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SPHERE PACKINGS AND ERROR-CORRECTING CODES 

JOHN LEECH AND N. J. A. SLOANE 

Error-correcting codes are used in several constructions for packings of 
equal spheres in ^-dimensional Euclidean spaces En. These include a systematic 
derivation of many of the best sphere packings known, and construction of 
new packings in dimensions 9-15, 36, 40, 48, 60, and 2m for m g 6. Most of 
the new packings are nonlattice packings. These new packings increase the 
previously greatest known numbers of spheres which one sphere may touch, 
and, except in dimensions 9, 12, 14, 15, they include denser packings than any 
previously known. The density A of the packings in En for n = 2m satisfies 

log A ~ — \n log log n as n —* oo. 

1. PRELIMINARIES 

1.1. Introduction. In this paper we make systematic use of error-correcting 
codes to obtain sphere packings in En, including several of the densest packings 
known and several new packings. By use of cross-sections we then obtain 
packings in spaces of lower dimension, and by building up packings by layers 
we obtain packings in spaces of higher dimension. Collectively, these include 
all of the densest packings known, and further new packings are also con
structed. 

Part 1 of the paper is devoted to groundwork for the constructions. § 1.2 
introduces sphere packings, and §§ 1.3-1.8 survey the error-correcting code 
theory used in the later Parts. Part 2 describes and exploits Construction A, 
which is of main value in up to 15 dimensions. Part 3 describes Construction B% 

of main value in 16-24 dimensions. Part 4 digresses to deal with packings 
built up from layers, while Part 5 gives some special constructions for dimen
sions 36, 40, 48 and 60. Part 6 deals with Construction C, applicable to 
dimensions n = 2m and giving new denser packings for m ^ 6. We conclude 
with tables summarizing the results. Table I, for all n S 24, supersedes the 
tables of [18; 19], and Table II gives results for selected n > 24. The tables 
may be used as an index giving references to the sections of the paper in which 
the packings are discussed. 

Partial summaries of this work have appeared in [22; 23]. General references 
for sphere packing are [18; 19; 31] and for coding theory [4; 25]. 
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SPHERE PACKINGS 719 

1.2. The sphere packing problem. Let S be an open w-dimensional 
sphere of radius p and content Vnp

n, where 

Vn r(è« + l) * 
If ai, a2, . . . is an infinite sequence of vectors in En, then the translated 
spheres ai + S, a2 + S, . . . form a packing if they are pairwise disjoint. 

The packing is said to be a lattice packing if the centres ai, a2, . . . are a set 
of all vectors of the form 

^ibi + z*2b2 + . . . + unbny 

where bi, . . . , bn are linearly independent vectors in En and U\, . . . , un are 
arbitrary integers. The density of the packing is the fraction of space covered 
by the spheres (see [31, Chapter 1]), and the centre density, denoted by 5, 
is the density divided by Vn, i.e., the number of centres of unit spheres per 
unit content. The sphere packing problem is to choose the centres so as to 
maximize the density. 

A related problem is to find the greatest number of spheres that can touch 
an equal sphere in En. The number of spheres touching a given sphere in a 
packing is the contact number, denoted by r, of that sphere. For large n the 
two problems may have different solutions. For example in E9 the packing A9 

having the highest known density is different from the packing P9a having the 
highest known contact number. Neither packing has been proved to be 
optimal, although it is known (see [36] and § 2.7 below) that no lattice packing 
in E9 can have as high a contact number as P9a. 

Frequent use will be made of the coordinate array of a point in En having 
integer coordinates. This is formed by setting out in columns the values of 
the coordinates in the binary scale. The l 's row of the array comprises the 
l's digits of the coordinates, and thus has O's for even coordinates and l 's for 
odd coordinates. The 2's, 4's, 8's, . . . rows similarly comprise the 2's, 4's, 
8's, . . . digits of the coordinates (see [19, § 1.42]). Complementary notation 
is used for negative integers. For packings based on codes the coordinates 
are restricted only in the first few rows, later rows being arbitrary except for 
being ultimately identical. 

Let X and y be binary vectors. Then x is said to contain y if X has a 1 in each 
coordinate where y has a 1. 

1.3. Error-correcting codes. 

Definitions, (i) The Hamming distance between two vectors is the number 
of components where they differ. The weight of a vector x is the number of 
nonzero components it contains, and is denoted by wt(x). 

(ii) An (n, My d) code over GF(g) is a set of M vectors (called codewords) 
of length n with symbols from GF(g) such that the Hamming distance between 
any two codewords is at least d. 
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If C is a codeword, A t(c) will denote the number of codewords at a Hamming 
distance of i from c. Of course 

£ ^ «(c) = M. 
i 

For group codes (see below) and some nongroup codes, At{c) is independent 
of c and will be denoted by A t. 

An (n, My d) code can correct at least [%(d — 1)] errors when used as an 
error-correcting code. A basic (unsolved) problem of coding theory is to 
maximize M given n and d. For binary codes this is equivalent to choosing 
as many vertices as possible of an ^-dimensional unit cube while maintaining 
a Euclidean distance of at least \/d between any two of the chosen vertices. 
I t is not surprising therefore that coding theory can be of assistance in sphere 
packing, provided that the packing in the cube can be extended to a packing 
in the full space En. This paper describes three general constructions (§§ 2.1, 
3.1, 6.1) and a number of special constructions for doing this. 

If the componentwise sum of any two codewords is a codeword, and if the 
componentwise product of any codeword and any element of GF(g) is a 
codeword, then the code is a group code. In this case M = qk for some integer 
k. A code is cyclic if whenever c0Ci . . . £n_i is a codeword so is C1C2 . . . cn-ic0. 

It is convenient to represent a codeword c = c0Ci . . . £w_i by the poly
nomial c(x) = Co + C\X + . . . + cn-ix

n~l in the ring Rn(x) of polynomials 
modulo xn — 1 with coefficients from GF(q). A cyclic shift of c is then repre
sented by xc(x), and so a cyclic group code is represented by an ideal in 
Rn{x). Let g(x) be the generator of this ideal. It is easily seen that g(x) divides 
xn — 1 over GF(g) and that the number of codewords is qn~ûeg ff(-x\ 

Let n be odd and let a be a primitive nth. root of unity, so that 

xn - I = Yl (x - a'). 
1=0 

If m is the multiplicative order of q modulo n, a Ç GF(qm). Also, 

g(x) = n (* -«*)» 
ieK 

for some set K C {0, 1, . . . , n — 1}, where since g(x) divides xn — 1 over 
GF(g), i £ K implies qi G K. 

An {fly My d) code over GF(g) can be made into an (n + 1, M, df) code, 
called an extended code, by appending an overall parity check 

n-l 

cn ^ — £ ct (modulo q) 
t=0 

to each codeword c0ci . . . cw_i. If q — 2 and d is odd the extended code has 
d' = d + 1. 
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The following examples of codes are specified in terms of the set K. 

1.4. BCH codes. 

Definition. The Bose-Chaudhuri-Hocquenghem (BCH) binary code of length 
n — 2m — 1 and designed distance d is the cyclic code whose generator poly
nomial has as roots exactly a, a2, a3, . . . , ad_1 and their conjugates. (See, for 
example, [4, Chapters 7 and 12].) 

The actual minimum Hamming distance between codewords is at least 
the designed distance, and may exceed it. 

1.5. Reed-Muller codes. 

Definitions, (i) The weight W(k) of a non-negative integer k is the number 
of ones in the binary expansion of k. 

