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Turbulent flows over dense canopies consisting of rigid filaments of small size
are investigated using direct numerical simulations. The effect of the height and
spacing of the canopy elements on the flow is studied. The flow is composed
of an element-coherent, dispersive flow and an incoherent flow, which includes
contributions from the background turbulence and from the flow arising from the
Kelvin–Helmholtz-like, mixing-layer instability typically reported over dense canopies.
For the present canopies, with spacings s+ ≈ 3–50, the background turbulence is
essentially precluded from penetrating within the canopy. As the elements are
‘tall’, with height-to-spacing ratios h/s & 1, the roughness sublayer of the canopy
is determined by their spacing, extending to y ≈ 2–3s above the canopy tips. The
dispersive velocity fluctuations are observed to also depend mainly on the spacing, and
are small deep within the canopy, where the footprint of the Kelvin–Helmholtz-like
instability dominates. The instability is governed by the canopy drag, which sets the
shape of the mean velocity profile, and thus the shear length near the canopy tips. For
the tall canopies considered here, this drag is governed by the element spacing and
width, that is, the planar layout of the canopy. The mixing length, which determines
the length scale of the instability, is essentially the sum of its height above and below
the canopy tips. The former remains roughly the same in wall units and the latter
is linear with s for all the canopies considered. For very small element spacings,
s+ . 10, the elements obstruct the fluctuations and the instability is inhibited. Within
the range of s+ of the present canopies, the obstruction decreases with increasing
spacing and the signature of the Kelvin–Helmholtz-like rollers intensifies. For sparser
canopies, however, the intensification of the instabilities can be expected to cease
as the assumption of a spatially homogeneous mean flow would break down. For
the present, dense configurations, the canopy depth also has an influence on the
development of the instability. For shallow canopies, h/s ∼ 1, the lack of depth
blocks the Kelvin–Helmholtz-like rollers. For deep canopies, h/s & 6, the rollers do
not perceive the bottom wall and the effect of the canopy height on the flow saturates.
Some of the effects of the canopy parameters on the instability can be captured by
linear analysis.
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1. Introduction
The present work studies flows over dense canopies of filaments of small size.

Canopy flows are mainly studied in the context of natural vegetation canopies, but
they also encompass engineering flows where the canopy parameters may be very
different from those of natural canopies. Many of the key findings from natural
canopy studies have been summarised in the reviews by Finnigan (2000), Belcher,
Harman & Finnigan (2012) and Nepf (2012). In engineering applications, filament
canopies can, for instance, be used to enhance heat transfer (Fazu & Schwerdtfeger
1989; Bejan & Morega 1993) and for energy harvesting (McGarry & Knight 2011;
Elahi, Eugeni & Gaudenzi 2018). Depending on the geometry and spacing of their
elements, canopies can be classified as sparse, dense or transitional (Nepf 2012).
Dense canopies typically have small element spacings compared to the length scales
in the overlying flow, and thus prevent turbulent eddies from penetrating efficiently
within the canopy. Sparse canopies, on the other hand, have large element spacings
and consequently, turbulent eddies are essentially able to penetrate the full height
of the canopy (Poggi et al. 2004; Nepf 2012; Sharma & García-Mayoral 2018,
2020). Transitional, or intermediate, canopies would lie between these two regimes.
In the present study, we assess how the flow within and above dense canopies is
affected by canopy parameters, such as the element height and spacing. The canopies
considered have spacings s+ ≈ O(10), which should be small enough to limit the
penetration of the overlying turbulence within them. The frontal area density λf
is also a commonly used measure to categorise canopies (Finnigan 2000; Poggi
et al. 2004; Huang, Cassiani & Albertson 2009; Nepf 2012). Canopies with λ� 0.1
are classified as dense, with λ ≈ 0.1 as transitional and with λ � 0.1 as sparse.
However, in addition to λf , the length scales of the overlying turbulence should also
be considered when determining the canopy regime. A given canopy geometry with a
fixed λf may have element spacings much smaller than any overlying turbulent eddy
at a particular Reynolds number, thereby not allowing turbulence to penetrate within
the canopy. As the Reynolds number is increased, however, the size of these eddies
will eventually become comparable to the element spacing, allowing turbulence to
penetrate efficiently within the canopy. To assess this effect, we also study canopies
with self-similar geometries, which have a fixed λf , but different sizes in friction
units.

We also place attention on the effect of canopy parameters on the Kelvin–Helmholtz-
like, mixing-layer instability characteristic of dense canopy flows (Raupach, Finnigan
& Brunet 1996; Finnigan 2000; Nepf 2012). This instability originates from the
inflection point in the mean velocity profile at the canopy-tip plane (Raupach et al.
1996). Kelvin–Helmholtz instabilities manifest as spanwise coherent rollers whose
streamwise scale is determined by the shear-layer thickness (Michalke 1972; Brown
& Roshko 1974). Ghisalberti & Nepf (2004) noted that, while in free-shear flows
the shear-layer thickness, and consequently the instability wavelength, continues to
grow downstream, in fully developed canopy flows this thickness is constant and
is set by the net canopy drag. Therefore, a fixed instability wavelength is generally
associated with dense canopy flows. Several studies have shown that some aspects of
this instability can be captured using a mean-flow linear stability analysis (Raupach
et al. 1996; White & Nepf 2007; Singh et al. 2016; Zampogna et al. 2016; Luminari,
Airiau & Bottaro 2016). Some studies have also suggested that at the high Reynolds
numbers of natural canopy flows these instabilities can be distorted by the ambient
turbulence fluctuations and lose their spanwise-coherent nature (Finnigan, Shaw &
Patton 2009; Bailey & Stoll 2016). The importance of this instability decreases as the
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element spacing is increased, and sparse canopies do not exhibit a notable signature
(Poggi et al. 2004; Huang et al. 2009; Pietri et al. 2009; Sharma & García-Mayoral
2020).

Based on the observations of previous studies, we would expect that the effect
of increasing the canopy height for a fixed element spacing on the instability and
the surrounding flow would eventually saturate. Ghisalberti (2009) and Nepf (2012)
proposed that the effective canopy height perceived by the overlying flow would be
a function of the canopy shear-layer thickness as it determined the extent to which
the Kelvin–Helmholtz-like instabilities penetrated within the canopy. In flows over
arrays of cuboidal posts, Sadique et al. (2017) found that the mean-velocity profiles
over them became independent of the element heights at large element aspect ratios.
They concluded that the overlying flow only interacted with the region near the
element tips, and that the height below this ‘active’ region was dormant, and did not
have a significant effect on the overlying flow. For their geometries, Sadique et al.
(2017) observed the height of this active region to be related to the element width.
A similar observation was also made by MacDonald et al. (2018), who performed
direct numerical simulations (DNS) of flows over spanwise-aligned bars. They found
that the gap between the bars was the relevant length scale for the overlying flow,
and that increasing the height of the bars beyond a certain height-to-gap ratio did not
affect the overlying flow, or cause an increase in the drag they produced.

In the present work, we conduct a systematic range of DNS changing the canopy
height and spacing separately in order to study their individual effects on the
surrounding turbulence and on the Kelvin–Helmholtz-like instability. We also consider
canopy geometries with constant λf for which the height and spacing are changed
simultaneously in a fixed proportion. The canopies consist of rigid, prismatic filaments
with small element spacings and large height-to-spacing ratios. The element spacings
considered, s+ ≈ 3–50, are much smaller than those typical of most natural canopy
flows and would, for instance, be representative of flows over engineered canopies
such as those mentioned previously in this section. We also assess how models based
on linear stability analysis capture some of the effects of the canopy parameters on
the Kelvin–Helmholtz-like instability.

The paper is organised as follows. The numerical methods used for the simulations
and the canopy parameters are discussed in § 2. The results from the DNS,
detailing the effect of the canopy parameters on the overlying turbulence and the
Kelvin–Helmholtz-like instabilities are discussed in § 3. The results from linear
stability analysis and a model to capture the instabilities are presented in § 4. The
conclusions are summarised in § 5.

