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Abstract
We extend Venkatesh’s proof of the converse theorem for classical holomorphic modular forms to arbitrary level
and character. The method of proof, via the Petersson trace formula, allows us to treat arbitrary degree 2 gamma
factors of Selberg class type.

1. Introduction

Venkatesh, in his thesis [Ven02], gave a new proof of the classical converse theorem for modular
forms of level 1, in the context of Langlands’ ‘Beyond Endoscopy’. The key analytic input is Voronoi
summation, or equivalently, the functional equation for additive twists. More precisely, given a modular
form 𝑓 (𝑧) =

∑∞
𝑛=1 𝑓𝑛𝑛

𝑘−1
2 𝑒(𝑛𝑧) of weight k, level N, and nebentypus character 𝜒, we define the complete

additive twist

Λ 𝑓 (𝑠, 𝛼) = ΓC
(
𝑠 + 𝑘−1

2
) ∞∑
𝑛=1

𝑓𝑛𝑒(𝑛𝛼)
𝑛𝑠

for 𝛼 ∈ Q,

where 𝑒(𝑧) = 𝑒2𝜋𝑖𝑧 and ΓC(𝑠) = 2(2𝜋)−𝑠Γ(𝑠). Then, for any 𝑞 ∈ 𝑁Z>0 and any 𝑎, 𝑎̄ ∈ Z with 𝑎𝑎̄ ≡ 1
(mod 𝑞), Λ 𝑓

(
𝑠, 𝑎𝑞

)
and Λ 𝑓

(
𝑠,− 𝑎̄

𝑞 ) continue to entire functions and satisfy the functional equation
[KMV02, (A.10)]

Λ 𝑓
(
𝑠, 𝑎𝑞

)
= 𝑖𝑘 𝜒(𝑎̄)𝑞1−2𝑠Λ 𝑓

(
1 − 𝑠,− 𝑎̄

𝑞

)
.

Venkatesh proved, conversely, that the modular forms of level 𝑁 = 1 and weight 𝑘 ≥ 6 are characterized
by the functional equations of their additive twists. The novelty of his proof over earlier approaches to
the converse theorem [Wei67, Raz77] is the use of the Petersson trace formula. Roughly, he isolates the
contribution of the purported form f on the spectral side of the trace formula using information from
additive twists on the geometric side.

In this paper, we generalize Venkatesh’s proof to forms of arbitrary level and character. Our precise
result is the following.

M. L. was supported by Royal Society University Research Fellowship ‘Automorphic forms, L-functions and trace
formulas’.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.22 Published online by Cambridge University Press

doi:10.1017/fms.2023.22
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.22&domain=pdf
https://doi.org/10.1017/fms.2023.22


2 A. R. Booker et al.

Theorem 1.1. Consider { 𝑓𝑛}𝑛≥1, N, 𝜒, 𝜔, and 𝛾(𝑠) with the following properties:

(1) { 𝑓𝑛}𝑛≥1 is a sequence of complex numbers such that
∑∞
𝑛=1 𝑓𝑛𝑛

−𝑠 converges absolutely for�(𝑠) > 1;
(2) N is a natural number, and 𝜒 is a Dirichlet character modulo N;
(3) 𝜔 is a nonzero complex number;
(4) 𝛾(𝑠) = 𝑄𝑠 ∏𝑟

𝑗=1 Γ(𝜆 𝑗 𝑠 + 𝜇 𝑗 ) for some numbers 𝑄, 𝜆 𝑗 ∈ R>0 and 𝜇 𝑗 ∈ C with �(𝜇 𝑗 ) > − 1
2𝜆 𝑗 and∑𝑟

𝑗=1 𝜆 𝑗 = 1.

Given any 𝛼 ∈ Q, define the complete twisted L-function

Λ 𝑓 (𝑠, 𝛼) = 𝛾(𝑠)
∞∑
𝑛=1

𝑓𝑛𝑒(𝑛𝛼)
𝑛𝑠

.

Suppose that for every 𝑞 ∈ 𝑁Z>0 and every pair 𝑎, 𝑎̄ ∈ Zwith 𝑎𝑎 ≡ 1(mod 𝑞),Λ 𝑓
(
𝑠, 𝑎𝑞

)
andΛ 𝑓

(
𝑠,− 𝑎̄

𝑞

)
continue to entire functions of finite order and satisfy the functional equation

Λ 𝑓
(
𝑠, 𝑎𝑞

)
= 𝜔𝜒(𝑎̄)𝑞1−2𝑠Λ 𝑓

(
1 − 𝑠,− 𝑎̄

𝑞

)
. (1.1)

Then there exists 𝑘 ∈ Z>0 such that 𝑓 (𝑧) =
∑∞
𝑛=1 𝑓𝑛𝑛

𝑘−1
2 𝑒(𝑛𝑧) is a modular form of weight k, level N

and nebentypus character 𝜒.

Remarks 1.2.

1. One feature of the argument is that it admits a generalization to gamma factors of Selberg class type.
In this way, our result can be viewed as a converse theorem for degree 2 elements of the Selberg
class, albeit with infinitely many functional equations. Recently, Kaczorowski and Perelli [KP22]
have classified the elements of the Selberg class of conductor 1 without the need for any twists.
Very little is known for higher conductor, however, and our result is the first that we are aware of to
consider both arbitrary level and degree 2 gamma factor.