(ii) For 1 g r ^ m — 2, the rth order binary punctured Reed-Muller code 
of length n = 2m — 1 is the cyclic code whose generator polynomial has as 
roots those ak such that 1 ^ k g 2m - 2 and 1 g W(k) ^ m - r - 1. 

(iii) The rth. order Reed-Muller (RM) code of length 2m is formed by append
ing an overall parity check to the rth order punctured Reed-Muller code, 
for 1 ^ r ^ m — 2. The Oth, (m — l) th and wth order Reed-Muller codes 
are the trivial (2m, 2, 2m), (2m, 22*1-1, 2) and (2m, 22™, 1) codes, consisting 
respectively of the all-zeros and all-ones codewords, of all codewords of even 
weight, and of all codewords, of length 2m. (See, for example, [4, § 15.3].) 

An alternative definition of RM codes is given in [25], and the equivalence 
of the two definitions is shown in [4], for example. The relation between the 
^-parity of a vector as defined in [18] and RM codes is that a binary vector 
of length 2m has ^-parity if and only if it is in the (m — &)th order RM code 
as defined in [25]. 

The rth order RM code has 

d = 2m-\ M = exp2 X) 

and the number of codewords of minimum weight is 

m—T—1 cyfn—i -j 

THEOREM 1.5.1. The codewords of weight 4 in the (2m, 22m-m-\ 4) (m - 2)th 
order RM code form the tetrads of a Steiner system 5(3, 4, 2m). 

THEOREM 1.5.2. (See [4, p. 362].) The BCH code of designed distance d is 
contained in that of designed distance d — 1. The rth order RM code is contained 
in the (r + l)th order RM code. The rth order RM code is a subcode of the code 
obtained by appending an overall parity check to the BCH code of designed 
distance 2m~r - 1. 

(m\ 

https://doi.org/10.4153/CJM-1971-081-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-081-3


722 J. LEECH AND N. J. A. SLOANE 

1.6. Quadratic residue codes. The quadratic residue code of odd prime 
length n over GF(q) is the cyclic code whose generator polynomial has roots 
{ar: r = quadratic residue modulo n\ (see [4, § 15.2]). This is an 
code for some d. We shall be concerned only with extended quadratic residue 
codes. 

The most important code of this type is the (24, 212, 8) binary Golay code 
(see [13; 4, p. 359]), having weight distribution A0 = 1 = A2^ A8 = 759 = 
Ai6, and Au = 2576. The codewords of weight 8 form the octuples of a 
Steiner system 5(5, 8, 24). For later use we observe that if the eight coordinates 
belonging to an octuple are deleted from all the codewords, the truncated 
codewords form two copies of a (16, 211, 4) 2nd order RM code (see [5]). 

Other extended quadratic residue codes are the (12, 36, 6) ternary Golay 
code (see [13; 4, p. 359]), and the (24, 312, 9) and (48, 324, 15) ternary codes 
studied by Assmus and Mattson [1; 2]. In these three codes the codewords of 
maximum weight consist exactly of the rows of an n X n Hadamard matrix and 
its negative. 

1.7. Pless codes. Pless [27; 28] has constructed (2g + 2, 3Q+\ d) codes 
over GF(3) for every odd prime power q = — 1 (modulo 3). The first five 
are the (12, 36, 6) Golay code again, and (24, 312, 9), (36, 318, 12), (48, 324, 15), 
(60, 330, 18) codes. Pierce [26] has found the weight distributions of the last 
two. The codes of length 24 and 48 have the same weight distribution as the 
corresponding quadratic residue codes of § 1.6, but have different symmetry 
groups and are not equivalent. 

The following properties of these codes will be used later. 
1.7.1 The all-ones codeword is in the code. 
1.7.2 The numbers of — l's, O's or + l's in any codeword are each multiples 

of 3. 
1.7.3 The codewords of maximum weight contain among them the rows of 

an Hadamard matrix and its negative, and for lengths 12, 24 and 48 these are 
the only codewords of maximum weight. 

1.7.4 For lengths n = 12, 24 and 48, the codewords containing only O's and 
+ l's are of the types 0n, ln, and 0*n 1**. 

1.7.5 The weight distribution of the (48, 324, 15) code is in part 
A is = 415104, A1S = 20167136, A,5 = 6503296, A4B = 96 (Pierce [26]). 

2. CONSTRUCTION A 

2.1. The construction. Let ^ be an (n, M, d) binary code. The following 
construction specifies a set of centres for a sphere packing in En. 

Construction A. x = (xi, . . . , xn) is a centre if and only if x is congruent 
(modulo 2) to a codeword of fé\ 

Thus a point x with integer coordinates is a centre if and only if the l 's row 
of the coordinate array of x is in 
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A lattice packing is obtained if and only if ^ is a group code. Construction A 
is a generalization of the construction of A* as given in [18, § 1.1]. 

2.2. Centre density. On the unit cube at the origin, 

{0 ^Xi ^ l:i = 1, . . . , « } , 

the centres are exactly the M codewords. All other centres are obtained by 
adding even integers to any of the coordinates of a codeword. This corres
ponds to shifting the unit cube by two in any direction. Thus all the centres 
may be obtained by repeating a building block consisting o fa2 X 2 X . . . X 2 
cube with the codewords marked on the vertices of the 1 X 1 X . . . X 1 
cube in one corner. 

Each copy of the 2 X 2 X . . . X 2 cube contributes M spheres of radius p 
(say), so the centre density obtained from Construction A is 

6 = Mpn2~n. 

If two centres are congruent to the same codeword their distance apart is 
at least 2. If they are congruent to different codewords then they differ by at 
least 1 in at least d places and so are at least y/d apart. Thus we may take 
the radius of the spheres to be 

p = \ min(2, y/d). 

2.3. Contact numbers. Let S be a sphere with centre x, where x is con
gruent to the codeword c. Candidates for centres closest to x are as follows. 
(a) There are 2n centres of the type x + (±2)0 n _ 1 at a distance of 2 from x. 
(b) Since there are Ad(c) codewords at a distance of d from c, there are 
2dAd(c) centres of the type x + (±l)d0n~d at a distance of y/d from x. 

Therefore, the number of spheres touching S is 

2dAd(c) if d < 4, 
2n+ 16^4(c) if d = 4, 

2n if d > 4. 

2.4. Dimensions 3-6. Let ^ be the (n, 2n~1, 2) group code consisting of 
all codewords of even weight. Then A 2 = hn(n — 1), and from the construc
tion we obtain a lattice packing Dn in En, with p = 2""% 8 = 2~*n~l and 
r = 2n{n — 1). The centres of Dn are alternate vertices of the regular cubic 
lattice. 

For n = 3, 4, 5, Dn is the densest possible lattice packing in En, and is 
denoted by Ani since each is a section of the 24-dimensional packing A24 
(see § 4.5). In Ez and E5 equally dense nonlattice packings exist (see [20] and 
§ 4.2 below). 

The densest six-dimensional lattice packing, À6, is not directly given by 
Construction A, but will be obtained by stacking layers of A5 in § 4.2, and as 
a section of A7 in § 4.5. 
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2.5. Dimensions 7 and 8. From now on we apply Construction A to 
codes with minimum distance d = 4. The packing obtained is of spheres of 
unit radius, and has centre density ô = M2~n and contact numbers 
r = 2n + 164 4 (c). 