2. Methodology

We conduct DNS of symmetric channels with rigid canopy elements on both
walls. The streamwise, wall-normal and spanwise coordinates are x, y and z, with the
associated velocities u, v and w, and p is the kinematic pressure. The wall-normal
origin, y= 0, is defined at the tip plane of the canopies protruding from the bottom
wall. The channel height, 2δ, is defined as the distance between the tip planes of
the canopies on the top and bottom walls. The canopy elements, therefore, extend
below y = 0 and above y = 2δ and have a height h. A schematic representation
of the channel is portrayed in figure 1. The size of the domain is a standard 2πδ

in the streamwise direction and πδ in the spanwise direction. We use the channel
half-height as the length scale in outer units, which implies that δ= 1 in outer scaling.
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FIGURE 1. Schematic representation of the domain considered in the present study.

The domain-to-canopy height ratio for most cases considered here is (δ + h)/h ≈ 3.
We will show in § 3 that the height of the roughness sublayer scales with the canopy
spacing rather than their height, as in the configurations of Sadique et al. (2017) and
MacDonald et al. (2018), and that outer-layer similarity is recovered well below the
channel half-height. The channel height to element spacing ratio for most canopies
considered is δ/s& 10, and for the canopy with the largest element spacing is δ/s≈ 4.
The flow is incompressible and the density is always scaled with the fluid density,
implying that ρ= 1. The simulations are run at a constant flow rate, with the viscosity,
ν, adjusted to obtain a friction Reynolds number Reτ = uτδ/ν ≈ 185 for most of the
cases, where uτ is the friction velocity calculated at the canopy tips. In order to
ascertain the effects of the Reynolds number on the flow, a simulation at Reτ ≈ 405
was also conducted. The simulation parameters are given in table 1 for reference.
Scaling with uτ and ν is referred to as in friction or wall units, and scaling with the
channel bulk velocity, Ub, and δ is referred to as in outer units.

The numerical method used to solve the three-dimensional Navier–Stokes equations
is adapted from Fairhall & García-Mayoral (2018). A Fourier spectral discretisation
is used in the streamwise and spanwise directions. The wall-normal direction is
discretised using a second-order centred difference scheme on a staggered grid. The
grid in the wall-normal direction is stretched to give a resolution 1y+min ≈ 0.33 at the
canopy-tip plane, stretching to 1y+max ≈ 3.3 at the channel centre. The grid within the
canopies preserves the resolution of 1y+min ≈ 0.33 near the canopy-tip plane, and for
the tallest canopies considered stretches to 1y+max≈ 4 at the base of the canopy, where
the flow is quiescent. The wall-normal grid distribution for a representative canopy
simulation is provided in appendix A for reference. To resolve the element-induced
flow while avoiding excessive computational costs, the domain is divided into three
blocks in the wall-parallel directions (García-Mayoral & Jiménez 2011; Fairhall &
García-Mayoral 2018; Abderrahaman-Elena, Fairhall & García-Mayoral 2019). In the
central block, the resolutions in the streamwise and spanwise directions are 1x+ ≈ 6
and 1z+ ≈ 3, respectively, sufficient to resolve the turbulent eddies. The blocks
including the canopy elements and the roughness sublayer have a finer resolution
than the central block. In the fine blocks, the limiting resolution is not the one
required to resolve the turbulent scales, but that required to resolve the obstacles
or the element-induced flow. The resolutions in these blocks are given in table 1.
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Case Nx ×Nz nx × nz uτ Reτ λf h+ s+ w+

Smooth SC — — 0.064 186.3 — — — —

S10 108× 54 12× 12 0.071 176.7 4.6 95.5 10.3 5.2
Fixed S16(H96) 72× 36 24× 24 0.088 187.7 3.1 101.8 16.4 8.2
height S24 48× 24 24× 24 0.102 187.4 2.0 101.2 24.5 12.3
(h+ ≈ 100) S32 36× 18 24× 24 0.112 186.4 1.5 100.7 32.5 16.3

S48 24× 12 24× 24 0.124 180.1 1.0 97.0 47.2 23.6

H16 72× 36 24× 24 0.071 184.7 0.5 17.2 16.1 8.1
Fixed H32 72× 36 24× 24 0.080 188.8 1.0 34.6 16.5 8.3
spacing H64 72× 36 24× 24 0.086 186.2 2.0 68.1 16.2 8.1
(s+ ≈ 16) H96(S16) 72× 36 24× 24 0.088 185.7 3.1 101.8 16.4 8.2

H128 72× 36 24× 24 0.086 184.8 4.1 133.2 16.4 8.2

G10 432× 216 9× 9 0.064 175.9 10.1 2.6 0.6
Self-similar G20 216× 108 9× 9 0.072 190.7 22.2 5.6 1.2
geometry G40 108× 54 18× 18 0.106 188.2 0.85 43.4 11.0 2.5
(h/s≈ 4) G60 72× 36 18× 18 0.127 183.3 64.7 16.0 3.6

G100 48× 24 18× 18 0.147 185.7 97.9 24.3 5.4

Different Reτ
H32180 72× 36 12× 12 0.075 184.6 1.0 33.9 16.1 8.1
H32400 162× 81 12× 12 0.066 399.9 32.0 15.5 7.8

TABLE 1. Simulation parameters. Here, Nx and Nz are the number of rows of canopy
elements in the streamwise and spanwise directions, respectively. The number of points
used to resolve each period of the canopy in the streamwise and spanwise directions are
nx and nz, respectively. Here, uτ is the friction velocity based on the shear at the canopy
tips scaled with the channel bulk velocity, Reτ is the friction Reynolds number based on
uτ and δ. The canopy frontal area density, height, spacing and width are λf , h, s and w,
respectively.

The height of the fine blocks is chosen such that the element-induced flow decays
to zero well within the fine-block region, and this is verified a posteriori. The time
advancement is carried out using a three-step Runge–Kutta method with a fractional
step, pressure correction method to enforce continuity (Le & Moin 1991)[

I −1t
βk

Re
L
]

un
k = un

k−1 +1t
[ αk

Re
Lun

k−1 − γkN(un
k−1)

− ζkN(un
k−2)− (αk + βk)G(pn

k)
]
, k ∈ [1, 3], (2.1)

DG(φn
k )=

1
(αk + βk)1t

D(un
k), (2.2)

un
k+1 = un

k − (αk + βk)1tG(φn
k ), (2.3)

pn
k+1 = pn

k + φ
n
k , (2.4)

where I is the identity matrix and L, D and G are the Laplacian, divergence and
gradient operators, respectively. Here, N is the advective term which is dealiased using
the 2/3-rule (Canuto et al. 2012). The Runge–Kutta coefficients, αk, βk, γk and ζk, for
each substep, k, are taken from Le & Moin (1991). The time step is 1t.
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The canopy elements are represented using an immersed-boundary method adapted
from García-Mayoral & Jiménez (2011). Further details about the immersed-boundary
method and validation studies are provided in appendix A. The parameters of the
different simulations conducted are summarised in table 1. The simulation denoted by
‘SC’ is of a turbulent channel flow with smooth walls. The canopy-flow simulations
are divided into three groups. The canopy elements studied in each group are
prismatic, with a square top-view cross-section, and their arrangement is illustrated in
figure 2. The first group, denoted by the prefix ‘S’, consists of canopies with a fixed
height, h+≈ 96, and element spacings ranging from s+≈ 10 to 48. The second group,
marked by the prefix ‘H’, consists of canopies with a fixed element spacing, s+≈ 16,
and element heights ranging from h+≈ 16 to 128. The element width-to-spacing ratio
for the canopies of S and H is w/s = 1/2. The final group, denoted by the prefix
‘G’, consists of self-similar elements with a fixed height-to-spacing ratio h/s ≈ 4,
and w/s= 2/9. The heights for the canopies of G range from h+ ≈ 10 to 100, with
the element spacings varying in proportion to their height. These canopies have a
constant λf = 0.85 and are used to study the effect of changing the canopy size for
a fixed geometry. Two additional simulations, H32180 and H32400, are conducted to
check the dependence of the results on the friction Reynolds number. The canopy
geometries for both these simulations have s+ ≈ 16, h+ ≈ 32 and w/s = 1/2, with
friction Reynolds numbers Reτ ≈ 180 and 400. We also conducted several simulations
to assess whether the wall-parallel resolutions used in the simulations are sufficient
to resolve the element-induced flow. The simulation S24 was run at resolutions of
12, 24 and 36 points per element spacing, and G100 at 9, 18 and 27 points per
element spacing. Different resolution sets are used for the geometries of S and G
as they have different element width-to-spacing ratios. The root mean square (r.m.s.)
velocity fluctuations obtained from these simulations are portrayed in appendix A.
The simulation results are grid independent at a resolution of 24 points per element
spacing for the geometry of case S24, and 18 points per spacing for that of case
G100. The simulations with 9 and 12 points per spacing tend to under-predict
the fluctuations within the canopies, with the maximum deviation observed in the
wall-normal fluctuations of 20 % within the canopy. This discrepancy reduces to 4 %
outside the canopy. These resolutions are only used for the densest canopy cases,
where the fluctuations within the canopy are already very small, and therefore, higher
resolution simulations would not change the trends observed. The higher Reynolds
number simulation, case H32400, is also simulated using 12 points per spacing. For
this simulation, using a higher resolution would be computationally restrictive. Note
that the same resolutions are used for cases H32180 and H32400 to avoid grid related
discrepancies in the comparison of their results.