2. For 𝑘 > 1, it is enough to assume the analytic properties (analytic continuation, finite order, functional
equation) of the finite L-functions 𝐿 𝑓

(
𝑠, 𝑎𝑞

)
= Λ 𝑓

(
𝑠, 𝑎𝑞

)
/𝛾(𝑠), and in this case we can also conclude

that f is cuspidal. When 𝑘 = 1, we need to know that Λ 𝑓
(
𝑠, 𝑎𝑞

)
is analytic at 𝑠 = 0, and there are

noncuspidal examples satisfying all of the hypotheses of Theorem 1.1.
3. If we suppose that 𝐿 𝑓 (𝑠, 1) lies in the Selberg class, then we can combine the transformation formula

in [KP15, Theorem 2] with the Vandermonde argument in [BK14, Lemma 2.4] to constrain the
possible poles of Λ 𝑓

(
𝑠, 𝑎𝑞

)
. In this way, it is likely possible to prove a result that allows the twisted

L-functions Λ 𝑓
(
𝑠, 𝑎𝑞

)
to have arbitrary poles inside the critical strip, but we have not pursued this.

4. Using the Bruggeman–Kuznetsov trace formula and the method of [HLN21], it is likely possible to
prove a similar converse theorem for Maass forms.

2. Lemmas

We begin with some preparatory lemmas.

Lemma 2.1. Let 𝛾(𝑠) =
∏𝑟

𝑗=1 Γ(𝜆 𝑗 𝑠 + 𝜇 𝑗 ), where 𝜆 𝑗 ∈ R>0, 𝜇 𝑗 ∈ C. If 𝛾(𝑠) has poles at all but finitely
many negative integers, then

∑𝑟
𝑗=1 𝜆 𝑗 ≥ 1.

Proof. Since the poles of Γ(𝜆 𝑗 𝑠 + 𝜇 𝑗 ) are spaced 𝜆−1
𝑗 apart, the number of poles of 𝛾(𝑠) in Z∩ [−𝑇, 0)

for large 𝑇 > 0 is at most 𝑇
∑𝑟

𝑗=1 𝜆 𝑗 +𝑂 (1). If all but finitely many negative integers are poles of 𝛾(𝑠),
then this count is at least 𝑇 +𝑂 (1). The conclusion follows on taking 𝑇 → ∞. �

Lemma 2.2. Let 𝛾(𝑠) be as in the statement of Theorem 1.1, and suppose that 𝛾(𝑠) has poles at all but
finitely many negative integers. Then 𝛾(𝑠) is of the form 𝑐𝑃(𝑠)𝐻𝑠ΓC(𝑠), where 𝑐, 𝐻 ∈ R>0 and P is a
monic polynomial whose roots are distinct nonpositive integers.
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Proof. Recall that 𝛾(𝑠) = 𝑄𝑠 ∏𝑟
𝑗=1 Γ(𝜆 𝑗 𝑠 + 𝜇 𝑗 ). By Lemma 2.1, each factor in the product must

contribute infinitely many poles in the negative integers. In particular, 𝜆 𝑗 , 𝜇 𝑗 ∈ Q for each j. Let
𝜆 𝑗 = 𝑎 𝑗/𝑞 𝑗 in lowest terms. If 𝑎 𝑗 > 1, then we can consider 𝛾̃(𝑠) = Γ( 𝑠−𝑚 𝑗

𝑞 𝑗
)
∏

𝑖≠ 𝑗 Γ(𝜆𝑖𝑠 + 𝜇𝑖), where
𝑚 𝑗 is the negative integral pole of Γ(𝜆 𝑗 𝑠 + 𝜇 𝑗 ) of smallest absolute value. Then 𝛾̃(𝑠) also has poles at
all but finitely many negative integers, contradicting Lemma 2.1.

Hence, we have 𝑎 𝑗 = 1, so 𝛾(𝑠) = 𝑄𝑠 ∏𝑟
𝑗=1 Γ(

𝑠+𝜈 𝑗
𝑞 𝑗

), where 𝜈 𝑗 = 𝜇 𝑗𝑞 𝑗 ∈ Z≥0. Let
𝑞 = lcm{𝑞1, . . . , 𝑞 𝑗 } and write Γ( 𝑠+𝜈 𝑗𝑞 𝑗

) = Γ( 𝑞𝑞 𝑗
· 𝑠+𝜈 𝑗𝑞 ). By the Gauss multiplication formula, we have

𝛾(𝑠) =
(√

2𝜋
)𝑟−𝑛

𝑄𝑠
𝑟∏
𝑗=1

(
𝑞

𝑞 𝑗

) 𝑠+𝜈𝑗
𝑞𝑗

− 1
2
𝑞/𝑞 𝑗−1∏
𝑖=0

Γ

(
𝑠 + 𝜈 𝑗 + 𝑖𝑞 𝑗

𝑞

)
,

which we can rewrite in the form 𝑐𝐻𝑠 ∏𝑞
𝑗=1 Γ

(
𝑠+𝜈′𝑗
𝑞

)
, for some 𝑐, 𝐻 ∈ R>0 and 𝜈′𝑗 ∈ Z≥0. Moreover,

the 𝜈′𝑗 must run through a complete set of representatives for the residue classes mod q. Replacing each

𝜈′𝑗 by its mod q reduction 𝜈′′𝑗 ∈ {0, . . . , 𝑞 − 1} and using the recurrence formula to relate Γ
(
𝑠+𝜈′𝑗
𝑞

)
and

Γ
(
𝑠+𝜈′′𝑗
𝑞

)
, we get 𝑐′𝑃(𝑠)𝐻𝑠 ∏𝑞

𝑗=1 Γ
(
𝑠+𝜈′′𝑗
𝑞

)
, with P as described in the statement of the lemma. Finally,

applying the Gauss multiplication formula once more and inserting a factor of 2(2𝜋)−𝑠 , we arrive at the
claimed form. �

The final lemma that we need is a special case of [HLN21, Lemma 4.1].
Lemma 2.3. Let 𝑟𝑞 (𝑛) =

∑
𝑎 mod 𝑞
(𝑎,𝑞)=1

𝑒(𝑛𝑎/𝑞) be the Ramanujan sum. Then, for 𝑛, 𝑁 ≥ Z>0 and�(𝑠) > 1,

we have ∑
𝑞≥1
𝑁 |𝑞

𝑟𝑞 (𝑛)
𝑞2𝑠 =

{
𝜎1−2𝑠 (𝑛;𝑁 )
𝜁 (𝑁 ) (2𝑠) when 𝑛 ≠ 0,

𝑁1−2𝑠 ∏
𝑝 |𝑁 (1 − 𝑝−1) 𝜁 (2𝑠−1)

𝜁 (𝑁 ) (2𝑠) when 𝑛 = 0.