Let Hn denote the binary matrix obtained from ann X n Hadamard matrix 
upon replacing + l ' s by O's and — l's by l 's. We assume that Hn has been 
normalized so that the first row and column are all zeros. The rows of H8 with 
the first column deleted form a (7, 8, 4) group code with A4 = 7, the code
words being the vertices of a seven-dimensional simplex. From this code we 
obtain A7, the densest lattice packing in E7, with ô = 2~4 and r = 2-7 + 
16-7 = 126. 

The rows of H$ together with their complements form an (8, 16, 4) 1st order 
Reed-Muller code, with Ai = 14. From this we obtain A8, the densest lattice 
packing in £8 , with Ô = 2^4 and r = 2-8 + 14-16 = 240. 

2.6. Dimensions 9-12. Let 2f be the 1 1 X 1 1 matrix consisting of the 
vector 11011100010 (with l 's at position zero and at the quadratic residues 
modulo 11) together with its cyclic shifts. Then the modified Hadamard 
matrix Hu may be taken as 

/0 0T\ 
V0 9)' 

The sums modulo 2 of pairs of rows of Hu and the complements of such sums 
form the 132 vectors of a Steiner system S(5, 6, 12) (see [18], for example). 
Since no two of these vectors can overlap in more than four places, they form 
a (12, 132, 4) code, every codeword having weight six. This code may be 
increased to a (12, 144, 4) nongroup code by adding six codewords of type 
010 l2 and six of type 02 l10, the six l2 and the six 02 being disjoint sets. 

Several different versions of this code are possible, depending on the rela
tionship between the positions of the ones in the 12 "loose" codewords and 
the vectors of the Steiner system. 

By shortening the (12, 144, 4) code we obtain (11, 72, 4), (10, 38, 4) and 
(9, 20, 4) codes. Codes equivalent to these four were first given by Golay [14] 
and Julin [16], and alternative constructions and generalizations are given in 
[32; 33]. 

Applying Construction A to the various versions of the (12, 144, 4) code 
we obtain nonlattice packings in E12 with centre density ô = 144 -2 - 1 2 = 
2-8»32 = .03516, which is less than that of Ki2 (see [12]), but in the most 
favourable versions with some spheres touching as many as 840 others, as 
we now show. 

Let c be a codeword of weight 6. Any vector of weight 4 and length 12 is 
contained in exactly 8 vectors of weight 5, and therefore in exactly 4 code
words of weight 6 (since any vector of weight 5 is contained in a unique 
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codeword of weight 6). So the number of codewords of weight 6 that are at a 

Hamming distance of 4 from c is 3( . J = 45. 

If the 12 loose codewords are chosen so that there are three words 010 l2 

whose l 's coincide with pairs of l 's from c, and three words 02 l10 whose O's 
coincide with pairs of O's from c, then there are an additional 6 codewords at 
a Hamming distance of 4 from c and ^44(c) = 45 + 6 = 51. Based on these 
codes we obtain packings in E12 with a maximum contact number of 
2-12 + 16-51 = 840 for those spheres whose centres are congruent to c. 

There are still several inequivalent versions of these packings, depending 
on the choice of the remaining loose codewords, but they all have the same 
maximum contact number of 840, and are collectively called P12a in Table I. 

Other choices for the 12 codewords give packings with maximum contact 
numbers of 824 or 808. 

It can be shown that, regardless of the choice of the 12 loose codewords, 
the average contact number obtained is equal to 770f. (This is true even for 
those packings where the maximum contact number is less than 840.) 

In E11 we equate X\i = 1 in P12a, and find the maximum contact number 
to be 566 in the most favourable cases, collectively called P l i a , but it can 
be only 550 or 534 in other cases (if 010 1 is altered to 011)- Except in this last 
case the average is 519j. 

In E10, if we equate Xu = Xu = 1, where Xn, Xu are a pair of both 010 l2 

and 02 l10, we obtain packings PlOb with 8 = 2~8-32 and a maximum contact 
number of 500. If instead we equate Xu = 1, tfio = 0 where Xio, Xu is not a 
pair of either form, we obtain packings with ô = 2~9 • 19. In the most favourable 
cases, called P10a, the maximum contact number is 372. The average contact 
number is 353£ for P10a and 340| for PlOb. 

In E9 we equate Xio = 0, Xn = Xu = 1 and obtain packings P9a with 
ô = 2~7 • 5 and a maximum contact number of 306 ; the average contact number 
is 235f. 

An alternative derivation of PlOb may be given. The tetrads of a Steiner 
system 5(3, 4, 10) (see [37]) form 30 codewords of length 10, weight 4 and 
Hamming distance at least 4 apart. For example the tetrads may be taken to 
be the cyclic permutations of 1110001000, of 1101100000 and of 1010100100. 
By including the zero codeword and five codewords of weight 8, several 
different (10, 36, 4) codes are obtained. Construction A then gives the pack
ings PlOb. 

Similarly, the packings P9a, P10a and P l i a may be obtained by applying 
Construction A to the (9, 20, 4), (10, 38, 4) and (11, 72, 4) codes. All these 
are nonlattice packings. 

2.7. Comparison of lattice and nonlattice packings. It is still an open 
question whether there exists any nonlattice packing with density exceeding 
that of the densest lattice packing. But the nonlattice packings P10a, P l i a , 

https://doi.org/10.4153/CJM-1971-081-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-081-3


726 J. LEECH AND N. J. A. SLOANE 

and P13a of § 4.3 below, have density greater than that of the densest known 
lattice packings. It is hoped that this will stimulate further investigation of 
whether these are the densest possible lattice packings in these dimensions. 

In this connection it should be mentioned that G. L. Watson [36] has 
recently proved that Ai — A9 have the maximum possible contact numbers 
for lattice packings. Therefore the nonlattice packing P9a has some spheres 
touching more spheres than is possible in any lattice packing. 

3. CONSTRUCTION B 

3.1. The construction. Let *& be an (n, M, d) binary code with the 
property that the weight of each codeword is even. A sphere packing in En 

is given by: 

Construction B. x = (#i, . . . , xn) is a centre if and only if x is congruent 
(modulo 2) to a codeword of ^ , and YI\=ixi is divisible by 4. 

Thus a point x with integer coordinates is a centre if and only if the l 's 
row of the coordinate array of x is a codeword CÇ ^ and the 2's row has 
either even weight if the weight of c is divisible by 4, or odd weight if the weight 
of c is divisible by 2 but not by 4. 

As in Construction A a lattice packing is obtained if and only if ^ is a 
group code. Construction B is a generalization of the construction of A8 as 
given in [18, § 1.1]. 

3.2. Centre density and contact numbers. The number of centres is 
half that of Construction A, so Ô = Mpn2~n-1. 

Let S be a sphere with centre x, where x is congruent to a codeword c. 

Candidates for centres closest to x are (a) the 22( J centres of the type 

x + (±2)20w~2, and (b) the 2d~1Ad{c) centres congruent to the codewords 
differing minimally from c. Therefore the contact number of 5 is 

2d-Md(c) if d < 8, 

2n(n - 1) + 12&48(c) if d = 8, 

2n(n - 1) if d > 8; 

and S has radius p = | min(\ /d, V8) . 

3.3. Dimensions 8, 9 and 12. In E8 we apply Construction B to the 
trivial code {08, l8} to obtain the packing A8 of § 2.5 again. In E9 we use the 
code {09, 180} and obtain the lattice packing A9 with p = V2, ô = 2~"4^ and 
r = 272. 

In E12 we use the (12, 24, 6) code formed from the rows of Hi2 and their 
complements to obtain the nonlattice packing L i 2 (see [18]) with ô = 2~16-37 
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and r = 704. The (12, 4, 8) code {012, 0418, 140414, 1804} gives the lattice 
packing Ai2, with 5 = 2~5 and r = 648. 