2.1. Reynolds number effect
To analyse the influence of the Reynolds number in our subsequent DNS, we compare
the results of cases H32180 and H32400, which have the same canopy height and
spacings in friction units, but different friction Reynolds numbers. The velocity
fluctuations and the Reynolds shear stresses within the canopy, and above it up to
a height of y+ ≈ 10, of these simulations essentially collapse, as shown in figure 3.
This suggests that the flow in the region near the canopy-tip plane scales in friction
units, similar to the near-wall region in smooth-wall flows (Moser et al. 1999).
Scaling in friction units over conventional rough surfaces has also been noted by
Chan et al. (2015). Beyond y+ & 10, we observe that the magnitude of the peaks in
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FIGURE 2. Schematic of the canopy layouts considered in the present study. The canopies
are characterised by their element height, h, the element width, w, and the element spacing,
s. Note that the elements have a square top-view cross-section.
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FIGURE 3. Root mean square velocity fluctuations and Reynolds shear stresses for cases
H32180 in red and H32400 in blue. The black lines represent the corresponding smooth-wall
cases. The data for the smooth-wall simulations at Reτ ≈ 400 are taken from Moser, Kim
& Mansour (1999).

the fluctuations and the Reynolds shear stresses are larger for case H32400 compared
to case H32180. The increase in magnitude of the near-wall peaks in the velocity
fluctuations at friction Reynolds numbers larger than Reτ ≈ 180 is consistent with that
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FIGURE 4. Premultiplied spectral energy densities for cases H32180 (line contours) and
H32400 (shaded contours), normalised by the respective r.m.s. values, at a height y+ ≈ 15.
Contours from (a–d) are in increments of 0.075, 0.06, 0.07 and 0.1, respectively.

observed in smooth-wall flows (Moser et al. 1999; Sillero, Jiménez & Moser 2013),
also included in figure 3 for reference. Further away from the canopy tips, at y+> 50,
the r.m.s. velocity fluctuations from the canopy simulations coincide with those
from the smooth-wall simulations at their corresponding Reynolds numbers, which
indicates the recovery of outer-layer similarity. In addition to the r.m.s. fluctuations
being similar for these simulations, the distribution of energy in different scales
is also similar. This is illustrated by the premultiplied spectral energy densities at
y+≈ 15, portrayed in figure 4. This height roughly corresponds to the location where
the magnitude of the fluctuations peaks in smooth-wall flows (Jiménez & Pinelli
1999). The results of H32180 and H32400 suggest that the effect of the canopy scales
in friction units, and therefore the results presented in the following sections for flows
at Reτ ≈ 180 should also be relevant for higher Reynolds number flows.

3. Effect of canopy parameters on the surrounding turbulence
In this section, we discuss the results obtained from the DNS, aiming to characterise

the effect of the canopy parameters on both the Kelvin–Helmholtz-like instability and
the fluctuating flow within and above the canopies.

3.1. Height of the roughness sublayer
Before discussing the effect of the canopy on the overlying flow, we first define
the extent of the region affected by the canopy, that is, the height of the roughness
sublayer. Over conventional rough surfaces, with heights comparable to or smaller
than their spacings, the height of the roughness sublayer is generally observed to be
a function of the roughness height (Raupach, Antonia & Rajagopalan 1991; Flack,
Schultz & Connelly 2007; Abderrahaman-Elena et al. 2019). Jiménez (2004) reviewed
the effect of various roughness geometries on turbulent flows and noted that, in flows
over closely packed spanwise aligned grooves, the flow within each groove would
be isolated from the overlying flow due to the ‘sheltering’ effect of the preceding
obstacle. The overlying flow in this case would not interact with the full height
of the groove. This sheltering effect was also noted by Sadique et al. (2017) for
high-aspect-ratio prismatic roughness and by MacDonald et al. (2018) for spanwise
aligned grooves with large spacings, and has been used to model cuboidal roughness
by Yang et al. (2016). As the element spacings of the canopies studied here are
small, this sheltering effect should result in the overlying flow only interacting with
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FIGURE 5. Instantaneous realisations of the wall-normal velocity at y≈ 0.1s, normalised
by uτ . From top to bottom, (a,c,e,g,i) represent cases H16 to H128; and (b,d, f,h,j),
cases G10 to G100. The insets in (b) and (d) provide a magnified view of the region
in the bottom left corner of these panels, marked with a black rectangle. The clearest
and darkest colours represent intensity ±0.4 in (a,c,e,g,i) and, from top to bottom,
±(0.2, 0.4, 0.8, 0.8, 1.0) in (b,d, f,h,j).

the region near the canopy-tip plane. In order to determine the height of this region,
we examine the element-coherent flow induced by the canopy elements. The footprint
of the element-induced flow can be observed in the instantaneous realisations of the
velocity above the canopy-tip plane, portrayed for the canopies of families H and G in
figure 5. We isolate the element-induced flow using the standard triple decomposition
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FIGURE 6. Root mean square velocity fluctuations of the element-induced flow. The lines
from red to blue, indicated by the direction of the arrows, represent (a,d,g) cases S10 to
S48; (b,e,h) cases H16 to H128; and (c, f,i) cases G10 to G100.

of Reynolds & Hussain (1972)

u=U+ u′, (3.1)
u′ = ũ+ u′′, (3.2)

where u is the full velocity, U is the mean velocity obtained by averaging the flow
in time and space, and u′ is the full space- and time-fluctuating signal. The latter is
decomposed into the element-induced, dispersive velocity, ũ, which is obtained by
ensemble-averaging the flow in time alone, and the element-incoherent fluctuating
velocity u′′, which includes the contributions from the background turbulence and the
Kelvin–Helmholtz-like instability. The r.m.s. fluctuations of ũ, therefore, result from
fluctuations in space alone.

We observe that the element-induced fluctuations, for all the canopies studied here,
decay exponentially above the canopy-tip plane, and become negligible at a height of
one element spacing above regardless of the canopy depth, as shown in figure 6. This
suggests that the height of influence of the element-induced flow is determined by the
spacing between the elements rather than their height.

Even though the element-induced fluctuations only extend to one element spacing
above the canopy-tip plane, their influence on the background turbulence extends
to a height of approximately 2–3 element spacings, as can be observed in figure 7.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

27
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.27


Turbulent flows over dense filament canopies 888 A2-11

-90 0 90 180 -90 0 90 180 -90 0 90 180

1.4

0.7

0

1.0

0.5

0

3.0

1.5

0

y+ y+ y+

w�+

√�+

u�+

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 7. Root mean square velocity fluctuations within and above the canopies. The
lines from red to blue, indicated by the direction of the arrows, represent (a,d,g) cases
S10 to S48; (b,e,h) cases H16 to H128; and (c, f,i) cases G10 to G100. The black lines
represent the smooth-wall case, SC.

