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1. Introduction. There is a class of surfaces with singularities called (wave) fronts.
Recently, several differential geometric properties of fronts and criteria for singularities
have been obtained (cf. [8,10,12,14,22–25,28,33,35]). On the other hand, focal surfaces
of regular surfaces have singularities in general. It is known that generic corank one
singularities of focal surfaces are cuspidal edges and swallowtails (see [1,15]). Porteous
[31] found ridge points on regular surfaces, corresponding to cuspidal edges on focal
surfaces. Moreover, Bruce and Wilkinson [5] showed a relation between a sub-parabolic
point and behaviour of the Gaussian curvature of the focal surface (see also [2,3,27]).
For these reasons, studying focal surfaces may provide us with new geometric properties
of surfaces. Thus, we expect that we may obtain new geometric properties of fronts by
investigating focal surfaces.

In this paper, we study singularities and geometric properties of focal surfaces of
fronts in the Euclidean 3-space R3. It is known that one principal curvature is bounded
and the other is unbounded at non-degenerate singular points [38] (see also [28]). We
show relations between singularities of the focal surface with respect to the bounded
principal curvature and geometric properties of the original front (Theorem 3.6).

On the other hand, we also consider geometric properties of the focal surface
corresponding to the unbounded principal curvature. This contains the image of the
set of singular points of the original front as a curve on it. If the original front has
a cuspidal edge, then the focal surface is regular near that cuspidal edge (Proposition
3.7). Thus, we can consider the Gaussian curvature and the mean curvature of the
focal surface corresponding to the cuspidal edge. We give explicit representations of
the Gaussian and the mean curvature of the focal surface along the cuspidal edge by
using geometric invariants (Theorem 3.8).

2. Basic concepts and preliminaries. In this section, we review some notions and
concepts. For detailed explanations, see [1, 15, 22, 25, 34, 35, 37, 38].
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2.1. Wave fronts. Let � be a domain of (R2; u, v) and f : � → R3 a C∞ map.
Then, we call f a (wave) front if there exists a unit vector field ν : � → S2 along f , such
that
� 〈dfp(Xp), ν(p)〉 = 0 for any p ∈ �, Xp ∈ Tp�, and
� Lf = (f, ν) : � → R3 × S2 gives an immersion,

where S2 is the unit sphere in R3 and 〈·, ·〉 is the canonical inner product of R3. If f
satisfies the first condition, it is called a frontal. The vector field ν is called the unit
normal vector or the Gauss map of f (cf. [1,15,22]). A point p ∈ � is said to be a singular
point if f is not an immersion at p, and we denote by S(f ) the set of singular points
of f .

For a frontal f , the function λ : � → R given by

λ(u, v) = det(fu, fv, ν)(u, v) (fu = ∂f/∂u, fv = ∂f/∂v)

is called the signed area density function. Then, S(f ) = {p ∈ �|λ(p) = 0} holds. A
singular point p ∈ S(f ) is said to be a non-degenerate singular point if dλ(p) �= 0.
For a non-degenerate singular point p, there exist a neighbourhood V of p and a
regular curve γ : (−ε, ε) 	 t 
→ γ (t) ∈ V (ε > 0), such that γ (0) = p and S(f ) ∩ V is
parameterised by γ . Moreover, there exists a non-zero vector field η on S(f ) ∩ V , such
that dfq(ηq) = 0 for q ∈ S(f ) ∩ V . We call γ and η the singular curve and the null vector
field, respectively. The image γ̂ = f ◦ γ of a singular curve γ via f is called the singular
locus. We denote by η̃ the extended null vector field on V , which is a vector field defined
on V , such that df (̃η) = 0 on S(f ) ∩ V , that is, η̃ = η holds on S(f ) ∩ V (see [34]).

A non-degenerate singular point p = γ (0) is said to be of the first kind if γ ′ and η

are transverse at t = 0. Otherwise, it is said to be of the second kind [25]. Moreover, a
non-degenerate singular point of the second kind p is called admissible if p = γ (0) is of
the second kind and det(γ ′, η)(t) �= 0 for t �= 0. We call a singular point p of a front an
admissible non-degenerate singular point if p is of the first kind or is of the admissible
second kind. We note that the singular locus of a non-degenerate singular point of the
first kind is a regular curve, but for the second kind, it has a singularity.

DEFINITION 2.1. Let f, g : (R2, 0) → (R3, 0) be C∞ map germs. Then, f and g
are A-equivalent if there exist diffeomorphism germs θ : (R2, 0) → (R2, 0) and 
 :
(R3, 0) → (R3, 0), such that 
 ◦ f = g ◦ θ holds.

DEFINITION 2.2. Let f : (�, p) → (R3, f (p)) be a C∞ map germ around p. Then, f at
p is a cuspidal edge if the map germ f isA-equivalent to the map germ (u, v) 
→ (u, v2, v3)
at 0, and f at p is a swallowtail if the map germ f is A-equivalent to the map germ
(u, v) 
→ (u, 3v4 + uv2, 4v3 + 2uv) at 0.

A cuspidal edge is non-degenerate singular point of the first kind, and a swallowtail
is of the admissible second kind. Criteria for these singularities are known.

FACT 2.3 [22,34]. Let f : � → R3 be a front and p a non-degenerate singular point.
Then,

(1) f is a cuspidal edge at p if and only if ηλ(p) �= 0,
(2) f is a swallowtail at p if and only if ηλ(p) = 0 and ηηλ(p) �= 0.