Here, when 𝑁∏
𝑝 |𝑁 𝑝 | 𝑛,

𝜎𝑠 (𝑛; 𝑁) =
∏
𝑝 |𝑛
𝑝�𝑁

𝑝 (ord𝑝 (𝑛)+1)𝑠 − 1
𝑝𝑠 − 1

·
∏
𝑝 |𝑁

(
(1 − 𝑝𝑠−1)𝑝 (ord𝑝 (𝑛)+1)𝑠 − (1 − 𝑝−1)𝑝ord𝑝 (𝑁 )𝑠

𝑝𝑠 − 1

)
. (2.1)

Otherwise 𝜎𝑠 (𝑛; 𝑁) = 0.

3. Proof of Theorem 1.1

Let 𝑆𝑘 (𝑁, 𝜒) denote the space of holomorphic modular forms of weight k, level N and nebentypus
character 𝜒, and let 𝐻𝑘 (𝑁, 𝜒) be an orthonormal basis for 𝑆𝑘 (𝑁, 𝜒). Each 𝑔 ∈ 𝐻𝑘 (𝑁, 𝜒) has a Fourier
expansion of the form

𝑔(𝑧) =
∞∑
𝑛=1

𝜌𝑔 (𝑛)𝑛
𝑘−1

2 𝑒(𝑛𝑧)

for some coefficients 𝜌𝑔 (𝑛) ∈ C. An application of the Petersson formula gives the following formula
found in [IK04, Corollary 14.23]. For positive integers n and m, we have

Γ(𝑘 − 1)
(4𝜋)𝑘−1

∑
𝑔∈𝐻𝑘 (𝑁 ,𝜒)

𝜌𝑔 (𝑛)𝜌𝑔 (𝑚) = 𝛿𝑛=𝑚 + 2𝜋𝑖−𝑘
∑
𝑞≥1
𝑁 |𝑞

𝑆𝜒 (𝑚, 𝑛; 𝑞)
𝑞

𝐽𝑘−1

(
4𝜋

√
𝑚𝑛

𝑞

)
, (3.1)
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where

𝑆𝜒 (𝑚, 𝑛; 𝑞) =
∑

𝑎 mod 𝑞
gcd(𝑎,𝑞)=1

𝜒(𝑎)𝑒
(
𝑚𝑎 + 𝑛𝑎̄

𝑞

)

is the twisted Kloosterman sum and 𝐽𝑘−1(𝑦) is the classical J-Bessel function.
Fix a choice of data { 𝑓𝑛}𝑛≥1, N, 𝜒, 𝜔, and 𝛾(𝑠) satisfying the hypotheses of Theorem 1.1. Let

𝜖 ∈ {0, 1} be such that 𝜒(−1) = (−1) 𝜖 . For 𝑘 ≥ 4, �(𝑠) ∈ ( 1
2 ,

𝑘−1
2 ), 𝑥 > 0, and 𝜎1 ∈ ( 1−𝑘

2 ,−�(𝑠)),
define

𝐹𝑘 (𝑠, 𝑥) =
1

2𝜋𝑖

∫
�(𝑢)=𝜎1

ΓC(𝑢 + 𝑘−1
2 )𝛾(1 − 𝑠 − 𝑢)

ΓC(−𝑢 + 𝑘+1
2 )𝛾(𝑠 + 𝑢)

𝑥𝑢 𝑑𝑢. (3.2)

By Stirling’s formula, the integral converges absolutely since �(𝑠) > 1
2 . Note also that our choice of

𝜎1 ensures that the contour �(𝑢) = 𝜎1 separates the poles of ΓC (𝑢 + 𝑘−1
2 ) and 𝛾(1 − 𝑠 − 𝑢).

The proof will be split into two cases depending on whether 𝐹𝑘 (1, 1) is nonzero for some k or not.

Proposition 3.1. Suppose that 𝐹𝑘 (1, 1) ≠ 0 for some 𝑘 ≥ 4 with 𝑘 ≡ 𝜖 (mod 2). Then f as defined in
Theorem 1.1 is in 𝑆𝑘 (𝑁, 𝜒).

Proof. Fix k as in the hypotheses. For 𝑛 ∈ Z>0 and �(𝑠) > 1, define

𝐾𝑛 (𝑠, 𝑓 , 𝜒) = 𝜁 (𝑁 ) (2𝑠)
∞∑
𝑚=1

𝑓𝑚
𝑚𝑠

Γ(𝑘 − 1)
(4𝜋)𝑘−1

∑
𝑔∈𝐻𝑘 (𝑁 ,𝜒)

𝜌𝑔 (𝑛)𝜌𝑔 (𝑚)

=
Γ(𝑘 − 1)
(4𝜋)𝑘−1

∑
𝑔∈𝐻𝑘 (𝑁 ,𝜒)

𝜌𝑔 (𝑛)𝐿(𝑠, 𝑓 × 𝑔̄), (3.3)

where

𝐿(𝑠, 𝑓 × 𝑔̄) = 𝜁 (𝑁 ) (2𝑠)
∞∑
𝑚=1

𝑓𝑚𝜌𝑔 (𝑚)
𝑚𝑠

and 𝜁 (𝑁 ) (𝑠) = 𝜁 (𝑠)
∏
𝑝 |𝑁

(
1 − 𝑝−𝑠

)
.