Abderrahaman-Elena et al. (2019) observed a similar effect over conventional cubical
roughness, where the element-induced fluctuations only extended to y ≈ h, but the
effect of the roughness on the overlying flow extended to y ≈ 3h above them. At
heights of y/s > 2–3 above the canopy-tip plane, the full r.m.s. velocity fluctuations
collapse with those of smooth-wall turbulence, as shown in figure 7, which is
indicative of the recovery of outer-layer similarity. This is verified by a comparison
of the premultiplied spectral energy densities of the canopy and smooth-wall cases in
figure 8, which shows that the energy densities of the canopies of family S collapse
with those of the smooth-wall case for y+ & 90. This corresponds to a height of
approximately 2s for case S48, the canopy with the largest spacing. Although not
shown, the premultiplied spectral energy densities of the canopies of families H and
G collapse with the smooth-wall spectra for y/s& 3 as well. Previous canopy studies
have proposed that the influence of the canopy elements on the flow above them
is set by the wall-normal extent of the Kelvin–Helmholtz-like instability, which is
determined by the canopy shear-layer thickness (Ghisalberti 2009; Ghisalberti & Nepf
2009; Nepf 2012). It will be demonstrated in § 4 that the shear-layer thickness of the
present canopies also depends on the element spacing.
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FIGURE 8. Premultiplied spectral energy densities at y+ ≈ 90, with line contours from
red to blue representing cases S10 to S48, normalised by their respective uτ . The filled
contours represent the smooth-wall case, SC. The contours in (a–d) are in increments of
0.11, 0.04, 0.06 and 0.04, respectively.

3.2. Effect of element height and spacing

In this section, we discuss the effect of the element height and spacing on the
element-induced and on the full velocity fluctuations, both within and above the
canopy. We observe that the element-induced fluctuations are largest near the
canopy-tip plane and decay below it, as shown in figure 6, because they are obstructed
by the canopy elements. This effect is more intense for smaller element spacings,
and eventually results in the fluctuations vanishing completely well above the canopy
floor for the simulations with the smallest spacings in families S and G. For the
canopies of family H, which have a constant element spacing, the change in element
height does not have a noticeable effect on the element-induced fluctuations, as
shown in figure 6(b,e,h). For the canopies of families S and G, the intensity of
the element-induced velocity fluctuations within the canopy increases with element
spacing, when scaled using either the friction velocity or the channel bulk velocity.
These results suggest that, for canopy elements with a given width, the magnitude of
the element-induced fluctuations is governed mainly by the element spacing.

As discussed in § 3.1, in canopies with very small element spacing the height of
the roughness sublayer is small, and we would expect such canopies not to disrupt
the overlying turbulence significantly, regardless of their depth. In the literature on
conventional roughness, small roughness elements that have a negligible effect on
the overlying turbulent flow are termed ‘hydraulically smooth’, as the flow over
them remains essentially smooth-wall like (Nikuradse 1933; Raupach et al. 1991).
Roughness elements with a characteristic size of a few wall units, h+ . 5, typically
fall into the hydraulically smooth category (Raupach et al. 1991; Jiménez 2004; Flack
et al. 2007). Of the canopies studied here, we observe that the overlying flow for
canopy G10, which has an element spacing of s+≈ 2.6, is essentially smooth-wall-like
above the canopy-tip plane. This is evidenced by the collapse of the r.m.s. velocity
fluctuations, Reynolds shear stresses, and the mean velocity profile of this case with
those of the smooth-wall case, as shown in figures 7(c, f,i) and 9(c, f ). In addition,
the magnitude of the velocity fluctuations below the canopy-tip plane is negligible.
This suggests that the overlying turbulent flow essentially perceives the canopy-tip
plane as an impermeable wall, and has little or no interaction with the canopy region
below this plane.
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FIGURE 9. Profiles of the (a–c) streamwise mean velocity and (d–f ) Reynolds shear
stresses. The lines from red to blue, indicated by the direction of the arrows, represent
(a,d) cases S10 to S48; (b,e) cases H16 to H128; and (c, f ) cases G10 to G100. The black
lines represent the smooth-wall case, SC.

For canopies with larger element spacings, we begin to observe deviations from
smooth-wall-like behaviour in the overlying flow. Above the canopy-tip plane, an
increase in the element spacing causes a reduction in the intensity of the streamwise
velocity fluctuations and an increase in the intensity of the wall-normal and spanwise
ones, as can be observed in figure 7 for the canopies of families S and G. For
canopies with large element spacings, such as those of S48 and G100, the peak
in u′ typical of smooth-wall flows, is significantly reduced. These changes in the
velocity fluctuations are accompanied by a reduction in the streamwise coherence in
the flow with increasing element spacing as can be observed in the instantaneous
realisations of the wall-normal velocity for the canopies of family G, portrayed in
figure 5. Near-wall turbulence over smooth walls is characterised by streaks and
quasi-streamwise vortices, which are predominantly streamwise-coherent (Kline et al.
1967; Jiménez & Pinelli 1999). The decrease in u′ and increase in v′, w′ above the
canopy with increasing element size is also commonly reported over conventional
rough surfaces (Ligrani & Moffat 1986; Orlandi & Leonardi 2006). Several authors
have attributed these changes in the velocity fluctuations and the loss of streamwise
coherence to the roughness elements modifying the near-wall cycle and turbulence
becoming more ‘isotropic’ (Jiménez 2004; Flores & Jiménez 2006; Flack et al. 2007;
Abderrahaman-Elena et al. 2019). We also observe an increase in the Reynolds
shear stresses above the canopy tip plane with increasing element spacing, shown
in figure 9(d, f ), with an associated increase in the drag. The drag increase caused
by rough surfaces is generally expressed in terms of the downward shift in the
logarithmic region of the mean-velocity profile compared to that for a smooth wall
(Hama 1954). This shift can be observed for the canopies of families S and G in
figure 9(a,c).
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Focusing now on the flow within the canopy, increasing the element spacing
results in an increase in the magnitude of all the components of the full velocity
fluctuations, as shown in figure 7, which is consistent with the observations of Green,
Grace & Hutchings (1995), Novak et al. (2000), Poggi et al. (2004) and Pietri et al.
(2009). The wall-parallel velocity fluctuations, u′ and w′, decay rapidly below the
canopy-tip plane, and their magnitude reaches a plateau in the core of the canopy,
before dropping again near the canopy base to meet the no-slip condition. The abrupt
changes in the velocity fluctuations near the element tips are typical of textures
with perfectly flat and aligned tips and have also been observed over conventional
cuboidal rough surfaces (Leonardi & Castro 2010; Abderrahaman-Elena et al. 2019)
and permeable substrates (Kuwata & Suga 2017). However, this effect would likely
be smeared out over canopies with irregularly aligned tips. The height over which the
fluctuations decay within the canopy and the magnitude of the fluctuations in the core
of the canopy appear to correlate with the element spacing. Note that this plateau in u′
and w′ within the canopy is asymptotic and requires a sufficiently large canopy depth
to occur. Thus, this plateau is essentially absent for the canopy of S48, because of its
low canopy height-to-spacing ratio, h/s ≈ 2. The wall-normal fluctuations within the
canopy do not exhibit this plateau and decay gradually below the canopy-tip plane to
meet the impermeability condition at the canopy base. Let us also note here that the
element-induced flow accounts for less than 30 % of the magnitude of the streamwise
velocity fluctuations and less than 10 % of the cross-velocity fluctuations within the
canopy, which is consistent with the observations of Poggi & Katul (2008). This
implies that the velocity fluctuations deep within the canopy result mainly from the
penetration of the overlying, element-incoherent velocity fluctuations. This will be
discussed further in § 3.3.

Although, as discussed in the preceding paragraphs, the element spacing has a
leading-order effect on the fluctuating flow, their height, h, also plays a secondary
role. In order to assess the effect of height, we consider the canopies of family
H, which have fixed element width and spacing, but different canopy heights. As
noted previously, the differences between the element-induced fluctuations for the
fixed-spacing canopies of family H are negligible. However, we do observe changes
in the full r.m.s. velocity fluctuations for these cases, implying that the height affects
the element-incoherent flow. Above the canopy tips, we observe a decrease in u′
and an increase in v′ and w′ with increasing canopy height, similar to the effect of
increasing element spacing, as shown in figure 7(b,e,h). Within the canopy, u′ and
w′ for all the cases collapse to the same curves, only departing to meet the no-slip
condition at the canopy base. The corresponding magnitude of v′ within the canopy,
however, increases with canopy height up to h/s≈ 6, and saturates for h/s & 6. This
saturation is also observed for the effect of the canopy on the flow in general as
illustrated in figures 7(b,e,h) and 9(b,e), which show that the velocity fluctuations,
Reynolds shear stresses and the mean velocity profiles for cases H96 and H128,
with h/s ≈ 6–8 are essentially the same. The changes in the element-incoherent
flow observed for different element heights likely result from a modulation of the
Kelvin–Helmholtz-like instability, discussed in § 3.3, which is essentially independent
of the element-induced flow.