We note that criteria for other singularities are known as well (cf. [16, 17, 32]).
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Figure 1. Cuspidal edges with positive κs (left) and negative κs (right).

2.2. Geometric invariants of wave fronts. We recall relations between geometric
invariants and principal curvatures of fronts.

Let f : �(⊂ R2) → R3 be a front and p ∈ � a non-degenerate singular point.
Then, we can take the following local coordinate system around p.

DEFINITION 2.4 [22,25,35]. Let f : � → R3 be a front and p ∈ � a non-degenerate
singular point of the first kind (resp. the second kind). Then, a local coordinate system
(U ; u, v) centred at p is an adapted coordinate system if the following properties hold:

(1) the singular curve is the u-axis,
(2) η = ∂v (resp. η = ∂u + e(u)∂v with e(0) = 0) gives a null vector field on the u-axis,
(3) there are no singular points other than the u-axis.

First, we deal with cuspidal edges. Let f : � → R3 be a front, ν its unit normal
vector and p ∈ � a cuspidal edge. Let κs, κν , κc and κt denote the singular curvature [35],
the limiting normal curvature [35], the cuspidal curvature [25] and the cusp-directional
torsion [24], respectively. If we take an adapted coordinate system (U ; u, v) around p,
then

κs = sgn(λv)
det(fu, fuu, ν)

|fu|3 , κν = 〈fuu, ν〉
|fu|2 , κc = |fu|3/2 det(fu, fvv, fvvv)

|fu × fvv|5/2
,

κt = det(fu, fvv, fuvv)
|fu × fvv|2 − det(fu, fvv, fuu)〈fu, fvv〉

|fu|2|fu × fvv|2
(1)

hold on the u-axis, where | · | denotes the norm of R3. We note that κc does not vanish
along the singular curve if it consists of cuspidal edges [25, Proposition 3.11]. Moreover,
the sign of κs corresponds to convexity or concavity of a cuspidal edge (see Figure 1) (cf.
[35]). For other geometric meanings of these invariants, see [24,25,35]. Take an adapted
coordinate system (U ; u, v) centred at p. Since, df (η) = fv = 0 on the u-axis, there exists
a C∞ map h : U → R3 \ {0}, such that fv = vh on U . We note that {fu, h, ν} gives a
frame on U , and we may take ν as ν = (fu × h)/|fu × h| (cf. [24, 25, 29]). Under the
adapted coordinate system (U ; u, v) centred at p with λv(u, 0) = det(fu, h, ν)(u, 0) > 0,
κν , κc and κt can be written as follows [38, Lemma 2.7]:

κν(u) = L̃
Ẽ

(u, 0), κc(u) = 2Ẽ3/4Ñ

(ẼG̃ − F̃2)3/4
(u, 0), κt(u) = ẼM̃ − F̃L̃

Ẽ
√

ẼG̃ − F̃2
(u, 0), (2)
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where

Ẽ = |fu|2, F̃ = 〈fu, h〉, G̃ = |h|2, L̃ = −〈fu, νu〉, M̃ = −〈h, νu〉, Ñ = −〈h, νv〉.
(3)

We consider principal curvatures of cuspidal edges. We set two functions κj :
U \ {v = 0} → R (j = 1, 2) by

κ1 = H +
√

H2 − K, κ2 = H −
√

H2 − K, (4)

where K and H are the Gaussian and mean curvature of f defined on U \ {v = 0},
respectively. Since K = κ1κ2 and 2H = κ1 + κ2 on U \ {v = 0}, κj (j = 1, 2) can be
considered as principal curvatures of f . Although H is unbounded near p, it is known
that κ2 is bounded at p if ηλ(p) · κc(p) > 0 holds [38, Theorem 3.1]. Using functions
defined in (3), κ1 and κ2 as in (4) can be written as

κ1 = 2(L̃Ñ − vM̃2)

Ã − B̃
, κ2 = 2(L̃Ñ − vM̃2)

Ã + B̃
, (5)

where Ã = ẼÑ − 2vF̃M̃ + vG̃L̃, B̃ =
√

Ã2 − 4v(ẼG̃ − F̃2)(L̃Ñ − vM̃2).
Suppose that κ2 is bounded on U and write κ = κ2. Then, κ = κν holds along the

u-axis (cf. [37, 38]). Moreover, we assume that κ �= 0 on U in what follows, when we
treat cuspidal edges. Let V = V1∂u + V2∂v be a vector field on U , where (V1, V2) =
(Ñ − vκẼ,−M̃ + κF̃). This vector field V gives a principal vector with respect to κ (see
[37, 38]).

Next we treat a front with non-degenerate singular points of the second kind.
Let f : � → R3 be a front, ν a unit normal vector to f and p ∈ � a non-degenerate
singular point of the second kind. Take an adapted coordinate system (U ; u, v) around
p. Since df (η) = 0 on the u-axis, there exists a C∞ map h : U → R3 \ {0}, such that
df (η) = fu + e(u)fv = vh on U . Since dλ = det(h, fv, ν)dv �= 0 on the u-axis, h, fv and
ν are linearly independent, and we may take an adapted coordinate system (U ; u, v)
satisfying λv(u, 0) > 0. We define the following functions as

Ê = |h|2, F̂ = 〈h, fv〉, Ĝ = |fv|2, L̂ = −〈h, νu〉, M̂ = −〈h, νv〉, N̂ = −〈fv, νv〉.
(6)

We note that L̂ + e(u)M̂ �= 0 on the u-axis, in particular L̂ �= 0 at p (cf. [38]).
Let K and H denote the Gaussian and mean curvature of f defined on U \ {v =

0}. We set Ĥ = vH. It is known that Ĥ is a C∞ function on U . Moreover, we set
μc(p) = 2Ĥ(p). This is a geometric invariant called the normalised cuspidal curvature
(see [25]). By using the functions above, we see that μc(p) = Ĝ(p)L̂(p)/|h(p) × fv(p)|2
holds [25,38]. In addition, it is known that μc(p) �= 0 if and only if f is a front at p [25,
Proposition 4.2].