3.4. Dimensions 15-24. In £16 the (16, 32, 8) 1st order RM code gives 
the lattice packing Ai6 having 8 = 2~4 and T = 4320. Shortening this code by 
equating a coordinate to zero we obtain the (15, 16, 8) simplex code, which 
gives the lattice packing Ai5 in E15 having è = 2~4^ and r = 2340. 

Let *$u i = 0 , 1 , . . . , 5 , denote the shortened code obtained from the 
(24, 212, 8) Golay code by setting i coordinates equal to zero, and let a* 
denote the number of codewords of weight 8 in 9%. Then a0 = 759, a\ = 506, 
a2 = 330, a3 = 210, a4 = 130 and a5 = 78. 

The sequence of lattice packings in E24 *, i — 0, 1, . . . , 5, obtained from C% 
has hi = 2-^*+2>, and was given in [18, § 2.4]. In E19 - E21 these are the best 
known packings Ai9 — A2i, but in E22 — E24 they can be improved as shown 
in [19, §§ 2.31 and 2.41] and in §§ 4.4-4.5 below. 

3.5. Remark. Constructions A and B cannot be successful for large n 

because for any (n, M, d) code, As ^ f ^ ) and so from these constructions 

r = 0(ns) at most. But Construction C applied to RM codes gives already 

T ^ constant • n^10^"-» 

(see [18, § 3.4] or § 6.5 below). 

4. PACKINGS BUILT UP BY LAYERS 

4.1. Packing by layers (see [20; 21]). The basic idea is very simple. Let 
A be a lattice sphere packing in Ew. Let â be the maximum distance of any 
point in En from a centre of A, and let D (A) be the set of all points at a distance 
of at least â from every centre. (D(A) is also well-defined for periodic but 
nonlattice packings.) 

A layer of spheres in En+1 is a set of spheres whose centres lie in a hyperplane, 
and whose cross section in the hyperplane is A. In the hyperplane of centres 
of such a layer there are two distinguished sets of points, the set C of centres 
of A, and the set D of the points most distant from C. 

We shall try to build up a dense sphere packing in En+l by stacking such 
layers as closely as possible. We therefore place adjacent layers so that the 
set C of one layer is opposite to some or all of the set D of the next. Since the 
layers are lattice packed, if one point of C is opposite to a point of D, then so 
are all the points of C. 

It may happen that D is more numerous (in any finite region) than C, in 
which case several inequivalent packings may be produced in En+l. These 
may be lattice or nonlattice packings or both. Examples will be found below 
and in succeeding sections. (So far we have not found an example of only a 
nonlattice packing being formed, but it does not seem impossible.) 
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For example let A be the square lattice in E2. Then C comprises the vertices 
of the squares and D their centres. The layers are placed so that the vertices 
of the squares in one layer are opposite to the centres of the squares in the next. 
Since C and D are equally numerous, this arrangement is unique, and the 
lattice packing A3 in E3 is obtained. 

The situation is different if A is chosen to be A2, the triangular lattice in E2. 
Now D is the set of centres of triangles, and is twice as numerous as C. If we 
regard the triangles as coloured black and white alternately, the spheres of 
each layer can be placed opposite to either all the black triangles or all the 
white triangles of the adjacent layer. If the layers are so stacked that the 
spheres in the two layers adjacent to any layer are opposite to triangles of 
different colours, then the lattice A3 is obtained. But if the adjacent spheres on 
both sides of each layer are opposite to triangles of the same colour, then a 
nonlattice packing, the hexagonal close packing, is obtained, having the same 
density as A3. If we require uniform packings there is no further choice, as all 
layers have to be fitted alike, and this construction gives precisely these two 
packings. 

In general, the layers are placed just far enough apart that the smallest 
distance between centres in adjacent layers equals the smallest distance 
between centres in the same layer. There are four cases which can arise here. 
The spheres of one layer may (i) not reach, (ii) just touch, or (iii) penetrate, 
the central hyperplane of an adjacent layer, or (iv) it may be possible to fit the 
spheres of one layer into the spaces between the spheres of the adjacent layer 
and so merge the two layers. 

Examples of case (i) are n = 2 (as above) and 3-5 (in § 4.2). 
In case (ii), extra contacts may occur because of spheres on opposite sides 

of a layer touching. Examples are the case n — 6 in § 4.2, and the packing 
PIZa in § 4.3. 

In case (iii), the layers on each side of a given layer must be staggered to 
avoid overlapping. Examples are the construction of As from layers of D7 as 
given in [21], and the local arrangements P14&, Pl5a in § 4.3. 

Case (iv) doubles the density of the original packing. Examples of this in 
E8, E12, E24 and E48 are given in § 4.4 and § 5.6. 

It is sometimes advantageous to stack layers which are not lattices. 
Examples are the local arrangements of spheres in E11, E14 and E15 and the 
nonlattice packing P13a in E13 to be described in § 4.3. 

4.2. Dimensions 4-7. We consider packings in E ^ 1 formed by stacking 
layers of the packing Dn (defined in § 2.4). The centres of Dn form a lattice 
consisting of alternate vertices of the regular cubic lattice. For n ^ 3 the cells 
of Dn are of two kinds: each omitted vertex of the cubic lattice is the centre 
of a cell j8w., while inscribed in each cube of the lattice is a cell hyn. The latter 
cells are twice as numerous as the former. We shall regard the cells hyn as 
being coloured black and white alternately. 
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For n — 3 the cells fiz (octahedra) are larger than the cells hy% (tetrahedra), 
and so we place the spheres of each layer opposite to octahedra of the adjacent 
layer. As the octahedra and spheres are equally numerous we arrive uniquely 
at the lattice packing A4. 

For n = 4 the cells 04 and JIJA are congruent, the lattice Z)4 being the regular 
honeycomb {3, 3, 4, 3}. Thus there is a threefold choice for placing each layer: 
the spheres of each layer may be placed opposite to the omitted vertices or 
the black cells or the white cells. In this case we obtain either the lattice 
packing A5 or three distinct uniform nonlattice packings, all having the same 
density and contact numbers (see [20]). 

For n > 4 the cells hyn are larger than the cells £„, so for maximum density 
in En+1 we stack the layers with the spheres of each layer opposite to the 
cubes of the adjacent layers. At each stage the spheres may be placed opposite 
to the black or the white cubes. For n = 5 or 6 we obtain in this way two 
uniform packings, the lattice packing Aw+i and a nonlattice packing of equal 
density. For n — 5 both have the same contact numbers. For n = 6 each 
sphere in the lattice packing A7 has two more contacts than in the nonlattice 
packing, because it touches spheres in layers two away from it. This is an 
example of case (ii) above. For n — 7 only the lattice packing A8 is produced. 
This is an example of case (iii) above, where the adjacent layers have to be 
staggered to avoid overlap. 

4.3. Dimensions 11 and 13-15. In E11 we construct a local arrangement 
P\lb of 576 spheres touching one sphere, by stacking three partial layers. 
The central layer consists of the 500 centres of PlOb touching one sphere, with 
eleventh coordinate zero. The two outer layers consist of all points of the form 

(ci, . . . , C10, 0) - (J, . . . , I, ± i V 6 ) , 

where (ci, . . . , Cio) runs through the (10, 38, 4) code, and contains 76 points. 
It does not seem possible to extend this to a dense space packing. 