3.3. Effect of canopy parameters on the shear-layer instability
The variations observed in the velocity fluctuations for the fixed-element-spacing
simulations, discussed above, may result from the growth of the Kelvin–Helmholtz-
like, shear-layer instability, typically reported in dense canopy flows (Finnigan 2000;
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FIGURE 10. Premultiplied spectral energy densities of the wall-normal velocity, kxkzEvv , at
height y+ ≈ 15, normalised by their respective r.m.s. values. The line contours represent
(a–e) cases S10 to S48; ( f –j) cases H16 to H128; and (k–o) cases G10 to G100. The
shaded contours represent the smooth-wall case, SC. The contours are in increments of
0.06 for all the cases. The vertical lines mark the most amplified wavelength predicted
by linear stability analysis, discussed in § 4; ——, DNS mean profiles without drag on
fluctuations; · · · · · ·, DNS mean profiles with drag on fluctuations; - - -, synthesised mean
profiles without drag on fluctuations.

Nepf 2012). In order to assess the presence of this instability in the flow, we compare
the premultiplied spectral energy densities of the wall-normal velocity at y+ ≈ 15 in
figure 10( f –j). For case H16 we observe that the spectral energy densities of the
fluctuations above the canopy are similar to those above smooth walls. As the height
of the canopy is increased, we observe a progressive increase in the energy in long
spanwise wavelengths, λ+z > 100, for a narrow range of streamwise wavelengths,
λ+x ≈ 150–250. This range of streamwise wavelengths remains roughly constant for
increasing canopy heights. Such a signature in the spectral energy densities has been
previously associated with the presence of spanwise-coherent, Kelvin–Helmholtz-like
instabilities over riblets (García-Mayoral & Jiménez 2011), transitional roughness
(Abderrahaman-Elena et al. 2019) and permeable substrates (Gómez-de-Segura &
García-Mayoral 2019). This signature in the spectral energy densities is also reflected
in the instantaneous realisations of the wall-normal velocity, portrayed in figure 5,
which show increased spanwise coherence with increasing element height. The
shear-layer instability is known to generate strong wall-normal fluctuations and,
hence, its signature is most clear in the wall-normal spectra (García-Mayoral &
Jiménez 2011; Gómez-de-Segura & García-Mayoral 2019). Ghisalberti (2009) and
Nepf (2012) concluded that canopies only exhibit a shear-layer instability if their
height is larger than the wall-normal extent of the instability as otherwise the rollers
would be constrained by the lack of canopy depth. Above a short canopy, like that
of H16, the proximity of the impermeability condition at the base of the canopy
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would inhibit the instability by blocking the wall-normal fluctuations. Similarly,
Huerre (1983) and Healey (2009) showed that the confinement of a free-shear
layer also results in stabilisation of the associated Kelvin–Helmholtz instability.
Increasing the canopy height weakens this effect, leading to a stronger signature of
the instability, observed in figure 10( f –j). This enhanced signature of the instability
is likely responsible for the increase in the cross-velocity fluctuations for the canopies
family H with increasing height, discussed in § 3.2. For h/s > 6, the instability no
longer perceives the canopy base and the effect of the height on the instability and,
consequently, the velocity fluctuations, saturates. The Kelvin–Helmholtz-like instability
has also been reported to cause an increase in the Reynolds shear stresses, with an
associated increase in the friction drag, over surfaces such as riblets and permeable
substrates (García-Mayoral & Jiménez 2011; Gómez-de-Segura & García-Mayoral
2019). The increase and saturation of the Reynolds shear stresses with increasing
canopy height can be observed in figure 9(e) for the canopies of family H, and is
concurrent with the effect of the element height on the instability, discussed above.
This trend in the Reynolds shear stress has a corresponding effect on the drag exerted
on the overlying flow, which is illustrated by the downward shift in the mean velocity
profiles, portrayed in figure 9(b). The above discussion suggests that the secondary
effect that the height has on the full velocity fluctuations within and above the canopy
is mainly through its influence on the Kelvin–Helmholtz-like instability.

The increase in intensity of the Kelvin–Helmholtz-like rollers with increasing
canopy height also contributes to the increase in the wall-normal velocity fluctuations
within the canopy observed in figure 7(e). This is demonstrated by the wall-normal
spectral energy densities of the flow within the canopies, portrayed at y+ ≈−10 for
all the canopies of family H, in figure 11(a–e). Note that in calculating the spectra
for a region with solid obstacles, we have implicitly assumed that the obstacles are
fluid regions with zero flow velocity. As discussed in the previous paragraph, for
case H16 the instability is inhibited by the proximity of the canopy-base wall, and
the flow above shows similarities to a smooth-wall flow. The energy density within
the canopy at y+ ≈−10 for this case also shows some regions overlapping with the
smooth-wall spectra, with additional energy in the wavelengths associated with the
Kelvin–Helmholtz-like instability. The smooth-wall spectra displayed for reference
are at y+ ≈ 1, which is as low as possible while yielding a non-negligible energy,
since no direct comparison with y+ ≈−10 is possible. We also observe some energy
in the spanwise wavelength corresponding to the canopy spacing and a broad range
of streamwise wavelengths. These regions can be attributed to the modulation of
the element-induced flow by the larger scale fluctuations induced by the instability
or the overlying turbulence (Abderrahaman-Elena et al. 2019). This suggests that
the fluctuations within a short canopy result mainly from the penetration of the
overlying turbulence, with additional contributions from the Kelvin–Helmholtz-like
instability and the element-induced flow. As the canopy height is increased, and
the instability becomes stronger, the deviations in the spectral energy densities from
smooth-wall flow become more prominent. The fluctuations within the canopy in
cases H32 to H128 arise mainly from large spanwise wavelengths, likely originating
from the Kelvin–Helmholtz-like instability near the canopy-tip plane, along with a
contribution of the modulated element-induced flow discussed above. The increasing
signature of the instability within the canopy with increasing element height can
also be observed in the instantaneous realisations of the wall-normal velocity at
y+ ≈ −10 portrayed in figure 12. The presence of large spanwise wavelengths deep
within the canopy can also be noted for the canopies of family S, whose spectral
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FIGURE 11. Premultiplied spectral energy densities of the wall-normal velocity, kxkzEvv ,
for (a–e) cases H16 to H128 at a height of y+ ≈−10; and ( f –j) cases S10 to S48 at a
height of y+ ≈−40. The contours are normalised by the r.m.s. values of their respective
cases. The shaded contours are of the smooth-wall case, SC at a height of y+ ≈ 1, for
reference. The contours are in increments of 0.075 for all the cases.

energy densities and realisations of wall-normal velocity at y+≈−40 are portrayed in
figures 11( f –j) and 12, respectively. This suggests that, in the present dense canopies,
the background turbulence is not able to penetrate far below the canopy tips, and
that the velocity fluctuations deep within originate mainly from the footprint of the
Kelvin–Helmholtz-like rollers above.

It is also worth noting that even in canopies with small element spacings, such
as that of case S10, although the fluctuations of the wall-parallel velocities decay
rapidly below the canopy-tip plane, the fluctuations of the wall-normal velocity decay
more slowly, as shown in figure 7. This is also the case for the velocity fluctuations
of the canopies of family H, for which the wall-normal velocity fluctuations within
the canopy require larger canopy heights to saturate compared to the wall-parallel
fluctuations. The presence of wall-normal fluctuations deep within the canopy are
a reflection of the canopy layout being able to obstruct the wall-normal flow less
efficiently than the tangential flow. It will be shown in § 4 that, for the present
canopies, the effective drag coefficient in the tangential directions can be up to three
times larger than in the wall-normal direction. In the core region of a tall canopy,
the only mechanism to inhibit the velocity fluctuations is the canopy drag. As the
canopy geometries studied here exert more drag on the wall-parallel flow than the
wall-normal flow, u′ and w′ decay faster than v′ within the canopy.