We define functions κj : U \ {v = 0} → R (j = 1, 2) as

κ1 = H +
√

H2 − K, κ2 = H −
√

H2 − K. (7)

These functions can be considered as principal curvatures of f on U \ {v = 0}. It is
known that if μc(p) > 0, then κ2 is bounded at p [38, Theorem 3.1]. Moreover, we can

428

https://doi.org/10.1017/S0017089518000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000277


FOCALS OF FRONTS

write κ1 and κ2 as

κ1 = 2((L̂ + e(u)M̂)N̂ − vM̂2)

Â − B̂
, κ2 = 2((L̂ + e(u)M̂)N̂ − vM̂2)

Â + B̂
, (8)

by using functions in (6), where

Â = Ĝ(L̂+e(u)M̂)−2vF̂M̂+vÊN̂, B̂ =
√

Â2 − 4v(ÊĜ − F̂2)
(
(L̂+e(u)M̂)N̂−vM̂2

)
.

We assume that κ2 is bounded on U and set κ = κ2. Let V = V1∂u + V2∂v be a vector
field on U defined by (V1, V2) = (−M̂ + κF̂, L̂ − κ(vÊ − e(u)F̂)). This gives a principal
vector with respect to κ (see [38]).

We note that Murata and Umehara [28] introduced the notion called the principal
curvature maps on fronts, which is the generalisation of the notion of principal curvature
functions. The relationship between principal curvature maps and principal curvatures
as in (5) and (8) is mentioned in [38].

REMARK 2.5. If κ2 is bounded at a non-degenerate singular point q, then κ1 is
unbounded near q. We set κ̂ = λκ1, where λ = det(fu, fv, ν). If p is a cuspidal edge, then
κ̂ = ẼÑ/|fu × h| > 0 holds along the u-axis. Moreover, if p is of the admissible second
kind, then κ̂ = Ĝ(L̂ + e(u)M̂)/|h × fv| > 0 on the u-axis. Thus, κ̂ is a C∞ function
on U .

DEFINITION 2.6. Under the above settings, a point p is called a ridge point if
Vκ(p) = 0 holds, where Vκ denotes the directional derivative of κ with respect to
V. Moreover, a point p is called a k-th order ridge point if V (m)κ(p) = 0 (1 ≤ m ≤ k)
and V (k+1)κ(p) �= 0 hold, where V (m)κ means the m-th directional derivative of κ with
respect to V. We call the set of ridge points the ridge line.

Porteous [30] defined ridge points to investigate singularities of focal surfaces of
regular surfaces. For more detailed properties of ridge points on regular surfaces, see
[2, 3, 9, 15, 30, 31].

2.3. Sub-parabolic points on cuspidal edges. We now consider sub-parabolic
points with respect to a bounded principal curvature at cuspidal edges. Let f : � → R3

be a front, ν its unit normal vector and p ∈ � a cuspidal edge. Take an adapted
coordinate system (U ; u, v) centred at p satisfying ηλ(u, 0) > 0. Then, we assume that
κ2 as in (5) is bounded on U and write κ = κ2.

Let us denote Ṽ = (Ṽ1, Ṽ2). If Ṽ is a principal vector with respect to κ1 on
U \ {v = 0}, then Ṽ satisfies the relation (II − κ1I)Ṽ = 0, where

I =
(〈fu, fu〉 〈fu, fv〉

〈fu, fv〉 〈fv, fv〉
)

, II =
(−〈fu, νu〉 −〈fu, νv〉

−〈fv, νu〉 −〈fv, νv〉
)

.

By using functions as in (3), we can write(
L̃ − κ1Ẽ v(M̃ − κ1F̃)

v(M̃ − κ1F̃) v(Ñ − vκ1G̃)

)(
Ṽ1

Ṽ2

)
=

(
0
0

)
. (9)
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This relation (9) is equivalent to the following equations, once multiplying by λ:{
(λL̃ − κ̂Ẽ)Ṽ1 + v(λM̃ − κ̂F̃)Ṽ2 = 0

(λM̃ − κ̂F̃)Ṽ1 + (λÑ − vκ̂G̃)Ṽ2 = 0,

where κ̂ = λκ1. Thus, we may take Ṽ = (Ṽ1, Ṽ2) as

Ṽ = (v(λM̃ − κ̂F̃),−λL̃ + κ̂Ẽ) or Ṽ = (λÑ − vκ̂G̃,−λM̃ + κ̂F̃). (10)

We note that one of the above vectors in (10) is well-defined on U , since we can write
Ṽ as Ṽ = (0, κ̂Ẽ) or Ṽ = (0, κ̂F̃) on the u-axis. In particular, Ṽ = (0, κ̂Ẽ) �= (0, 0) on
the u-axis. Thus, we can take the (extended) principal vector Ṽ with respect to κ1 as

Ṽ = (v(λM̃ − κ̂F̃),−λL̃ + κ̂Ẽ) (11)

on U . We now identify the vector Ṽ = (Ṽ1, Ṽ2) with the vector field Ṽ = Ṽ1∂u + Ṽ2∂v

on U . By (11), we note that Ṽ is parallel to the null vector field η = ∂v along the u-axis.