In E13 we take any one of the packings PYla and its translates by repetitions 
of amount ((J)12, ± 1 ) , and obtain a family of nonlattice packings collectively 
called P13a. Any of these packings has h — 2~~8-32 and a maximum contact 
number of 840 + 2-144 + 2 = 1130, the last 2 being caused by a sphere 
touching spheres two layers away. The average contact number is 1060f. 

The tetrads of a Steiner system 5(3, 4, 14) (see [15]) form 91 codewords 
of length 14, weight 4 and Hamming distance at least 4 apart. For example, 
if the fourteen objects are numbered 12 3 4 5 6 7 and V 2' 3' 4' 5' 6' 7', the 
tetrads may be taken to be 1 2 3 6, 2' 5' 6' 7', 12 4 2', 6 4' 6' 7', 2 7 1' 6', 
2 4 4' 6', 5 7 1/ 3', 1 5 3' 7', 1 4 4' 7', 4 7 1' 4', 6 7 1' 2', 5 6 2' 3', 4 5 3' 4', and 
their transforms under the permutation (12 3 4 5 6 7) (1' 2! 3' 4' 5' 6' 7'). 
Construction A then gives a local arrangement P14a of 1484 spheres touching 
one sphere. This can be improved, however, by cutting down to thirteen 
dimensions and rebuilding. The best section of 5(3, 4, 14) in Eu has 65 code-
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words, giving a local arrangement PISb with 26 + 16-65 = 1066 contacts, 
inferior to P13a. 

We now form a local arrangement P14& in E14 by stacking five partial 
layers. The central layer is P13&. The adjacent layers are (c, 0) — ((J)13, | V 3 ) 
and (c', 0) — ((i)1 3 , — i V 3 ) , where c runs through the shortened Hamming 
(13, 256, 4) code and c' denotes c + (l2, 011) reduced modulo 2. The two outer 
layers contain just 2 spheres each: (dbl, 012, =b\/3). Thus the central sphere 
touches 1066 + 2-256 + 2-2 = 1582 others. 

Similarly in E15 we form a local arrangement PI5a from five partial layers. 
The central layer is P14a. The adjacent layers are (c, 0) — ((J)14, | V2) and 
(c', 0) — ((I)14, — | V2) , where C runs through the shortened Hamming 
(14, 512, 4) code and c' = c + (l2, 012) reduced modulo 2. The outer layers 
are (xi, . . . , x^, db V2) , with Xi, . . . , X14 all zero except for one pair 
X2i-u %2t which are ± 1 in all four combinations. The central sphere touches 
1484 + 2-512 + 2-28 = 2564 others. 

4.4. Density doubling and the packing in 24 dimensions. In E8 two 
copies of D8 can be fitted together without overlap to form the lattice packing 
As, the second copy being a translation of the first by ((J)8). 

In -E24, Leech [19] has shown that two copies of the 24-dimensional 
packing obtained in § 3.4 from the (24, 212, 8) Golay code may be fitted 
together without overlap to form the packing A24 with 5 = 1 and r = 196560. 
The second copy is a translation of the first by (—1§, (i)2 3). (See [19, § 2.31] 
and §§5.6-7 below.) Conway [7; 8] has extensively studied this lattice, 
especially its associated groups. 

4.5. Cross sections of the 24-dimensional packing. All of the densest 
known lattice packings in fewer than 24 dimensions occur as sections of A24. 
There are two main sequences of sections, Aiy i = 1, 2, . . . , 23 and Ku 

i = 6, 7, . . . , 18, where the subscript indicates the dimension. Because of the 
symmetry of A24, there are several different ways of describing some of the 
sections. 

The sequence of lattice packings A* is defined as follows (see [18, § 2.4; 
19, § 2.41]). A23, A22 and A21 are obtained from A24 by equating any two, 
three or four coordinates to each other. A2i (again), A20 and A19 are obtained 
by equating any three, four or five coordinates to 0. We recall that codewords 
of weight 8 in the (24, 212, 8) code form the octuples of a Steiner system 
5(5, 8, 24). Because of the fivefold transitivity of the Steiner system, the 
choice of coordinates in forming A19 — A23 is arbitrary. 

A19 (again), Ai8, Ai7 and Ai6 are obtained by equating to 0 the sum of eight 
coordinates forming a Steiner octuple and also any four, ûve} six or all of 
them. 

The (16, 25, 8) RM code occurs as a subcode of the (24, 212, 8) code, and 
we associate the remaining 16 coordinates with coordinate positions of this 
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subcode. Any two intersecting octads of the (16, 25, 8) code split the coordi
nates into four tetrads. 

Au, Ai4, A13 and Ai2 are obtained by equating to 0 the sum of the coordinates 
forming a tetrad and none, any one, any two or all of them. An, Aio and Ag 
are obtained from Ai2 by equating any two, any three or all four coordinates 
to each other in one of the remaining tetrads. A9 (again) and A8 are obtained 
by equating to 0 any three or all four coordinates in a tetrad. 

A7 — A4 are obtained as sections of A8 in the same way that An — As are 
obtained from Ai2, defining any four coordinates of the eight to be a tetrad. 
Finally, A3 — Ai are obtained from A4 (calling the four coordinates a tetrad) 
in the same way that A15 — A13 were obtained from Aie. 

The sequence Ai — A24 includes the densest known lattice packings in 
E1 - E10 and E14 - E24. 

In E12 there is a denser section of A24 than Ai2, called Ku, obtained as follows. 
The 24 coordinates may be set out in a 6 X 4 array so that the coordinates in 
any row together with those in any column but omitting that at the inter
section form a Steiner octuple (see [35]). Ki2 is found by equating to 0 all 
six of a column and also all six sums of three remaining in the rows. Thus Ki2 

is a section of Ai8. An alternative construction for Ki2 using 18-dimensional 
coordinates xtJ, i = 1 to 6, j = 1 to 3, is given in [19, § 2.11]. It is shown there 
that K12 has 6 = 3~3 and r = 756. 

A6 may be obtained as a section of Ku (in the 18-dimensional coordinates) 
by setting 

X l i — # 1 2 = #21 "~ #22 = #31 - " #32 = #41 — #42 = #51 ~~ #52 = #61 ~~ #62. 

and also xu + #23 + #33 + #43 + #53 + #63 = 0. 

THEOREM 4.5.1 (Conway [9]). Let A be a packing in En which is one of 
A4, As, i£i2, Ai6 or A24 reseated so as to have one sphere per unit content. To every 
section of A in El there is a corresponding section in Ew~* with an equal number 
of spheres per unit content. 

THEOREM 4.5.2 (Conway [9]). (a) There is a sequence of sections of 
A24: KQ = Ae, K7, . . . , Kn, Kis = Ai8, including K\2 above, with the property 
that if A24 is normalized as in Theorem 4.5.1, the number of centres per unit 
content of Kt is equal to that of K2^u for 6 g i S 18. 

(b) Each Ai is the densest section of Ai+i, for 1 ^ i ^ 23. 
(c) Each Ki is the densest section of Ki+i containing or contained by Ku, 

for 6 g i ^ 17. 

Proof. Ai — A8 are known to be the densest possible lattice packings. 
Therefore from Theorem 4.5.1, so are A9 — A15 as sections of Ai6, Ai6 — A23 
as sections of A24, KQ — Ku as sections of Ki2, and Ku — Kis as sections of 
A24 containing K\2. 

Note that it is not proved that A9, Aio, ^11, i£i2, i£i3, Ai4, A15 are the densest 
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sections of A24, but any denser sections cannot form part of a sequence includ
ing any of A8, Ku or Ai6. 

