implies that κmin(T ) ≥ 5 >

∑3
k=1 ν(Tk,k) = 2 + 1 + 1 = 4. In fact, we find

α = (0.36, 0, 0, 0, 0.32, 0.32) such that the fifth element in αPQ−1 is 0, which implies that
κmin(T ) = 5.

Example 5.1 indicates that κmin(T ) = ∑K
k=1 ν(Tk,k) is possible. Example 5.2 demonstrates

that κmin(T ) >
∑K

k=1 ν(Tk,k) is possible. Thus, if the matrix T is reducible, the relationship
between κmin(T ) and

∑K
k=1 ν(Tk,k) is complicated. We leave the problem of identifying

κmin(T ) for the general case as an open problem for future research.
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