DEFINITION 2.7. Under the above settings, a point p is called the sub-parabolic
point of f if Ṽκ(p) = 0 holds, where Ṽκ means the directional derivative of κ in the
direction Ṽ.

For geometric meanings of sub-parabolic points on a regular surface, see [2, 4, 5,
15, 27].

PROPOSITION 2.8. Let f : � → R3 be a front and p ∈ � a cuspidal edge. Assume
that κ = κ2 or κ = κ1 is a bounded principal curvature near p. Then, a point p is a
sub-parabolic point if and only if 4κ2

t + κsκ
2
c = 0 at p.

Proof. Let (U ; u, v) be an adapted coordinate system centred at p satisfying
ηλ(u, 0) > 0. In this case, we may take ν as ν = (fu × h)/|fu × h|. We assume that
κ2 is a bounded principal curvature of f on U and set κ = κ2, that is, Ñ > 0 on the
u-axis. The directional derivative Ṽκ of κ with respect to Ṽ as in (11) is Ṽκ = Ṽ2∂κ/∂v

at p. By (5), ∂κ/∂v can be written as

∂κ

∂v
= 2

(
L̃vÑ + L̃Ñv − M̃2

Ã + B̃
− L̃Ñ(Ãv + B̃v)

(Ã + B̃)2

)
on the u-axis. We note that Ã + B̃ = 2ẼÑ, Ãv = ẼÑv − 2F̃M̃ + G̃L̃ and Ãv + B̃v =
2(Ãv − L̃|fu × h|2/Ẽ) hold on the u-axis, since 2Ẽv(u, 0) = 〈fuv, fu〉(u, 0) = 0. Thus, it
follows that

∂κ

∂v
= L̃vÑ − κ2

t |fu × h|2
ẼÑ

holds along the u-axis, by (2).
We consider L̃v along the u-axis. Since L̃ = det(fu, h, fuu)/|fu × h| and fuv = fuuv = 0

on the u-axis, we see that

L̃v = det(fu, hv, fuu)
|fu × h| − |fu × h|v det(fu, h, fuu)

|fu × h|2
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holds at p. Since hv and |fu × h|v can be written as

hv = ∗fu+|fu|2〈h, hv〉 − 〈fu, h〉〈fu, hv〉
|fu × h|2 h+Ñν, |fu × h|v = |fu|2〈h, hv〉 − 〈fu, h〉〈fu, hv〉

|fu × h| ,

we have L̃v = −κsÑ|fu|3/|fu × h| (see (1)). Thus, 4L̃vÑ = −κsκ
2
c |fu × h|2 holds on the

u-axis, by (2). Hence, we get

∂κ

∂v
= − 1

2κc
(4κ2

t + κsκ
2
c )

( |fu × h|
|fu|

)1/2

at p. Since, 2κ̂Ẽ = κc(|fu|5|fu × h|)1/2 at p, we have the assertion. �

3. Focal surfaces of wave fronts. We consider focal surfaces of fronts. Since, focal
surfaces can be regarded as the singular value set of a certain map R3 → R3, we
consider focal surfaces by using results about Morin singularities of R3 → R3.

3.1. Morin singularities. We recall relations between the Ak-Morin singularities
and the Ak-front singularities. The Ak-Morin singularities are map germs f : (Rn, p) →
(Rn, f (p)), which are A-equivalent to

f (x1, . . . , xn) = (x1, . . . , xn−1, x1xn + · · · + xk−1xk−1
n + xk+1

n ) (k ≤ n)

at the origin 0 (see [11, 26, 34]). We note that the A0-Morin singularity is actually a
regular point.

FACT 3.1 [34, Theorem A.1]. Assume that k ≤ n. Let � be a domain of Rn, f : � →
Rn a C∞ map and p a singular point of f . Assume that p is a corank one singularity.
Then, f at p is A-equivalent to an Ak-Morin singularity if and only if

(1)  = ′ = · · · = (k−1) = 0 and (k) �= 0 at p,
(2) (,′, . . . , (k−1)) : � → Rk is non-singular at p,

where  = det(fx1 , . . . , fxn ), (x1, . . . , xn) is the canonical coordinate system on �, ′ =
η̃, (i) = η̃(i−1) and η̃ is the extended null vector field of f .

For stating the next fact, recall that an Ak+1-front singularity is a C∞ map germ
defined as

X 
→
⎛⎝(k + 1)tk+2 +

k∑
j=2

(j − 1)tjxj,−(k + 2)tk+1 −
k∑

j=2

jtj−1xj, X1

⎞⎠
at 0, where X = (t, x2, . . . , xn) and X1 = (x2, . . . , xn) (see [1, 34]).