Kn may be specified in terms of the 6 X 4 array by equating all six coordi
nates of a column to 0 and also equating four of the sums of three remaining 
in the rows to zero and equating the other two sums of three to each other. 
Kn has Ô = 2-1-3-** and r = 918, and Kn has Ô = 2-1-3~2^ and r = 432. 

Ku, Ku and X13 are the densest known lattice packings in these dimensions, 
although Pliez and P13a are denser nonlattice packings. Also the nonlattice 
packing PlOa is denser than Aio. 

Remarks, (a) Equally dense nonlattice packings are known for all the 
Ki and At sequences except for Ai, A2, A4, A8, Kn, Ki2y A22 — A24. 

(b) Some of the i£ / s are not unique. For instance there are i^io's with the 
same density and 270 or 276 contacts. 

(c) There is a close analogy between the packings Z>3 — Ds of § 2.4 and the 
packings in E19 — JE24 of § 3.4, in that the first three are the densest known, 
the last can be doubled in density, and the densest intermediate packings can 
be derived either as sections of the doubled packing or by building up in layers. 

5. OTHER CONSTRUCTIONS FROM CODES 

5.1. A code of length 40. We construct a new binary code of length 40 
which will be used in § 5.2 to obtain a sphere packing. 

Let ^ ! be the (16, 211, 4) 2nd order RM code. The 140 codewords of weight 4 
form the blocks of a Steiner system 5(3, 4, 16). Let ^ 2 be the (24, 212, 8) 
Golay code, with coordinates arranged so that 18016 is a codeword. There are 
759 codewords of weight 8, forming the blocks of a Steiner system 5(5, 8, 24). 

Let fë be the code of length 40 consisting of all codewords of the form 
(x, y, z) where y Ç ^ 1 , z Ç fê\, and (x, y + z) € ^ 2 . 

THEOREM 5.1.1. *€ is a (40, 223, 8) group code. 

Proof, y and z can each be chosen in 211 ways, and then, by § 1.6, there are 
two ways of choosing x so that (x, y + z) £ ^ 2 - Therefore *$ contains 223 

codewords. Since 

(x, y, z) = (x, y + z, 0) + (0, z, z), wt(x, y, z) ^ wt(x, y + z, 0) è 8 

by construction, and so *$ has minimum weight 8. 

THEOREM 5.1.2. The number of codewords of minimum weight in *% is 2077. 

Proof. Let (x, y, z) = (x, y + z, 0) + (0, z, z) be a codeword of weight 8. 
There are five cases. (1) If y = z = 0, then x = l8. (2) If y ^ 0, z = 0, then 
there are 758 codewords of the form (x, y) G ^ 2 , y ^ 0. (3) If y = 0, z 5* 0, 
again there are 758 possibilities. (4) If y = z 7^ 0, then wt(y) = 4, x = 0, and 
there are 140 choices for y. (5) If y ^ 0, z ^ 0, y + z ^ 0, then x = 0, 
wtiy + z) = 8 = wt(y) + wt(z). Therefore y and z have disjoint sets of l 's . 
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y can be chosen in 140 ways and for each of these there are 3 choices for z so 
that (0, y + z) e ^ 2 , giving 420 codewords. The total of ( l)-(5) is 2077. 

Remark. If (0, y, z) G ^ , then (0, y + z) G ? 2 and so y + z is in the 
(16, 25, 8) 1st order RM code and therefore (y, z) is in the (32, 216, 8) 2nd 
order RM code. 

5.2. A lattice packing in E40. A lattice packing in E40 can be obtained 
from the code ^ of § 5.1 as follows. The 40 coordinates are divided 
8 + 16 + 16 corresponding to the division of the codewords of ^ . 

Then X = (x, y, z) is a centre if and only if the 2's row of X is in ^ , the 
l 's row is all 0's or is 0 on one of the sets 8, 16, 16 and 1 on the other two, 
and the 4's row has even weight if the set of 8 is even or has odd weight if the 
set of 8 is odd. 

The centres closest to the origin are 

x y z Type Number 

zero odd odd 08(±1)3 2 216 = 65536 
odd zero odd (±1)801 6(±1)1 6 

with T 3 for one ± 1 
24-212 = 98304 

odd odd zero (±1)8(±1)1 601 6 

with =F3 for one ± 1 
24-212 = 98304 

all even 03 2(±2)8 27-2077 = 265856 
all even 03 8(±4)2 40-39-2 = 3120 

Total = 531120 

(The centres described in the first line have l's row 08132, 2's row equal to any 
codeword (0, y, z) Ç ^ , and 4's row chosen to make all the nonzero coordi
nates equal to ± 1 , and by the remark at the end of § 5.1 the number of such 
centres is 216. The other types of centres are easily counted.) 

Thus we have a lattice packing A40 with p = 2 \/2, 8 = 24 and r = 531120. 

5.3. Cross sections of the 40-dimensional packing. A4o contains A24 

as a section, and for 1 ^ n ^ 8 has a section A40_w in EAQ~n of centre density 
16 times that of A24_w. For instance in E36 there is a section A36 with ô = 2 and 
r = 234456. A36 is obtained from A40 by equating to zero four coordinates 
from a tetrad contained in one of the sets of 16. A32 is obtained by equating 
to zero all coordinates from an octad contained in one of the sets of 16, and 
has Ô = 1 and r = 208320. 

5.4. Packings based on ternary codes. Let ^ be an (n, M, d) ternary 
code. By analogy with the constructions based on binary codes we obtain 
sphere packings in En from the following constructions. 
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Construction A*. X — (xi, . . . , xn) is a centre if and only if x is congruent 
(modulo 3) to a codeword of fé5'. 

Construction B*. In addition, XLi#* is divisible by 2. 

From Construction A* we obtain a packing of spheres of radius 
p = min(f, \ y/à) and centre density ô = pn • 3"***, and from Construction B*, 

_ f min (2~* • 3, § V^) if d is even 
p " \min(2-* • 3, \ y/(d + 3)) if d is odd, 

and 5 = pn 2"1 • 3~H 

5.5. Packings obtained from the Pless codes. By applying Construc
tion 5 * to the Pless codes of § 1.7, we obtain the lattice packings shown in 
Table 5.5.1. 

Table 5.5.1 

Center 
En Code Radius density Name 

£12 (12, 36, 6) 2"*-3* 2-7 D12 = ÎA12 
£24 (24, 312, 9) 3* * M24 
£36 (36, 318, 12) 3* 1 PSQp 
£ 4 8 (48, 324, 15) 2"*-3 2~25.324 \P&p 
£ 6 0 (60, 330, 18) 2~*-3 2 ~ 3 i . 330 pmp 

Applying Construction A* to the (12, 36, 6) code gives the packing Du2 

with p = 2~2 . 32 and 8 = 2~6. It is known that Du can be doubled in density 
to give D122, and in fact quadrupled to give Ai2 (see [18, § 2.1]). 

We show in § 5.7 that the packings in E24 and E48 of Table 5.5.1 can also be 
doubled in density, to give A24 and a new packing P48£. 

On the other hand we have not found doublings of the packings P36p and 
P60p, the technique of § 5.7 failing because of the existence of codewords of 
maximum weight with odd numbers of each sign (Pless [29]). 

In P36£ the centres closest to the origin are those of the type (±1)12024 

and correspond to codewords of minimum weight, so r = 4̂12 = 42840. In 
P60£, T = Au + 2-60-59 = 3908160. 