Note that the series for 𝐿(𝑠, 𝑓 × 𝑔̄) converges absolutely for �(𝑠) > 1 thanks to the Ramanujan bound
𝜌𝑔 (𝑚) �𝜀 𝑚𝜀 .

Now consider 𝑠 ∈ C with �(𝑠) ∈ ( 5
4 ,

𝑘−1
2 ). Applying (3.1) to (3.3), we get

𝐾𝑛 (𝑠, 𝑓 , 𝜒) = 𝜁 (𝑁 ) (2𝑠)
∞∑
𝑚=1

𝑓𝑚
𝑚𝑠

{
𝛿𝑛=𝑚 + 2𝜋𝑖−𝑘

∑
𝑞≥1
𝑁 |𝑞

𝑆𝜒 (𝑚, 𝑛; 𝑞)
𝑞

𝐽𝑘−1

(
4𝜋

√
𝑚𝑛

𝑞

)}

= 𝜁 (𝑁 ) (2𝑠) 𝑓𝑛
𝑛𝑠

+ 2𝜋𝑖−𝑘 𝜁 (𝑁 ) (2𝑠)
∑
𝑞≥1
𝑁 |𝑞

1
𝑞

∞∑
𝑚=1

𝑓𝑚𝑆𝜒 (𝑚, 𝑛; 𝑞)
𝑚𝑠

𝐽𝑘−1

(
4𝜋

√
𝑚𝑛

𝑞

)
.

Here the interchange of the sums is justified for �(𝑠) > 5
4 by the estimates

𝐽𝑘−1 (𝑦) � min
{
𝑦𝑘−1, 𝑦−1/2} and 𝑆𝜒 (𝑚, 𝑛; 𝑞) �𝑛,𝜀 𝑞1/2+𝜀 .

Let

𝐾0,𝑛 (𝑠, 𝑓 , 𝜒) = 𝐾𝑛 (𝑠, 𝑓 , 𝜒) − 𝑓𝑛𝑛
−𝑠𝜁 (𝑁 ) (2𝑠).
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By the Mellin–Barnes type integral representation [GR15, (6.422)], we have

2𝜋𝐽𝑘−1 (4𝜋𝑦) =
1

2𝜋𝑖

∫
�(𝑢)=𝜎0

ΓC(𝑢 + 𝑘−1
2 )

ΓC(−𝑢 + 𝑘+1
2 )

𝑦−2𝑢 𝑑𝑢,

for any choice of 𝜎0 ∈ ( 1−𝑘
2 , 0). Applying this with 𝜎0 ∈ (1 − �(𝑠), 0), we may change the order of

sum and integral to obtain

𝐾0,𝑛 (𝑠, 𝑓 , 𝜒) = 𝑖−𝑘 𝜁 (𝑁 ) (2𝑠)
∑
𝑞≥1
𝑁 |𝑞

1
2𝜋𝑖

∫
�(𝑢)=𝜎0

ΓC(𝑢 + 𝑘−1
2 )

ΓC(−𝑢 + 𝑘+1
2 )

𝑞2𝑢−1
∞∑
𝑚=1

𝑓𝑚𝑆𝜒 (𝑚, 𝑛; 𝑞)
𝑚𝑠

(𝑚𝑛)−𝑢 𝑑𝑢.

Opening up the Kloosterman sum, this becomes

∑
𝑞≥1
𝑁 |𝑞

1
2𝜋𝑖

∫
�(𝑢)=𝜎0

ΓC(𝑢 + 𝑘−1
2 )

ΓC(−𝑢 + 𝑘+1
2 )

𝑞2𝑢−1𝑛−𝑢
∑

𝑎 mod 𝑞
𝑎𝑎̄≡1 mod 𝑞

𝜒(𝑎)𝑒(𝑛𝑎̄/𝑞)𝐿 𝑓
(
𝑠 + 𝑢, 𝑎𝑞

)
𝑑𝑢.

Next we shift the contour to �(𝑢) = 𝜎1 ∈ ( 1−𝑘
2 ,−�(𝑠)), so that �(1 − 𝑠 − 𝑢) > 1, and apply the

functional equation

∑
𝑎 mod 𝑞

𝑎𝑎̄≡1 mod 𝑞

𝜒(𝑎)𝑒(𝑛𝑎̄/𝑞)𝐿 𝑓
(
𝑠 + 𝑢, 𝑎𝑞

)
= 𝜔𝑞1−2𝑠−2𝑢 𝛾(1 − 𝑠 − 𝑢)

𝛾(𝑠 + 𝑢)
∑

𝑎 mod 𝑞
𝑎𝑎̄≡1 mod 𝑞

𝑒(𝑛𝑎̄/𝑞)𝐿 𝑓
(
1 − 𝑠 − 𝑢,− 𝑎̄

𝑞

)
,

obtaining

𝐾0,𝑛 (𝑠, 𝑓 , 𝜒) = 𝑖−𝑘𝜔𝜁 (𝑁 ) (2𝑠)
∑
𝑞≥1
𝑁 |𝑞

1
𝑞2𝑠

1
2𝜋𝑖

∫
�(𝑢)=𝜎1

ΓC(𝑢 + 𝑘−1
2 )

ΓC(−𝑢 + 𝑘+1
2 )

𝛾(1 − 𝑠 − 𝑢)
𝛾(𝑠 + 𝑢) 𝑛−𝑢

·
∑

𝑎 mod 𝑞
𝑎𝑎̄≡1 mod 𝑞

𝑒(𝑛𝑎̄/𝑞)𝐿 𝑓
(
1 − 𝑠 − 𝑢,− 𝑎̄

𝑞

)
𝑑𝑢.