FACT 3.2 [34, Corollary 2.11]. Let � be a domain of Rn+1 and f : � → Rn+1 a C∞

map. Suppose that p ∈ � is a singular point of f such that the exterior derivative of the
Jacobian of f does not vanish at p. Then the following are equivalent:

(1) p is an Ak-Morin singular point of f ,
(2) f |S(f ) is a front, and p is an Ak-front singularity of f |S(f ).
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REMARK 3.3. The image of an A1-front singularity is a regular point, the image of
an A2-front singularity is a cuspidal edge, and the image of an A3-front singularity is
a swallowtail if the dimensions of the source space and target space are two and three,
respectively (see [1, 3, 34]).

3.2. Focal surfaces of wave fronts. Let f : � → R3 be a front, ν a unit normal
vector to f and p ∈ � a non-degenerate singular point. We assume that p is of the second
kind, and (U ; u, v) is an adapted coordinate system centred at p satisfying λv(u, 0) > 0.
When p is a cuspidal edge, the following arguments can be applied similarly.

We now consider the map F : U × R → R3 given by

F(u, v, w) = f (u, v) + wν(u, v) ((u, v) ∈ U, w ∈ R) . (12)

By direct computations, it follows that

Fu = (v + wα1)h + (−e(u) + wα2)fv, Fv = wβ1h + (1 + wβ2)fv, Fw = ν,

where

α1 = F̂(vM̂ − e(u)N̂) − ĜL̂
|h × fv|2 , α2 = F̂L̂ − Ê(vM̂ − e(u)N̂)

|h × fv|2 , β1 = F̂N̂ − ĜM̂
|h × fv|2 ,

β2 = F̂M̂ − ÊN̂
|h × fv|2

(cf. [38, Lemmas 2.6 and 2.8]). From these calculations, the Jacobian of F can be
written as

det(Fu,Fv,Fw) = (1 − wκ)(λ − wκ̂),

where κ̂ = λκ1 and λ = det(fu, fv, ν). By Remark 2.5, κ̂ is a C∞ function and does not
vanish on the u-axis, in particular, at p. Thus, we see that det(Fu,Fv,Fw)(u, v, w) = 0,
if and only if 1 − wκ(u, v) = 0 or λ − wκ̂(u, v) = 0. Hence, the set of singular points
of F is S(F) = S1(F) ∪ S2(F), where S1(F) = {(u, v, w) | w = 1/κ(u, v)} and S2(F) =
{(u, v, w) | w = λ(u, v)/κ̂(u, v)}. The image of F(S(F)) is

F(S(F)) =
{

f (u, v) + 1
κ(u, v)

ν(u, v)
∣∣∣ (u, v) ∈ U, w = 1

κ(u, v)

}
(13)⋃{

f (u, v) + λ(u, v)
κ̂(u, v)

ν(u, v)
∣∣∣ (u, v) ∈ U, w = λ(u, v)

κ̂(u, v)

}
.

We set

FCf (u, v) = f (u, v) + 1
κ(u, v)

ν(u, v), F̂Cf (u, v) = f (u, v) + λ(u, v)
κ̂(u, v)

ν(u, v). (14)

These are focal surfaces of f (cf. [6, pages 231 and 232], see also [7, 18]). If f at p is a
cuspidal edge, by similar calculations, we have the same formulae as in (14) for focal
surfaces of f , where κ = κ2 is given by (5) and κ̂ = λκ1 is given by Remark 2.5. We
assume that f at p is a cuspidal edge or of the second kind. We note that FCf cannot
be defined at p if κ(p) = 0 (such a point is called a parabolic point). On the other hand,
F̂Cf can be defined near p even if κ(p) vanishes. Since the set of singular points S(f t)
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of a parallel surface f t = f + tν, where t ∈ R \ {0} is constant of a front f is given
by S(f t) = {q ∈ U|t = 1/κ(q)}, the union of all the sets of singular points of the f t

corresponds to the focal surface FCf if κ never vanishes.
We note that focal surfaces (or caustics) of regular surfaces in the Minkowski

3-space R2,1 are studied in [36] by using distance squared functions on surfaces. We
also remark that Kokubu, Rossman, Umehara and Yamada [23] studied caustics of flat
fronts in the hyperbolic 3-space H3 from the global viewpoint. Moreover, see [20, 28]
for geometric properties of caustics of flat fronts in R3 and the spherical 3-space S3

(see also [13]).

3.3. Singularities of a focal surface FCf on a wave front. We consider relations
between singularities of FCf at p and geometric properties of f . We assume that p is
not a parabolic point with respect to κ.

LEMMA 3.4. Under the above settings, a singular point P = (p, w0 = 1/κ(p)) ∈ S1(F)
of F is corank one. Moreover, S1(F) is a smooth submanifold of U × R with codimension
one near P.

Proof. We show the case that p is a non-degenerate singular point of the second
kind. For cuspidal edges, one can show this in a similar way.

By the above calculations, Fw = ν is linearly independent of Fu and Fv. We note
that Fu and Fv do not vanish at P simultaneously, since α1(p) �= 0 holds. The cross
product of Fu and Fv satisfies

Fu × Fv = (1 − wκ)(λ − wκ̂)ν = 0

at P = (p, w0) ∈ S1(F). Thus, Fu and Fv are linearly dependent at P. This implies that
a point P = (p, w0) ∈ S1(F) is corank one.