The spacing between the canopy elements affects the excitation of the Kelvin–
Helmholtz-like instability through its influence on the canopy drag. White & Nepf
(2007) and Sharma, Gómez-de-Segura & García-Mayoral (2017) have shown that the
canopy drag governs the instability through two competing effects, the shear at the
canopy tips and the canopy drag. A small element spacing results in a large drag
within the canopy, which in turn results in a larger shear at the canopy tips that
enhances the instability, but at the same time it also inhibits the fluctuations more
strongly, which weakens the instability. To study this effect, we now compare the
premultiplied spectral energy densities of the wall-normal velocities for the canopies
of family S, which have a constant height and different element spacing. For the
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FIGURE 12. Instantaneous realisations of the wall-normal velocity at y+ =−10 (a,c,e,g,i)
and y+ = −40 (b,d, f,h,j), normalised by uτ . From top to bottom, (a,c,e,g,i) represent
cases H16 to H128; and (b,d, f,h,j), cases S10 to S48. From top to bottom, the clearest
and darkest colours indicate intensities of ±(0.1, 0.2, 0.3, 0.3, 0.3) in (a,c,e,g,i) and
±(0.05, 0.2, 0.4, 0.4, 0.5) in (b,d, f,h,j).

canopy with the smallest spacing, S10, the signature of the Kelvin–Helmholtz-like
instability in the energy densities is weak and the distribution of energy in different
wavelengths is similar to that over smooth walls, as shown in figure 10(a). This
suggests that the large drag exerted on the fluctuations by this canopy inhibits the
formation of the shear-layer instability. As the element spacing is increased, the
drag on the fluctuations reduces, and there is a progressive increase in the energy
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in wavelengths associated with the Kelvin–Helmholtz-like instability for the canopies
of S16–S48, as can be observed in figure 10(b–e). The change in element spacing
also has an effect on the instability wavelength, which will be discussed later in this
section. In addition to the increase in the energy associated with the instabilities, the
increase in element spacing also results in a progressive decrease in the overlapping
regions in the energy densities of the canopy and smooth-wall flows, with a reduction
in the energy in wavelengths λ+x & 700, λ+z ≈ 50–100. If the element spacing was
increased further, the Kelvin–Helmholtz-like instability would eventually weaken, and
for sparse enough canopies the flow within would begin to resemble smooth-wall
flow perturbed by the element-induced flow of the isolated canopy elements. Such
sparse canopies are beyond the scope of the present work, but have been discussed in
Sharma & García-Mayoral (2020), as well as in the previous studies of Poggi et al.
(2004), Pietri et al. (2009) and Huang et al. (2009).

Let us now focus on the self-similar canopy geometries of family G. Although
these canopies have the same λf , increasing the size of the canopy elements produces
similar effects on the premultiplied spectral energy densities as the canopies of
family S, discussed in the previous paragraph. For the densest canopy, G10, the
spectral energy densities at y+≈ 15 collapse with those over a smooth wall, as shown
in figure 13(a–d). As the size of the canopy is increased, we observe a stronger
signature of the Kelvin–Helmholtz-like instability in the energy densities, portrayed
in figure 10(k–o). The associated increase in spanwise coherence in the flow can
also be observed in the instantaneous realisations of the wall-normal velocity shown
in figure 5. Note that here, we observe the combined effects of increasing canopy
height, as in family H, and increasing spacing, as in family S, on the instability.
So far we have mainly discussed the spectral energy densities of the wall-normal
velocity fluctuations, as they have the strongest signature of the Kelvin–Helmholtz-like
instability. For completeness, we now use the canopies of family G to illustrate the
effect of increasing the canopy size on the spectral energy densities of the streamwise
and spanwise fluctuations, and the Reynolds shear stresses, portrayed in figure 13.
The distinct region in the wall-normal spectral energy densities associated with the
Kelvin–Helmholtz-like instability is not so apparent in the energy densities of the other
velocity fluctuations and the Reynolds shear stresses. Nevertheless, as the canopy size
increases, we observe an increase in the energy in streamwise wavelengths associated
with the instability, along with a general increase in the energy in shorter and wider
wavelengths compared to smooth-wall flows. This is consistent with the gradual
shortening and widening of the eddies observed in figure 5.

The results discussed in this section suggest that the growth of the Kelvin–
Helmholtz-like instability depends on both the canopy height and the element
spacing. The streamwise wavelength of the instability, however, seems to depend
mainly on the element spacing. We observe that, in the canopies of family H
the streamwise wavelength of the instability is roughly constant regardless of the
canopy height, λ+x ≈ 150, as can be observed in figure 10( f –j). For the canopies of
family S, however, the increase in the element spacing results in an increase in the
streamwise wavelength of the instability from λ+x ≈ 140 for case S10 to λ+x ≈ 280
for case S48, as shown in figure 10(a–e). Similarly, for the canopies of family
G there is a progressive increase in the streamwise wavelengths associated with
the instability with the increase in canopy size. The streamwise wavelength of the
Kelvin–Helmholtz-like instability is determined by the shear length, typically defined
in the literature as Ls = U/(dU/dy) calculated at the canopy-tip plane (Raupach
et al. 1996; Finnigan 2000; Nepf 2012). Previous studies have shown that the shear
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FIGURE 13. Premultiplied spectral energy densities at y+ ≈ 15 normalised by their
respective r.m.s. value. The line contours represent (a–d) case G10; (e–h) case G40; (i–l)
case G100. The filled contours represent the smooth-wall case, SC. The contours in (a,e,i),
(b, f,j), (c,g,k) and (d,h,l) are in increments of 0.075, 0.06, 0.07 and 0.1, respectively.

length Ls in canopy flows can be determined by the effective streamwise canopy
drag coefficient (Finnigan 2000; Nepf et al. 2007; Ghisalberti 2009; Nepf 2012).
Intuitively, in tall, dense canopies, we would expect this drag coefficient, and by
extension the shear-layer thickness, to be a function of the element spacing. A
dependence of the canopy shear-layer thickness on the element spacing was also
observed by Novak et al. (2000) in their study of natural canopy flows. Therefore,
the canopies of family H, which have a constant element spacing, have similar mean
drag coefficients and, consequently, similar instability wavelengths, as observed in the
spectral energy densities of the fixed-spacing canopies. For the canopies of families S
and G, increasing the element spacing decreases the canopy drag coefficient, thereby
resulting in the larger wavelengths observed for the shear-layer eddies. The effect of
the canopy spacing on the drag coefficients and the instability wavelengths will be
discussed further in § 4.

Finally, let us discuss the effect of the Reynolds number on the Kelvin–Helmholtz-
like instability. It was shown in § 2.1, that the turbulent fluctuations over dense
canopies scale in friction units, and therefore similar results are obtained when
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simulating canopies with the same height and spacing in friction units at different
Reynolds numbers. It can be observed in figure 4(b) that the signature of this
instability in simulations H32180 and H32400 is essentially the same, and that the
associated streamwise wavelength for both cases is roughly λ+x ≈ 150. As discussed
above, the wavelength and amplification of the instability are governed by the shear
at the canopy tips. As the canopy parameters for cases H32180 and H32400 are kept
constant in friction units, we can also expect the shear at the canopy tips to also be
similar. Therefore, the instability characteristics for both these canopies are essentially
the same when scaled in friction units. We have observed similar behaviours for
Kelvin–Helmholtz-like instabilities originating over riblets (García-Mayoral & Jiménez
2012) and permeable substrates (Gómez-de-Segura & García-Mayoral 2019).