Note that the contour shift is justified by the fact that Λ 𝑓
(
𝑠, 𝑎𝑞

)
has finite order and the estimates

𝐿 𝑓
(
1 − 𝑠 − 𝑢,− 𝑎̄

𝑞

)
� 1 and

ΓC (𝑢 + 𝑘−1
2 )

ΓC(−𝑢 + 𝑘+1
2 )

𝛾(1 − 𝑠 − 𝑢)
𝛾(𝑠 + 𝑢) � |𝑢 |−2�(𝑠) for �(𝑢) = 𝜎1.

The same estimates show that we may swap the order of sum and integral. We also expand
𝐿 𝑓

(
1 − 𝑠 − 𝑢,− 𝑎̄

𝑞

)
as a Dirichlet series, obtaining

∑
𝑎 mod 𝑞

𝑎𝑎̄≡1 mod 𝑞

𝑒(𝑛𝑎̄/𝑞)𝐿 𝑓
(
1 − 𝑠 − 𝑢,− 𝑎̄

𝑞

)
=

∑
𝑎 mod 𝑞

𝑎𝑎̄≡1 mod 𝑞

𝑒(𝑛𝑎̄/𝑞)
∞∑
𝑚=1

𝑓𝑚𝑒(−𝑚𝑎̄/𝑞)
𝑚1−𝑠−𝑢 =

∞∑
𝑚=1

𝑓𝑚𝑟𝑞 (𝑛 − 𝑚)
𝑚1−𝑠−𝑢 ,
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where 𝑟𝑞 is the Ramanujan sum. An application of Lemma 2.3 leads to the following expression.

𝐾𝑛 (𝑠, 𝑓 , 𝜒) = 𝑓𝑛𝑛
−𝑠𝜁 (𝑁 ) (2𝑠)

+ 𝑖−𝑘𝜔 𝑓𝑛𝑛
𝑠−1𝜁 (2𝑠 − 1)𝑁1−2𝑠

∏
𝑝 |𝑁

(1 − 𝑝−1) ·
∫
�(𝑢)=𝜎1

ΓC(𝑢 + 𝑘−1
2 )

ΓC(−𝑢 + 𝑘+1
2 )

𝛾(1 − 𝑠 − 𝑢)
𝛾(𝑠 + 𝑢) 𝑑𝑢

+ 𝑖−𝑘𝜔
∑
𝑚≥1
𝑚≠𝑛

𝑓𝑚𝜎1−2𝑠 (𝑛 − 𝑚; 𝑁)
𝑚1−𝑠

∫
�(𝑢)=𝜎1

ΓC(𝑢 + 𝑘−1
2 )

ΓC(−𝑢 + 𝑘+1
2 )

𝛾(1 − 𝑠 − 𝑢)
𝛾(𝑠 + 𝑢)

(𝑚
𝑛

)𝑢
𝑑𝑢.

(3.4)

It is straightforward to see that 𝜎1−2𝑠 (𝑟; 𝑁) �𝑁 ,𝜀 |𝑟 |𝜀 , uniformly for 𝑟 ≠ 0 and �(𝑠) ≥ 1
2 . Thus, for a

fixed𝜎1, both integrals and the sum over m converge absolutely for 1
2 < �(𝑠) < −𝜎1. This establishes the

meromorphic continuation of 𝐾𝑛 (𝑠, 𝑓 , 𝜒) to that region, and hence also of
∑
𝑔∈𝐻𝑘 (𝑁 ,𝜒) 𝜌𝑔 (𝑛)𝐿(𝑠, 𝑓 ×𝑔̄),

in view of (3.3).
Since the g forms a basis for 𝑆𝑘 (𝑁, 𝜒), we can choose a finite set {𝑛𝑖 : 𝑖 = 1, . . . , 𝑑}, where

𝑑 = dim 𝑆𝑘 (𝑁, 𝜒), such that the vectors (𝜌𝑔 (𝑛1), . . . , 𝜌𝑔 (𝑛𝑑)) are linearly independent. Taking a
suitable linear combination of (3.4) for 𝑛 = 𝑛𝑖 , we deduce the meromorphic continuation of 𝐿(𝑠, 𝑓 × 𝑔̄)
to �(𝑠) > 1

2 for each individual g. The only possible pole is at 𝑠 = 1, and taking residues we see that

Γ(𝑘 − 1)
(4𝜋)𝑘−1

∑
𝑔∈𝐻𝑘 (𝑁 ,𝜒)

𝜌𝑔 (𝑛) Res𝑠=1 𝐿(𝑠, 𝑓 × 𝑔̄) = 1
2 𝑖

−𝑘𝜔𝑁−1
∏
𝑝 |𝑁

(1 − 𝑝−1) · 𝐹𝑘 (1, 1) 𝑓𝑛.

Since 𝐹𝑘 (1, 1) ≠ 0, we see that there exist 𝑥𝑔 ∈ C such that 𝑓𝑛 =
∑
𝑔∈𝐻𝑘 (𝑁 ,𝜒) 𝑥𝑔𝜌𝑔 (𝑛) for any positive

integer n. Since 𝑆𝑘 (𝑁, 𝜒) is a vector space, we have proved the claim. �

We have taken care of the case where the integral (3.2) is nonzero at 𝑠 = 1, 𝑥 = 1 for some 𝑘 ≥ 4. If
this is not the case, we use the following proposition.

Proposition 3.2. If 𝐹𝑘 (1, 1) = 0 for all 𝑘 ≥ 4 with 𝑘 ≡ 𝜖 (mod 2), then 𝛾(𝑠) is of the form 𝑐𝐻𝑠ΓC(𝑠 +
ℓ−1

2 ), where 𝑐, 𝐻 ∈ R>0, and ℓ ∈ {1, 2, 3} with ℓ ≡ 𝜖 (mod 2).