We show S1(F) is a smooth submanifold of U × R near P. By straightforward
computations, the Jacobian matrix of F is rank two at P = (p, w0) ∈ S1(F). We set
 : U × R → R to be (u, v, w) = 1 − wκ(u, v). The gradient vector grad() of  is

grad() =
(
−κu

κ
,−κv

κ
,−κ

)
�= (0, 0, 0)

at (p, w0) ∈ S1(F) since κ(p) �= 0, where κu = ∂κ/∂u and κv = ∂κ/∂v. By the implicit
function theorem, we have the conclusion. �

Let V be a principal vector with respect to κ. Then, dF(V) = 0 holds on
S1(F), using the definitions of principal curvatures and principal vectors (cf. [37, 38]).
Therefore, V can be considered as the extended null vector field η̃ of F .

LEMMA 3.5. Under the above conditions, the following assertions hold:

(1) F has an A1-Morin singularity at P = (p, w0) ∈ S1(F), if and only if p is not
a ridge point of f ;

(2) F has an A2-Morin singularity at P = (p, w0) ∈ S1(F), if and only if p is a
first order ridge point of f ;

(3) F has an A3-Morin singularity at P = (p, w0) ∈ S1(F), if and only if p is a
second order ridge point of f and the ridge line passing through p is a regular
curve.

Here, w0 = 1/κ(p).
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Proof. Let F : U × R → R3 be a C∞ map given by (12). By Lemma 3.4, it follows
that a singular point P = (p, w0) ∈ S1(F) of F is corank one. Moreover, the extended
null vector field η̃ can be taken as a principal vector V of κ for F , and the function 

which gives S1(F) can be taken as  = 1 − wκ in both the case that f at p is a cuspidal
edge and the case that it is a non-degenerate singular point of the second kind.

First, we show (1). Since κ(p) �= 0, d(P) �= 0. By the assumptions, we have η̃ =
−Vκ/κ �= 0 at P, if and only if the point p is not a ridge point. Thus, assertion (1) is
hold by Fact 3.1.

Next, we prove the assertion (2). We assume that η̃ = −Vκ/κ = 0 at P = (p, w0).
The second order directional derivative of  in the direction η̃ becomes η̃(2) =
−V (2)κ/κ at P = (p, w0). Moreover, the map (, η̃) : U × R → R2 is non-singular
at P = (p, w0) if and only if the matrix( −κu/κ −κv/κ −κ

−(Vκ)u/κ −(Vκ)v/κ 0

)
has rank two at P = (p, w0), by Fact 3.1 in the case of k = 2. Since, V (2)κ(p) �= 0,
d(Vκ)(p) does not vanish, and hence assertion (2) holds.

Finally, we show (3). We assume that  = η̃ = η̃(2) = 0 at P = (p, w0) ∈ S1(F),
that is, w0 = 1/κ(p) and Vκ(p) = V (2)κ(p) = 0 hold. Then, η̃(3) �= 0 at P, if and only
if V (3)κ(p) �= 0. In addition, a map (, η̃, η̃(2)) : U × R → R3 is non-singular at P
if and only if the matrix⎛⎝ −κu/κ −κv/κ −κ

−(Vκ)u/κ −(Vκ)v/κ 0
−(V (2)κ)u/κ −(V (2)κ)v/κ 0

⎞⎠
has rank three at P. Since V (3)κ(p) �= 0, d(V (2)κ) does not vanish at p. Therefore, the
above 3 × 3 matrix has rank three at P if and only if d(Vκ) does not vanish at p.
This condition is equivalent to the condition that the ridge line passing through p is a
regular curve. Thus, we have the assertion by Fact 3.1. �

For the focal surface FCf , we shall prove the following assertion.

THEOREM 3.6. Let f : � → R3 be a front and p ∈ � a non-degenerate singular point.
Suppose that κ = κ2 (resp. κ = κ1) is a C∞ principal curvature of f near p and FCf is a
focal surface of f with respect to κ. Then, the following assertions hold:

(1) FCf is non-singular at p, if and only if p is not a ridge point of f ;
(2) FCf is a cuspidal edge at p, if and only if p is a first order ridge point of f ;
(3) FCf is a swallowtail at p, if and only if p is a second order ridge point of f and

the ridge line passing through p is a regular curve.

Proof. We prove the case that the front has a non-degenerate singular point of the
second kind. For the case of cuspidal edges, we can show this in a similar way.

Let f : � → R3 be a front, ν a unit normal vector of f and p ∈ � a non-degenerate
singular point. Suppose that (U ; u, v) is an adapted coordinate system centred at p and
a principal curvature κ of f is of class C∞ on U . We construct a map F : U × R → R3

as in (12). Then, the image of the set of singular points of F gives a focal surface of f
with respect to κ (see (13)). Moreover, the point P = (p, w0) ∈ S1(F) is a corank one
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singular point of F , by Lemma 3.4. Thus, we get the conclusions by Lemma 3.5 and
Fact 3.2. �

3.4. Geometric properties of F̂Cf of cuspidal edges. We consider geometric
properties of F̂Cf as in (14) of a front f : � → R3 with a cuspidal edge p ∈ �. For a
front f : � → R3 with unit normal ν and a cuspidal edge point at p ∈ �, the limiting
tangent plane of f at f (p) is the plane that is perpendicular to ν(p).

PROPOSITION 3.7. Let f : � → R3 be a front, ν a unit normal vector to f and p ∈ � a
cuspidal edge. Then, the focal surface F̂Cf is regular at p. Moreover, the limiting tangent
plane LT of f at f (p) and the tangent plane TP of F̂Cf at F̂Cf (p) intersect orthogonally.