5.6. Packings obtained from quadratic residue codes. We observed 
in § 1.6 that there are (24, 312, 9) and (48, 324, 15) ternary quadratic residue 
codes with the same weight distributions as the corresponding Pless codes. 
Applying Construction B*, we obtain packings JA24 and §P48g. It will now 
be shown that these can be doubled in density to give A24 in E24 and another 
new packing P48# in E48. 

5.7. Density doubling in £24 and £48. Any of the packings |A24, iP48£ 
and §P48g may be doubled in density, by adding a second copy which is a 
translation of the first by (—2|, (è)w_1). 
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To show this, we must verify that no point of the original lattice is closer 
to (—2J, (J)n_1) than the origin. Every point of the original lattice differs 
from this point by at least § in every coordinate. If any coordinates are 
congruent to — 1 (modulo 3) then at least three are, by 1.7.2, and so at least 
three coordinates differ by 1J. On the other hand if all coordinates are congruent 
to 0 or 1 (modulo 3), then by 1.7.4 they are congruent to one of the types 0n, 
ln or 0*n l*n. Since the sum is even, at least one coordinate differs by 2J. 

In E24 the doubled packing has centre density 1 and so must be A24 (regard
less of whether it came from the Pless code or the quadratic residue code) 
since Conway [7] has shown this packing to be unique. 

In E48 we obtain a packing which we call P48£ by doubling that given by 
the (48, 324, 15) Pless code, and one which we call P48g from the (48, 324, 15) 
quadratic residue code. Both P48£ and P48g have Ô = 2"24 • 324. 

The contact number for PASp can be obtained from the partial weight 
distribution of the (48, 324, 15) code given in 1.7.5. The centres closest to the 
origin are 

Coordinates Number 

(±1)14(=F:2)1033 15-415104 
(±l)i803o 20167136 
(±3)2046 48-47-2 
(±i)47(=F2i) 48-96 

(d=i)45(±U)3 4-6503296 

The total is r = 52416000. 
PA8q was first found by Thompson [34]. By modular form theory, PA8p 

and Pé8q have the same contact numbers. However Thompson has shown that 
they have different symmetry groups and are not equivalent. 

6. CONSTRUCTION C 

6.1. The construction. Let ^ = (n, Mudi)i i = 0, 1, . . . , a, be a family 
of codes with dt = y • 4°-' , where y = 1 or 2. A sphere packing in En is given 
by: 

Construction C. A point x with integer coordinates is a centre if and only if 
the 2*'s row of the coordinate array of X is in 9%, for i = 0, 1, . . . , a. 

This is a generalization of the constructions for E2™ given in [18, § 1.6]. 
Construction C follows the trend of A and B in successively imposing more 
restrictions on the coordinate array of a centre. In general a nonlattice packing 
is obtained. 

6.2. Distance between centres. If two centres differ in the 2i's row, 
then (i) if i > a their distance apart is at least 2a+1, and (ii) if 0 ^ i ^ a 
they differ by at least 2* in at least dt places, and so are at least (d^'4*)* = 
V T • 2a apart. Thus we may take the radius of the spheres to be p = V T ' 2a~1. 
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6.3. Centre density. How many integer points x satisfy the conditions 
of Construction C? The fraction of x's with l's row in ^ 0 is M02~n, of these a 
fraction M\2rn has 2's row in ^ i, and so on. Thus the fraction of integer 
points which are accepted as centres is M0Mi. . . ilfa2~(a+1)w. The radius is 
p = y/y . 2 a~\ so the centre density of the packing is 

Ô = MoMi . . . Ma2-<*+i V 

= MoMx . . . May
x*n2-2n. 

6.4. Contact numbers. We shall calculate the number of spheres touching 
the sphere at the origin. From the discussion in § 6.2 this means that we must 
find the number of centres of type (zL2r)drQn~dr for each r = 0, 1, . . . , a. A 
coordinate equal to + 2 r contributes to the coordinate array a column with 
a single one in the 2r 's row; while a coordinate equal to — 2 r has ones in the 
2vs row for all i ^ r. The l's in the 2r 's row form a codeword c (say) in 9%, 
and the minus signs must be at the locations of the ones in a codeword in 
^ r + i r\ ^r+2 r\ . . . (^ %\. The 2r's row can be chosen in Adr ways, and 
for each of these the number of ways of choosing the signs is equal to the 
number of codewords in & r+i ^ ^r+2 C\ . . . C\ *é\ which are contained in 
the codeword C of *&r. Let the latter number be Nr(c). 

Then the number of centres of the desired type is J^ Nr(c), and 

where ]£ denotes the sum over all c G ^ r - If Nr(c) — Nr is independent of c, 
this becomes r = ]Cr=o AdrNr. 

6.5. Packings obtained from Reed-Muller codes. As an example of 
Construction C we take c€T to be the (2r)th order RM code of length n = 2m 

to obtain a packing P2mr in E2™. This and similar packings were given in [18]. 
If m is even, 7 = 1 and a = \m, while if m is odd, 7 = 2 and a = \(yn — 1); 

in both cases the radius is p = 2*(m~2). As pointed out in § 1.5, RM codes are 
nested. Therefore Nr(c) is equal to the number of codewords in the (2r + 2)th 
order RM code of length 2m which are contained in a codeword of minimum 
weight in the (2r)th order RM code, and this is th€ same as the number of 
codewords in the 2nd order RM code of length 2m~2r; that is, 

*.w-«4+ (-7 ») + («-*)}. 
Using the properties of RM codes given in § 1.5, the centre density and 

maximum contact number are then found to be 

S = 2-*n/4nn/4 

T = (2 + 2)(2 + 22) . . . (2 + 2m) 

~ 4.768 . . . 2^m(w+1). 
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(See [18] for details.) Examples are given in Table II. These are lattice 
packings only for m rg 5. Barnes and Wall [3] have described a family of 
lattice packings in E2™, which coincide with P2mr for m ^ 5 and have the 
same density and maximum contact number for all m. Their packings are 
called P2ma in Table II. 

6,6. Packings obtained from BCH and other codes. Both low and 
high order RM codes contain the maximum number of codewords for this 
length and Hamming distance; but intermediate order RM codes are poor. 
For n ^ 64 there are BCH codes with more codewords, and these too are 
known not to be optimal. For length 64 extended cyclic codes are known 
which are better than BCH codes. Unfortunately for lengths greater than 64 
cyclic non-BCH codes have not been extensively studied. RM, BCH and 
cyclic codes of length 2m, m ^ 5, are collected in Table 6.6.1. For m ^ 7 
only the best codes known are given. The trivial (n, 2n, 1), (n, 2n~l

1 2), (n, 2, n) 
codes have been omitted. 

Table 6.6.1 
Best codes known of length 2m (see [4; 6; 25]) 

n log2 M d Type 

32 26 4 3rd order RM 
16 8 2nd order RM 
6 16 1st order RM 

64 57 4 4th order RM 
42 8 3rd order RM 
45 8 Extended BCH 
46 8 Extended cyclic 
22 16 2nd order RM 
24 16 Extended BCH 
28 16 Extended cyclic 

7 32 1st order RM 
128 120 4 5th order RM 

106 8 Extended BCH 
78 16 >> >> 
43 32 " " 

8 64 1st order RM 
256 247 4 6th order RM 

231 8 Extended BCH 
199 16 »» >» 
139 32 " " 
55 64 M M 

9 128 1st order RM 
512 502 4 7th order RM 

484 8 Extended BCH 
448 16 »> ?> 

376 32 M 1» 

250 64 »» »» 
85 128 >» >» 
10 256 1st order RM 
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Since the centre density in Construction C is proportional to the number 
of codewords, by using the best codes from this table we obtain considerable 
improvements over the packings P2mr of the previous section. In Eu we 
obtain a nonlattice packing P64c with 8 = 222. For m ^ 7 we use extended 
BCH codes to obtain an infinite family of nonlattice packings P2mb in £2W. 
For m = 7, 8, 9 these have è = 285, 2250, 2698 respectively, giving improvements 
over P2mr by factors of 221, 258, 2186 respectively. 