4. Linear analysis of Kelvin–Helmholtz-like instabilities

The results from DNS discussed in § 3 show that the flow in the region near
the canopy-tip plane can be dominated by the presence of spanwise-coherent
structures originating from a Kelvin–Helmholtz-like instability. This instability can be
captured by a two-dimensional, mean-flow linear stability analysis, even in turbulent
flows (Jimenez et al. 2001; White & Nepf 2007; García-Mayoral & Jiménez 2011;
Zampogna et al. 2016; Gómez-de-Segura & García-Mayoral 2019). In this section,
we discuss the methodology and results from such an analysis conducted on the
velocity profiles obtained from the DNS. As the Kelvin–Helmholtz-like instability
is an inviscid phenomenon, several of the studies just cited use an inviscid analysis
to capture it. The inclusion of viscosity, however, inhibits the growth of smaller
wavelengths in the flow, and consequently, results in the most amplified wavelength
being slightly larger compared to that of an inviscid analysis (Jimenez et al. 2001;
Gómez-de-Segura & García-Mayoral 2019). In this section, we present the results
only from viscous analysis. The results from an inviscid analysis are presented in
appendix B for reference. In addition, we show that some of the key features of this
instability can be captured by linear analysis performed on velocity profiles modelled
a priori, which would not require any information from the DNS.

For the purpose of the stability analysis, we model the effect of the canopy using
a drag force in the Navier–Stokes equations, which results in the following governing
equations:

∂u
∂t
+ u · ∇u=−∇p+ ν∇2u− νCiu, (4.1)

∇ · u= 0, (4.2)

where Ci is the effective canopy drag coefficient in each ith direction, has dimensions
of inverse length squared – being essentially the inverse of a permeability – and is
assumed to be homogeneous over the entire canopy region, as in Singh et al. (2016).
Given the density of the canopies considered, with maximum spacings s+ = O(10),
we assume that inertial effects in the flow deep within the canopy are small and can
be neglected. In addition, the element width of the canopies is also small, w+≈ 1–25.
For such canopies, the canopy drag can be assumed to depend linearly on the velocity
(Tanino, Nepf & Kulis 2005; Tanino & Nepf 2008).

In the core of the canopy, away from the shear effects at the canopy base and top,
the mean momentum equation would reduce to a balance between the canopy drag
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and the mean pressure gradient

νCxU =−
dP
dx
. (4.3)

Equation (4.3) is essentially Darcy’s equation for flow within permeable substrates
(Darcy 1856), and has been used by Zampogna & Bottaro (2016) to model flow
deep within densely packed, rigid fibres. The streamwise drag coefficient, Cx, can be
obtained by substituting the values of U and dP/dx obtained from the DNS into (4.3).
From dimensional arguments, equation (4.3) predicts that the drag coefficient would
scale as Cx ∼ 1/s2. This scaling is demonstrated in figure 14(a), which suggests
that (4.3) provides a reasonable approximation for the flow deep within the present
canopies, excluding the sparsest canopy S48. Although we can expect the flow within
the canopy to be Darcy-like in the wall-normal direction as well, we cannot use
the DNS results to obtain Cy, as there is no mean flow in this direction. In order
to obtain Cy, we consider separately the Stokes flow along infinitely long canopy
elements driven by a constant pressure gradient. The equation for such flow is
ν(∂2

x + ∂
2
z )v = dP/dy. The wall-normal drag coefficient is then obtained as

νCy〈v〉 =−
dP
dy
, (4.4)

where the angled brackets represent a spatial average. The estimated values of Cy are
portrayed in figure 14(b) for reference. It may be noted that the ratio of the streamwise
to wall-normal drag coefficients for the present canopies is Cx/Cy≈ 2–3, which shows
that the streamwise flow is more obstructed than the wall-normal flow for the layouts
considered. It is worth noting here that the canopy drag coefficients, Cx and Cy,
and the ratio between them also depends significantly on the plan view arrangement
and the resulting porosity of the canopy (Van der Westhuizen & Du Plessis 1996;
Zampogna & Bottaro 2016). This is evidenced by the different ratios of the drag
length scale and the element spacing for the canopies of families S and G, portrayed
in figure 14, which have width-to-spacing ratios, w/s= 1/2 and 2/9, respectively. The
dependence of the Cx on w/s can also be predicted using two-dimensional Stokes flow
simulations, as shown in figure 14(a). For more complicated canopy arrangements,
such as staggered or random, we would expect the drag to be a function of the planar
layout of the elements.

In order to conduct the stability analysis, we linearise the equations (4.1) and (4.2)
around the mean flow, U(y), yielding

∂u
∂t
+U

∂u
∂x
+ vU′ =−

∂p
∂x
+ ν∇2u− νCxu, (4.5)

∂v

∂t
+U

∂v

∂x
=−

∂p
∂y
+ ν∇2v − νCyv, (4.6)

∂u
∂x
+
∂v

∂y
= 0. (4.7)

These equations are used to obtain a modified Orr–Sommerfeld equation (Drazin &
Reid 2004; White & Nepf 2007; Singh et al. 2016; Zampogna et al. 2016),(

∂

∂t
+U

∂

∂x
+ νCy

)
∇

2v − ν∇4v =U′′
∂v

∂x
− ν(Cx −Cy)

∂2v

∂y2
. (4.8)
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FIGURE 14. Variation of the length scales derived from the (a) streamwise and (b) wall-
normal canopy drag coefficients for different element spacings. The symbols represent,@,
cases of S; +, cases of H; andE, cases of G. The colours from red to blue represent cases
S10 to S48, H16 to H128 and G10 to G100. The symbols in (a) are values obtained from
the DNS, and the dashed and solid lines are predictions from two-dimensional Stokes-
flow simulations. Both the symbols and the lines in (b) are obtained from Stokes-flow
simulations.

Assuming wave-like solutions of the form v= ṽei(αx−ωt), equation (4.8) reduces to the
eigenvalue problem

(αU − iνCy)(D2
− α2)ṽ − αU′′ṽ − iν(Cx −Cy)D2ṽ

+ iν(D4
− 2α2D2

+ α4)ṽ =ω(D2
− α2)ṽ, (4.9)

where the prime superscript denotes differentiation with respect to y, and D represents
the operator d/dy. Equation (4.9) is solved to obtain the complex frequency, ω, for
real values of the streamwise wavenumber, α, subject to no-slip and impermeability
boundary conditions at the top and bottom walls. The instability is then amplified for
positive values of the imaginary part of ω.

The growth rates for different perturbation wavelengths are portrayed in
figure 15(a–c), and the wavelengths with the highest growth rates are summarised in
table 2. The most amplified wavelengths predicted by the stability analysis only match
those observed in the DNS for canopies with high values of δ/h. The wavelengths
predicted for cases H16, H32, G10, G20 and G40 show reasonable agreement with
those observed in the DNS. For canopies with larger heights, however, the analysis
predicts wavelengths larger than those observed in the DNS. For the fixed-spacing
canopies of family H, the predicted instability wavelength also increases with
increasing canopy height, whereas the DNS show that the instability wavelength for
these cases is essentially independent of the height. The contours of the instability
stream function for case H96 for the most amplified wavelength, λ+x ≈ 385, portrayed
in figure 16(a), show that it has a large wall-normal span, extending up to y+ ≈ 120.
Such an instability was also reported by Singh et al. (2016), who performed stability
analyses similar to the one conducted here, except that the canopy was represented by
a drag force depending quadratically on the velocity. Singh et al. (2016) noted that
their analysis predicted two instability modes, one similar to the Kelvin–Helmholtz
instability and another originating from the canopy drag included in the analysis.
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FIGURE 15. Growth rates of different perturbation wavelengths obtained from the stability
analysis performed on (a–c) mean profiles obtained from the DNS, with drag on the
perturbations included in the stability analysis; (d–f ) mean profiles obtained from DNS,
with no drag on the perturbations; and (g–i) mean velocity profiles obtained using (4.10),
with no drag on the perturbations. The lines from red to blue, indicated by the direction
of the arrows, represent (a,d,g) cases S10 to S48; (b,e,h) cases H16 to H128; and (c, f,i)
cases G10 to G100.

They only considered canopies with low δ/h, and observed that the second instability
mode, similar to the large-wavelength modes obtained from the present stability
analysis, was dominant for canopies with high drag and spanned the entire height of
the channel.