Proof. Let us take an adapted coordinate system (U ; u, v) around p satisfying
ηλ(u, 0) > 0. Then, the limiting tangent plane LT of f at f (p) is generated by fu(p) and
h(p). Moreover, ν is given by ν = (fu × h)/|fu × h|.

On the other hand, we consider the tangent plane of the focal surface F̂Cf at
F̂Cf (p). We note that F̂Cf (p) = f (p) holds. By direct computations, we have

(F̂Cf )u = fu +
(

λ

κ̂

)
u
ν + λ

κ̂
νu, (F̂Cf )v = vh +

(
λ

κ̂

)
v

ν + λ

κ̂
νv.

Thus, (F̂Cf )u(p) = fu(p) and (F̂Cf )v(p) = λv(p)ν(p)/κ̂(p) hold, where λv =
det(fu, h, ν) = |fu × h|. This implies that F̂Cf is regular at p, and fu(p) and ν(p) are
an orthogonal basis of the tangent plane TP of F̂Cf at F̂Cf (p). A normal vector to
F̂Cf is given as ñ = fu × ν along the u-axis. Since 〈ν, ñ〉 = 0 holds on the u-axis, LT
and TP intersect orthogonally at f (p) = F̂Cf (p). �

By Proposition 3.7, we can consider the Gaussian and mean curvature of F̂Cf

along the singular curve γ of f .

THEOREM 3.8. The Gaussian curvature KF̂Cf
and mean curvature HF̂Cf

of the focal
surface F̂Cf are given as

KF̂Cf
= −1

4
(4κ2

t + κsκ
2
c ), HF̂Cf

= ±1
8

(κ2
c − 4κs)

along γ , where the sign ± of HF̂Cf
depends on the orientation of the unit normal vector

to F̂Cf .

Proof. Let us take an adapted coordinate system (U ; u, v) centred at p with
ηλ(u, 0) = λv(u, 0) > 0. Then, we may take ν as ν = (fu × h)/|fu × h|, and we have
λv = det(fu, h, ν) = |fu × h|. Since (F̂Cf )u = fu and (F̂Cf )v = λvν/κ̂ on the u-axis, the
coefficients of the first fundamental form of F̂Cf are

EF̂Cf
= Ẽ = |fu|2, FF̂Cf

= 0, GF̂Cf
= λ2

v

κ̂2

along γ . The second order differentials of F̂Cf can be written as

(F̂Cf )uu = fuu, (F̂Cf )uv = λv

κ̂
νu + ∗1ν, (F̂Cf )vv = −h + ∗2

κ̂
fu + ∗3ν
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on γ , where h : U → R3 \ {0} is a C∞ map satisfying fv = vh and ∗i (i = 1, 2, 3) are
some functions. We can take a unit normal vector n to F̂Cf as n = ±(fu × ν)/|fu| along
γ . Thus, coefficients of the second fundamental form of F̂Cf are

LF̂Cf
= ±det(fu, ν, fuu)

|fu| , MF̂Cf
= ±λv det(fu, ν, νu)

κ̂|fu| , NF̂Cf
= ±det(fu, h, ν)

|fu|
at p. By (1), LF̂Cf

= ∓κs|fu|2 holds. By [37, Lemma 2.1] and (2), νu is expressed as

νu = F̃M̃ − G̃L̃
|fu × h|2 fu − κt|fu|2

|fu × h|h (15)

along γ . On the other hand, the following equation holds on γ , by (2):

λv

κ̂
= |fu × h|2

|fu|2Ñ
= 2

κc

( |fu × h|
|fu|

)1/2

. (16)

Hence, MF̂Cf
is calculated as

MF̂Cf
= ± 2

κc

( |fu × h|
|fu|

)1/2
κt|fu|

|fu × h| det(fu, h, ν) = ± 2κt|fu|1/2

κc|fu × h|1/2
det(fu, h, ν)

on γ , by (15) and (16). Since det(fu, h, ν) = |fu × h|, we have

MF̂Cf
= ±2κt

κc
(|fu||fu × h|)1/2, NF̂Cf

= ±|fu × h|
|fu|

and

EF̂Cf
GF̂Cf

− F2
F̂Cf

= 4|fu||fu × h|
κ2

c
, LF̂Cf

NF̂Cf
− M2

F̂Cf
= − (4κ2

t + κsκ
2
c )

κ2
c

|fu||fu × h|,

EF̂Cf
NF̂Cf

− 2FF̂Cf
MF̂Cf

+ GF̂Cf
LF̂Cf

= ± (κ2
c − 4κs)

κ2
c

|fu||fu × h|

along γ . Thus, the assertions hold by the following formulae:

KF̂Cf
=

LF̂Cf
NF̂Cf

− M2
F̂Cf

EF̂Cf
GF̂Cf

− F2
F̂Cf

and HF̂Cf
= EF̂Cf

NF̂Cf
− 2FF̂Cf

MF̂Cf
+ GF̂Cf

LF̂Cf

EF̂Cf
GF̂Cf

− F2
F̂Cf

.

�
Comparing Theorem 3.8 and Proposition 2.8, we have the following assertion.

COROLLARY 3.9. Let f be a front in R3, p ∈ � a cuspidal edge of f and F̂Cf the
focal surface. Then, the Gaussian curvature KF̂Cf

of F̂Cf vanishes at p if and only if p is
a sub-parabolic point with respect to a bounded principal curvature of f .

This property is similar to the case of regular surfaces obtained by Buruce and
Wilkinson [5] and Morris [27] (see also [15]).