The density of P2mb is estimated for all m in the next section. 
BCH codes are nested (§ 1.5) and so also are the extended cyclic codes 

of length 64 in the above Table. Therefore calculation of the contact numbers 
in P64£ and P2mb requires knowing the number of codewords of the minimum 
weight d in each code used and the number of codewords of the code with 
distance \d which are wholly contained in such minimum weight codewords. 
This appears to be a difficult problem. 

6.7. Density of BCH packings. This section contains lower and upper 
bounds and an asymptotic expansion (Theorem 6.7.1) for the centre density 
of the packings in E2™ obtained by using extended BCH codes in Construction 
C. Here "code" will mean "extended BCH code of length n = 2m." Two 
packings are considered. Packing (a) uses the codes of (actual) Hamming 
distance 1, 4, 16, . . . , 4[*ml, and packing (b) uses the codes of (actual) 
Hamming distance 2, 8, 32, . . . , 2-4^w- 1 ) l . Then let P2mb denote the denser 
of the two packings. 

By the last sentence of Theorem 1.5.2, the code of designed distance 2X has 
actual distance 2X. Let 2*x denote the number of codewords in this code. But 
there may be codes of designed distance less than 2X also having actual distance 
2X. Let 2^x denote the number of codewords in the largest such code. Then 
clearly fa ^ Kx < fa-i. 

For example, for codes of length 128 it is known (see [17]) that fa = 36, 
K5 = 43 and kA = 78. 

If 8a and db denote the centre densities of the two packings, then from 
§ 6.3 it follows that 

log2 ôa = 2l K2t — 2n, 

tè(m-l)] 
log2 db = X) K2i+i — \n. 

An algorithm for calculating fa is given in [4, § 12.3]. The results of this 
algorithm may be stated as follows. Let numbers ai%i be defined by 

( a M = 2 ' - l for l ^ j ^ i 
\aitj = aitj-i + dij-i+i H + aUj-x for 1 £ i < j . 
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Then ko = n, km = 1 and 

h = m + am_x,m for 0 < X < m. 

Let Ai(x) = ^2^iaifjx
j. From the definition of aiJf 

. , v x + 2x2 + • • • + ix* 
Ai(x) = § <. 

w 1 — x — x — - • • — x 
Let 1 — x — x2 — . . . — x* = n t = i ( l — tvx). The partial fraction expan

sion of Ai(x) is then ' 

and so 

< 

The polynomial G(y) = y + 1 - 2y* + 1 = (y - 1) (y* - y ^ 1 - . . . - y - 1) 
has roots 1, £i, . . . , tit A sketch of Giy) shows that one root, h (say), is close 
to 2. In fact for i > 1, G(2 - 21-*) < 0 and G(2 - 2"*) > 0, so 

2 - 21-* < h < 2 - 2~<, i > 1. 

I t has been shown by Mann [24], while calculating the number of codewords 
in the BCH codes of length 2m - 1 and distances 2X and 2X + 1, that \tv\ < 1 
for v = 2, 3, . . . , i. Then 

(2 - 2i-*)w - i + 1 < a,fW < (2 - 2 -0 m + t - 1, i > 1. 

Collecting these results we find that lower and upper bounds to log25a are 
respectively 

ihm] 

2m £ (1 - 22i-m)m -2m + 0(m) 

and 
Ihm] 

2m £ (1 - 22i"w"2)w - 2m + 0(m2). 

The sum in the lower bound may be written as 

£ .+ 2 + 2 = 2/+2«+2m 
i=0 <-»[|OT]—c log4J» i— [\m\— d log4m 
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(say), where c > 1 and d < 1 are constants. Then 

[|w1—c log 4 m 

Zi> E (1 - «4* • 2-m) 
1 = 0 

> Jm — log4ra + 0(1) 

since c may be made arbitrarily close to 1. 
Also Ysii — ^(log4m), since c and /̂ can be made arbitrarily close together. 

Finally since d < 1, 

0 < Z / / / < (1 - m-d)w(d • log4w + 1) = o(l) . 

Therefore 

log2Ôa > m2m~1 - 2m \ogm + o(2m log4m), 

= \n log2n — J^ log2log2w + o(n log2log2w), 

since n = 2m. Similar arguments apply to the upper bound and to bounds for 
log2ô6. This proves 

THEOREM 6.7.1. Let 8 be the centre density of either of the packings in EPy 

n = 2m, obtained by using extended BCH codes in Construction C, Then 

log2<5 ~ \n \og2n — \n log2log2w. 

6.8. Comparison of the densities with the bounds. The density 
A of a packing in En is related to the centre density by A = Vnô, or 

log2A = log2<5 — \n \og2n + 0(n). 

The highest attainable density in En satisfies (see [31]) 

- n < log2A < - \n. 

Whenever n is a power of 2, the packings P2mr obtained^rom RM codes 
satisfy 

log2A ~ — \n log2w, 

and for the BCH packings P2mb, 

log2A ~ — \n log2log2w. 

So there is still room for improvement, although the BCH packings seem to 
be the densest packings yet constructed in these dimensions. 
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Table II 

Sphere packings in more than 24 dimensions 

log2 (center density) Maximum 
Name of 
packing 

contact 
number n 

Name of 
packing Attained Upper bound 

contact 
number Section Type 

32 A32 0 5.52 208320 5.3 L 
P32r 0 146880 6.5 L 

36 A36 1 8.63 234456 5.3 L 
PSQp - 1 42840 5.5 L 

40 A40 4 12.04 531120 5.2 L 
48 P48p 14.039 19.64 52416000 5.7 L 

P48g 14.039 52416000 5.7 L 
60 P60p 16.548 32.70 3908160 5.5 L 
64 P64a 16 37.44 9694080 6.5 L 

P64r 16 9694080 6.5 N 
P64c 22 6.6 N 

128 P128a 64 131.8 6.5 L 
P128r 64 6.5 N 
P128& 85 6.6 N 

256 P256a 192 383.3 6.5 L 
P256r 192 6.5 N 
P256& 250 6.6 N 

512 P512a 512 1012 6.5 L 
P512r 512 6.5 N 
P5126 698 6.6 N 

Notes on the Tables. 1. For the history of and alternative names for the 
packings in low dimensions see [10; 31]. 

2. The upper bounds in Table I are taken from [19]. The upper bound to the 
contact number is Coxeter's conjectured bound [11]. This bound in 32 dimen
sions is 6256830. The upper bound p to the centre density in Table II is 
Rogers' bound [30] in the form 

logp « |«iog(£) +f log» - log^.- + fqr|f, 

the last term being approximate. 
3. Decimal expansions have been truncated rather than rounded. 
4. The maximum contact numbers for P2ma and P2mr are given in § 6.5 for 

all m. Those for P2mc are not known for m à 6. 
5. In the last column, B indicates that both a lattice and a nonlattice packing 

with these parameters are known. L indicates that at present only a lattice 
packing is known, and N that only a nonlattice packing is known. A indicates 
a local arrangement of spheres touching one sphere. 
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