Proof. We replace u by 𝑢/2 in the definition of 𝐹𝑘 (1, 1) and shift the contour to �(𝑢) = − 5
2 , which is

permissible for all 𝑘 ≥ 4. Our hypothesis then implies that

1
2𝜋𝑖

∫
�(𝑢)=− 5

2

ΓC( 𝑘−1+𝑢
2 )𝛾(−𝑢/2)

2ΓC ( 𝑘+1−𝑢
2 )𝛾(1 + 𝑢/2)

𝑑𝑢 = 0 for all 𝑘 ≥ 4 with 𝑘 ≡ 𝜖 (mod 2). (3.5)

For 𝑛 ≥ 0, define

𝑓𝑛 (𝑦) =
1(0,1) (𝑦)√

1 − 𝑦2

{
cos(𝑛 arcsin 𝑦) if 2 | 𝑛,
sin(𝑛 arcsin 𝑦) if 2 � 𝑛.

Using the formulas in [GR15, §3.631], we see that 𝑓𝑛 has Mellin transform

𝑓̃𝑛 (𝑠) =
∫ ∞

0
𝑓𝑛 (𝑦)𝑦𝑠−1 𝑑𝑦 =

(−1) �𝑛/2
ΓC(𝑠)
2𝑠ΓC( 𝑠+𝑛+1

2 )ΓC( 𝑠−𝑛+1
2 )

for �(𝑠) > 0.

https://doi.org/10.1017/fms.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.22


Forum of Mathematics, Sigma 7

For 𝑘 ≡ 𝜖 (mod 2), we have

ΓC( 𝑘−1+𝑢
2 )𝛾(−𝑢/2)

2ΓC ( 𝑘+1−𝑢
2 )𝛾(1 + 𝑢/2)

=
ΓC(1 − 𝑢)

21−𝑢ΓC( 𝑘+1−𝑢
2 )ΓC( 3−𝑘−𝑢

2 )
·

2−𝑢ΓC( 3−𝑘−𝑢
2 )ΓC( 𝑘−1+𝑢

2 )
ΓC(1 − 𝑢)

𝛾(−𝑢/2)
𝛾(1 + 𝑢/2)

=
(−1) �(𝑘−1)/2
 𝑓̃𝑘−1(1 − 𝑢)

2𝑢−1ΓC(1 − 𝑢) sin( 𝜋2 (𝑢 + 𝑘 − 1))
𝛾(−𝑢/2)
𝛾(1 + 𝑢/2)

=
𝑓̃𝑘−1(1 − 𝑢)

2𝑢−1ΓC(1 − 𝑢) sin( 𝜋2 (𝑢 + 1 − 𝜖))
𝛾(−𝑢/2)
𝛾(1 + 𝑢/2)

= 𝑓̃𝑘−1(1 − 𝑢)
√

2ΓC( 1−𝜖 +𝑢
2 )

ΓC( 2−𝜖−𝑢
2 )

𝛾(−𝑢/2)
𝛾(1 + 𝑢/2) .

Thus, (3.5) can be written as

1
2𝜋𝑖

∫
�(𝑢)=− 5

2

𝑓̃𝑘−1(1 − 𝑢)𝑔̃(𝑢) 𝑑𝑢 = 0, where 𝑔̃(𝑢) =
√

2ΓC( 1−𝜖 +𝑢
2 )

ΓC( 2−𝜖−𝑢
2 )

𝛾(−𝑢/2)
𝛾(1 + 𝑢/2) .

Applying the inverse Mellin transform, we define

𝑔(𝑦) = 1
2𝜋𝑖

∫
�(𝑢)=− 5

2

𝑔̃(𝑢)𝑦−𝑢 𝑑𝑢 for 𝑦 > 0.

By Stirling’s formula, we have 𝑔̃(𝑢) � |𝑢 |−3/2 for �(𝑢) = − 5
2 , and it follows that 𝑔(𝑦) extends

continuously to [0,∞).
An application of Fubini’s theorem shows that for any measurable functions 𝑓 , 𝑔 on (0,∞) satisfying∫ ∞

0 | 𝑓 (𝑦) |𝑦−𝜎 𝑑𝑦 < ∞ and
∫
R
|𝑔̃(𝜎 + 𝑖𝑡) | 𝑑𝑡 < ∞, we have

1
2𝜋𝑖

∫
�(𝑢)=𝜎

𝑓̃ (1 − 𝑢)𝑔̃(𝑢) 𝑑𝑢 =
∫ ∞

0
𝑓 (𝑦)𝑔(𝑦) 𝑑𝑦.

It is easy to see this is satisfied by the functions 𝑓𝑛 and g above with 𝜎 = − 5
2 . Hence, (3.5) becomes∫ 1

0
𝑓𝑘−1(𝑦)𝑔(𝑦) 𝑑𝑦 = 0 for all 𝑘 ≥ 4 with 𝑘 ≡ 𝜖 (mod 2).

Suppose 𝜖 = 1. Then we have∫ 𝜋

−𝜋
cos( 𝑘−1

2 𝜃)𝑔(| sin(𝜃/2) |) 𝑑𝜃 = 0 for every odd 𝑘 ≥ 5.

Thus, the function ℎ(𝜃) = 𝑔(| sin(𝜃/2) |) has Fourier series of the form 𝑎+𝑏 cos 𝜃. Since h is continuous,
we have ℎ(𝜃) = 𝑎 + 𝑏 cos 𝜃 for all 𝜃, and thus 𝑔(𝑦) = 𝑎 + 𝑏 − 2𝑏𝑦2 for 𝑦 ∈ [0, 1].