For the focal surface F̂Cf , we call a point p an elliptic, a parabolic or a hyperbolic
point of F̂Cf if KF̂Cf

> 0, = 0 or < 0 at p, respectively. By Theorem 3.8, we have the
following properties immediately.
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COROLLARY 3.10. Let f be a front in R3, p a cuspidal edge of f and F̂Cf a focal
surface of f . Then, we have the following:

(1) The point p of F̂Cf is classified as follows:
– p is an elliptic point of F̂Cf , if and only if 4κ2

t + κsκ
2
c < 0 at p,

– p is a parabolic point of F̂Cf , if and only if 4κ2
t + κsκ

2
c = 0 at p,

– p is a hyperbolic point of F̂Cf , if and only if 4κ2
t + κsκ

2
c > 0 at p.

Moreover, the Gaussian curvature KF̂Cf
is non-negative at p if and only if κs is

non-positive at p. In particular, if KF̂Cf
is strictly positive along γ , then κs is

strictly negative.
(2) If the mean curvature HF̂Cf

vanishes, κs is strictly positive along γ .

The invariant 4κ2
t + κsκ

2
c appears as the coefficient of v in the Gaussian curvature

K of a cuspidal edge (see [25]).
Under this setting, since the singular locus γ̂ is a regular curve on F̂Cf , we can

consider the geodesic curvature κ̂g and the normal curvature κ̂n of F̂Cf along the singular
curve γ .

PROPOSITION 3.11. Let f : � → R3 be a front, p ∈ � a cuspidal edge of f , γ a
singular curve passing through p and η a null vector field. Assume that ηλ > 0 (resp.
ηλ < 0) along γ . Then κ̂g = κν and κ̂n = −κs (resp. κ̂g = κν and κ̂n = κs) hold along γ .

Proof. Let us take an adapted coordinate system (U ; u, v) centred at p with
ηλ(u, 0) > 0. Then, we take the unit normal vector n to F̂Cf along γ as n =
(fu × ν)/|fu|. The geodesic curvature κ̂g and the normal curvature κ̂n of F̂Cf along
γ are written as

κ̂g = 〈γ̂ ′′, n × γ̂ ′〉
|γ̂ ′|3 = 〈fuu, n × fu〉

|fu|3 , κ̂n = 〈γ̂ ′′, n〉
|γ̂ ′|2 = 〈fuu, n〉

|fu|2 .

By direct calculations, we see that n × fu = |fu|ν and 〈fuu, n〉 = − det(fu, fuu, ν)/|fu|
hold. By [35, (1.7)] and [35, (3.11)], we have the assertions. �

We recall the (pre-)geodesics on a surface. A curve on a regular surface is called a
pre-geodesic if the geodesic curvature vanishes along the curve (cf. [21]). In addition,
we call a curve on a regular surface a geodesic if the curve is pre-geodesic and has unit
speed.

COROLLARY 3.12. The Gaussian curvature of a cuspidal edge is bunded on a
sufficiently small neighbourhood of the singular curve γ , if and only if γ̂ is a (pre-)geodesic
on F̂Cf .

Proof. The Gaussian curvature of a cuspidal edge is bounded, if and only if the
limiting normal curvature κν vanishes along the singular curve γ [35, Theorem 3.1].
Thus, we have the assertion by Proposition 3.11. �

It is known that the singular locus γ̂ of cuspidal edges is a line of curvature if and
only if the cusp-directional torsion κt vanishes identically on γ [38, Proposition 3.2]
(see also [19]). In this case, we have the following.

PROPOSITION 3.13. Let f be a front, p a cuspidal edge of f and γ a singular curve
passing through p. Suppose that γ̂ is a line of curvature on f . Then, γ̂ is also a line of
curvature on F̂Cf .
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Proof. It is known that a curve σ (t) on a regular surface is a line of curvature if
and only if

det(σ̇ , n, ṅ) = 0

holds, where n = n(t) is a unit normal to the surface restricted to σ and we denote ˙ =
d/dt. We apply this fact to the case of F̂Cf .

We take an adapted coordinate system (U ; u, v) centred at p satisfying ηλ(u, 0) > 0.
Then, the unit normal vector to F̂Cf can be taken as n = (fu × ν)/|fu| along γ (u) =
(u, 0). Differentiating n, we have

n ′ = nu = fuu × ν + fu × νu

|fu| − |fu|u(fu × ν).

Thus, det(γ̂ ′, n, n ′) can be written as

det(γ̂ ′, n, n ′) = 1

Ẽ
det(fu, fu × ν, fuu × ν + fu × νu) = 1

Ẽ
det(fu, fu × ν, fu × νu),

since 〈fu, ν〉 = 0, where we used the relation det(a × b, a × c, d) = det(a, b, c)〈a, d〉
(a, b, c, d ∈ R3). By (15), νu is written as

νu = F̃M̃ − G̃L̃
|fu × h|2 fu − κt|fu|2

|fu × h|h.

Hence, we have

det(γ̂ ′, n, n ′) = κtẼ√
ẼG̃ − F̃2

det(fu, h, ν).

Since λv = det(fu, h, ν) does not vanish on γ , we have the assertion. �
In general, a line of curvature on a regular surface does not become a line of

curvature on its focal surface (cf. [15, Proposition 6.19]). Thus, Proposition 3.13 gives
a characteristic of cuspidal edges.
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