Since 𝑔(𝑦) = 𝑂 (𝑦5/2), we must have 𝑎 = 𝑏 = 0. Computing the Mellin transform again, we see that
𝑔̃(𝑢) =

∫ ∞
1 𝑔(𝑦) 𝑦𝑢−1 𝑑𝑦, so 𝑔̃(𝑢) is analytic for �(𝑢) < − 5

2 . Since 𝛾 (−𝑢/2)
ΓC ( 1−𝑢

2 ) is analytic and nonvanishing

for �(𝑢) < − 5
2 , it follows that ΓC ( 𝑢2 )

𝛾 (1+𝑢/2) is analytic for �(𝑢) < − 5
2 . This means that 𝛾(𝑠) has a pole at

each negative integer.
Applying Lemma 2.2, we have 𝛾(𝑠) = 𝑐𝑃(𝑠)𝐻𝑠ΓC(𝑠), where P is a monic polynomial whose roots

are distinct nonpositive integers. Since 𝛾(𝑠) has poles at all negative integers, either 𝑃(𝑠) = 1 or
𝑃(𝑠) = 𝑠. Thus, 𝛾(𝑠) is of the form 𝑐′𝐻𝑠ΓC(𝑠 + ℓ−1

2 ) for some ℓ ∈ {1, 3}, as required.
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Now suppose that 𝜖 = 0. Then∫ 𝜋

−𝜋

sin( 𝑘−1
2 𝜃)

sin(𝜃/2) | sin(𝜃/2) |𝑔(| sin(𝜃/2) |) 𝑑𝜃 = 0 for every even 𝑘 ≥ 4. (3.6)

Note that sin( 𝑘−1
2 𝜃)

sin(𝜃/2) = 𝑊 𝑘−2
2
(cos 𝜃), where 𝑊𝑛 is a polynomial of degree n (the ‘Chebyshev polynomial

of the fourth kind’, see [Mas93]). Writing 𝑣 = cos 𝜃 = 1 − 2 sin2(𝜃/2), (3.6) becomes

0 =
∫ 1

−1
𝑊 𝑘−2

2
(𝑣)ℎ(𝑣)

√
1 − 𝑣

1 + 𝑣
𝑑𝑣, where ℎ(𝑣) =

𝑔

(√
1−𝑣

2

)
√

1 − 𝑣
for 𝑣 ∈ (−1, 1).

Since the 𝑊𝑛 are an orthogonal family with respect to the measure
√

1−𝑣
1+𝑣 𝑑𝑣, there exists a constant

a such that (ℎ(𝑣) − 𝑎)
√

1−𝑣
1+𝑣 is continuous and absolutely integrable on (−1, 1), and orthogonal to all

polynomials. It follows that ℎ(𝑣) = 𝑎 for all 𝑣 ∈ (−1, 1), and thus 𝑔(𝑦) = 𝑎
√

2𝑦 for 𝑦 ∈ (0, 1). Since
𝑔(𝑦) = 𝑂 (𝑦5/2), we must have 𝑎 = 0, and thus 𝑔̃(𝑢) =

∫ ∞
1 𝑔(𝑦) 𝑦𝑢−1 𝑑𝑦.

As before, we conclude that ΓC ( 1+𝑢
2 )

𝛾 (1+𝑢/2) is analytic for �(𝑢) < − 5
2 . Defining 𝛾̃(𝑠) = 𝛾(𝑠 + 1

2 ), we see
that 𝛾̃(𝑠) satisfies the hypotheses imposed on 𝛾(𝑠) in Theorem 1.1 and has a pole at every negative
integer. Appealing again to Lemma 2.2, we find that 𝛾̃(𝑠) is of the form 𝑐𝑃(𝑠)𝐻𝑠ΓC(𝑠), where either
𝑃(𝑠) = 1 or 𝑃(𝑠) = 𝑠. Thus, 𝛾(𝑠) = 𝑐′𝐻𝑠𝑃(𝑠 − 1

2 )ΓC(𝑠 −
1
2 ). Because of the hypothesis �(𝜇 𝑗 ) > − 1

2𝜆 𝑗
in Theorem 1.1, 𝛾(𝑠) cannot have a pole at 1

2 , and therefore 𝑃(𝑠) = 𝑠. Hence, 𝛾(𝑠) = 𝑐′′𝐻𝑠ΓC(𝑠 + 1
2 ),

as required. �

Now we can complete the proof of Theorem 1.1. In view of Propositions 3.1 and 3.2, we may assume
that 𝛾(𝑠) = 𝑐𝐻𝑠ΓC(𝑠 + ℓ−1

2 ), where 𝑐, 𝐻 ∈ R>0 and ℓ ∈ {1, 2, 3} with ℓ ≡ 𝜖 (mod 2). In this case, we
fall back on a more traditional proof of the converse theorem as in [Raz77], but we must first address
the fact that our gamma factor differs from the expected one by the exponential factor 𝐻𝑠 .

Suppose first that 𝐻 > 1. Equation (3.5) becomes

1
2𝜋𝑖

∫
�(𝑢)=− 5

2

𝐻−𝑢 ΓC( 𝑘−1+𝑢
2 )ΓC( −𝑢2 + ℓ−1

2 )
ΓC( 𝑘+1−𝑢

2 )ΓC(1 + 𝑢
2 + ℓ−1

2 )
𝑑𝑢 = 0 for all 𝑘 ≥ 4 with 𝑘 ≡ 𝜖 (mod 2).

Since 𝐻 > 1, we can shift the contour to the right as the integrand vanishes in the limit as
�(𝑢) → ∞.

Suppose ℓ = 2. Then when 𝑘 = 4, we pick up poles at 𝑢 = 1, 3 and derive that 0 = 𝐻−1 − 𝐻−3.
Thus, 𝐻 = 1, giving a contradiction. Similarly, when ℓ = 3, we take 𝑘 = 5. We have poles at 𝑢 = 2, 4,
getting 0 = 𝐻−2 − 𝐻−4, which results in the same contradiction. When ℓ = 1, looking at 𝑘 = 5, we
have poles at 𝑢 = 0, 2, 4. Thus, 0 = 1 − 4𝐻−2 + 3𝐻−4, which implies that 𝐻−2 = 1

3 . Now looking at
𝑘 = 7, we get an extra pole at 𝑢 = 6, so that 0 = 2

3 − 6𝐻−2 + 12𝐻−4 − 20
3 𝐻−6, which is not satisfied for

𝐻−2 = 1
3 .

Hence, 𝐻 ≤ 1. Let 𝑓 (𝑧) =
∑∞
𝑛=1 𝑓𝑛𝑛

ℓ−1
2 𝑒(𝑛𝑧). Applying Hecke’s argument [Miy06, Theorem 4.3.5]

to our Voronoi formulas (1.1), we get the modularity relation

𝑓

( −1
𝐻 2𝑧

+ 𝑎

𝑞

)
= 𝜔𝜒(𝑎̄) (−𝑖𝐻𝑧)ℓ 𝑓

(
𝑧 − 𝑎̄

𝑞

)
(3.7)

for all 𝑞 ∈ 𝑁Z>0 and 𝑎, 𝑎̄ ∈ Z with 𝑎𝑎̄ ≡ 1(mod 𝑞).
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The ℓ-slash operator is defined for matrices 𝑀 =

(
𝑎 𝑏
𝑐 𝑑

)
of positive determinant by

( 𝑓 |𝑀) (𝑧) = (det 𝑀)ℓ/2(𝑐𝑧 + 𝑑)−ℓ 𝑓
(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
.

In this notation, (3.7) becomes

𝑓

����(𝑎𝐻2 −1
𝑞𝐻2 0

)
= 𝑖−ℓ𝜔𝜒(𝑎̄) 𝑓

����(1 −𝑎̄
0 𝑞

)
,

or equivalently,

𝑓

����
(
𝑎𝐻 𝑎𝑎̄𝐻 2−1

𝑞𝐻

𝑞𝐻 𝑎̄𝐻

)
= 𝑖−ℓ𝜔𝜒(𝑎̄) 𝑓 . (3.8)

We may assume that f is not identically 0 since the conclusion is trivial otherwise. Applying (1.1)
twice, we have

Λ 𝑓
(
𝑠, 𝑎𝑞

)
= 𝜔𝜒(𝑎̄)𝑞1−2𝑠Λ 𝑓

(
1 − 𝑠,− 𝑎̄

𝑞

)
= 𝜔2𝜒(−1)Λ 𝑓

(
𝑠, 𝑎𝑞

)
,

and thus (𝑖−ℓ𝜔)2 = (−1)ℓ 𝜒(−1) = 1.
Suppose 𝐻 < 1. Taking 𝑎 = 𝑎̄ = 1, the matrix above has absolute trace 2𝐻 < 2, and so is elliptic.

Unless 2𝐻 = 𝜁 + 𝜁−1 for some root of unity 𝜁 , this matrix has infinite order, and then a generalization
of Weil’s lemma [BBB+18, Lemma 4.2] implies that 𝑓 = 0.

Hence, 2𝐻 must be an algebraic integer. For prime p and 𝑖 = 1, 2, let 𝑀𝑖, 𝑝 be the matrix

(
𝐻 𝐻−𝐻−1

𝑞𝑖
𝑞𝑖𝐻 𝐻

)
,

where 𝑞1 = 𝑝𝑁 , 𝑞2 = (𝑝 + 1)𝑁 . We compute that

tr(𝑀1, 𝑝𝑀2, 𝑝) = (2𝐻)2 − 2 −
(
4 − (2𝐻)2) (4𝑝(𝑝 + 1)

)−1
.

Since lim𝑝→∞ tr(𝑀1, 𝑝𝑀2, 𝑝) = (2𝐻)2 − 2, we have | tr(𝑀1, 𝑝𝑀2, 𝑝) | < 2 for all sufficiently large primes
p, and again by Weil’s lemma, it follows that tr(𝑀1, 𝑝𝑀2, 𝑝) is an algebraic integer. Let K be a number
field containing 2𝐻. Clearly, tr(𝑀1, 𝑝𝑀2, 𝑝) ∈ 𝐾 for each p. Taking norms,

𝑁𝐾/Q
(
tr(𝑀1, 𝑝𝑀2, 𝑝) + 2 − (2𝐻)2) = (

−4𝑝(𝑝 + 1)
)−[𝐾 :Q]

𝑁𝐾/Q
(
4 − (2𝐻)2) .

Taking a sufficiently large prime p, this is not an integer, giving a contradiction.
Hence, 𝐻 = 1. By (3.8), it follows that

𝑓 |𝑀 = 𝑖−ℓ𝜔𝜒(𝑀) 𝑓 for 𝑀 =

(
𝑎 𝑏
𝑞 𝑎̄

)
∈ Γ0(𝑁) with 𝑞 > 0,

where we define 𝜒(𝑀) = 𝜒(𝑎̄). Taking 𝑀1, 𝑀2 ∈ Γ0(𝑁) such that 𝑀1, 𝑀2 and 𝑀1𝑀2 are all of this
form, we have

𝑖−ℓ𝜔𝜒(𝑀1𝑀2) 𝑓 = 𝑓 |𝑀1𝑀2 = ( 𝑓 |𝑀1) |𝑀2 = (𝑖−ℓ𝜔)2𝜒(𝑀1)𝜒(𝑀2) 𝑓 .

Since 𝜒(𝑀1𝑀2) = 𝜒(𝑀1)𝜒(𝑀2), we have must have 𝜔 = 𝑖ℓ . Finally, since the M of the above form,

together with
(
1 1
0 1

)
and

(
−1 0
0 −1

)
,generate Γ0(𝑁), we conclude that 𝑓 ∈ 𝑀ℓ (𝑁, 𝜒), as required.
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