It is worth noting here, that in the region near the interface between the canopy and
the free-flow, the assumption of a constant drag coefficient given by (4.3) would no
longer be valid, as shear and advective effects become stronger. We have conducted
some exploratory analyses accounting for this variation in the drag coefficient and
these do not provide improved estimates for the instability wavelength compared to
the results of the constant-drag analysis presented here. In the present analysis, we
have also assumed that the drag coefficient experienced by the perturbations is the
same as that experienced by the mean flow. However, we have recently reported for
sparser canopies that different wavelengths in the flow can perceive drag coefficients
different from that for the mean flow (Sharma & García-Mayoral 2020). In such a
case, the drag coefficient would have to be calculated on a mode-by-mode basis for
the different wavelengths. A wavelength-dependent drag coefficient would lead to
the drag for a given wavelength being dependent on a convolution from all other
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FIGURE 16. Contours of the stream function for the most amplified mode for case
H96 obtained from the stability analysis (a) with drag and (b) without drag on the
perturbations. The blue and red lines correspond to clockwise and counter-clockwise
rotation, respectively.

Case DNS SAC0 SAMC0 SA

Fixed height

S10 140 105 90 320
S16(H96) 160 115 105 385

S24 200 140 115 420
S32 230 152 130 465
S48 250 152 140 165

Fixed spacing

H16 130 95 90 140
H32 150 105 95 200
H64 160 115 105 290

H96(S16) 160 115 105 385
H128 160 115 105 560

Self-similar geometry

G10 — 95 70 —
G20 120 95 90 170
G40 140 140 115 240
G60 190 170 130 320
G100 260 220 152 350

Varying Reτ
H32180 140 105 — 180
H32400 140 105 — 180

TABLE 2. Most amplified instability wavelengths observed in the DNS and predicted
by the stability analysis, scaled in friction units. The column labelled ‘DNS’ lists the
approximate streamwise wavelength associated with the instability in the wall-normal
spectra portrayed in figure 10. Here, SAC0, most amplified wavelengths from stability
analysis on DNS mean profiles without drag on fluctuations; SAMC0, on synthesised
velocity profiles without drag on fluctuations; and SA, on DNS mean profiles with drag
on fluctuations.

wavelengths. Such an analysis, however, is beyond the scope of the present work. An
alternative approach would be to model the canopy as a permeable substrate, which
naturally yields wavelength-dependent equations for the flow within (Zampogna
et al. 2016; Abderrahaman-Elena & García-Mayoral 2017; Sharma et al. 2017;
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FIGURE 17. Growth rate for different perturbation wavelengths from the stability analysis
for cases ——, H32180; and - - -, H32400; (a) with drag and (b) without drag on the
perturbations.

Gómez-de-Segura & García-Mayoral 2019). In order to illustrate that applying a
constant drag coefficient on the perturbations may be a coarse assumption, we also
present results from stability analyses with no drag on the perturbations. This is also a
rather coarse assumption, but we observe that excluding the drag on the perturbations
in the stability analysis yields better estimates for the instability wavelengths observed
in the DNS, as shown in figure 10. For the canopies of family H, the stability analysis
without drag on the fluctuations shows that the most amplified wavelength does not
vary significantly with the canopy height. For the canopies of families S and G, this
analysis shows an increase in the most amplified wavelength with increasing element
spacing, owing to the increase in the shear-layer thickness. The results from this
analysis are portrayed in figure 15(d–f ), and the most amplified wavelength for each
case is listed in table 2. While neglecting the drag acting on the fluctuations yields
better estimates for the most amplified wavelengths for canopies with small spacings,
the predictions for larger spacings differ by up to a factor of two from the direct
numerical simulation observations. This is likely due to the assumption that the mean
flow is homogeneous in the tangential directions, implicit in the stability analysis,
which breaks down for such cases. We have not observed any significant signature
of the Kelvin–Helmholtz-like instability for the sparser canopies studied in Sharma
& García-Mayoral (2020) despite the presence of an inflection in the mean velocity
profiles. There may also be some distortion of the instability by the ambient turbulent
fluctuations in the DNS (Rogers & Moser 1994; Raupach et al. 1996).

We have also performed stability analyses on the cases with different Reynolds
numbers, H32180 and H32400. These analyses predict similar instability wavelengths
and growth rates in viscous units, as shown in figure 17, which is consistent with the
observations in the DNS, discussed in § 3.3. These results emphasize that the strength
of inflection in the mean-velocity profile and the shear-layer thickness for both these
cases is similar when scaled in friction units and, hence, so is their effect on the
instability.

The results obtained from the DNS and the stability analysis suggest that there
is a dependence on the element spacing of the most amplified wavelength, related
to the effect of the spacing on the shear-layer thickness. The usual definition of
the shear-layer thickness, Ls = U/(dU/dy), misses the contribution of the part of
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FIGURE 18. (a) Instability wavelength, λ+x , obtained from the linear stability analysis
versus the total shear length, L+s + y+c ; (b) shear length, L+s , versus the drag length scale;
(c) shear length versus the element spacing.@, family S; +, family H;E, family G. The
colours from red to blue represent cases S10 to S48, H16 to H128 and G10 to G100. In
(a) and (b), the solid lines are linear regressions with slopes 0.06 and 1.36, respectively. In
(c), the solid and dashed lines are linear regressions with slopes 0.14 and 0.3, respectively.

the shear-layer above the canopy. Regarding the latter, García-Mayoral & Jiménez
(2011) studied the formation of Kelvin–Helmholtz-like instabilities over riblets, and
noted that the shear-layer thickness above was given by the height at which the
vorticity gradient, d2U/dy2, concentrated. In smooth-wall flows, this height is roughly
y+c ≈ 5–10. For the present cases, we observe that the instability wavelengths predicted
by the stability analysis correlate well with the full shear length Ls + yc, if we take
y+c ≈ 5, as shown in figure 18(a). This suggests that the shear-layer semi-thickness
above the canopies, yc, is roughly constant for most of the geometries considered
here, and remains close to the smooth-wall value, while the semi-thickness below
has the standard form Ls =U/(dU/dy), measured at the canopy tips plane. The only
notable deviation is for the sparsest canopy studied, S48. For canopies with large
element spacings, we observe that the peak in d2U/dy2 moves closer to the canopy-tip
plane, so y+c = 5 may no longer be a reasonable approximation for the shear-layer
semi-thickness above. Regarding the height of the shear layer within the canopy,
Ls, we observe that it is set by the mean canopy drag coefficient, Ls ∝

√
1/Cx, as

also noted in the studies of aquatic canopy flows by Nepf et al. (2007) and White
& Nepf (2007). The drag coefficient on the mean flow, in turn, depends on the
element spacing and the width-to-spacing ratio, as shown in figures 18(b) and (c).
The correlation of Ls with s, therefore, explains the dependence of the most amplified
wavelength on the element spacing observed in the DNS and the stability analysis.

4.1. Analysis on modelled velocity profiles
In this section we introduce a simple model for the mean velocity profile in dense
canopy flows and discuss the results from their stability analysis. As we only
consider canopies with small element spacings, s+ =O(10), the magnitude of inertial
effects within the canopies are also small and are thus neglected in the model.
The results discussed in § 3 also suggest that, for very dense canopies, turbulence
and, consequently, the Reynolds shear stresses do not penetrate within (Nepf et al.
2007), and are smooth-wall-like above the canopy-tip plane. The mean velocity above
the canopy could then be modelled using a smooth-wall eddy viscosity, with the
canopy-tip plane acting as the location of the smooth-wall (Jimenez et al. 2001;
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García-Mayoral & Jiménez 2011; Gómez-de-Segura, Sharma & García-Mayoral 2018;
Gómez-de-Segura & García-Mayoral 2019). The equation for the mean velocity can
then be written as

d
dy

(
[ν + νT(y)]

dU
dy

)
− νCx(y)U −

dP
dx
= 0, (4.10)

where Cx(y) is the average streamwise canopy drag coefficient, which is assumed
constant within the canopy and zero outside, and νT(y) is the height-dependent eddy
viscosity proposed by Cess (1958) to approximate turbulent smooth-channel flow, and
is non-zero only outside the canopy. The drag coefficients, Cx, used to obtain the
velocity profiles are those given by (4.3) and portrayed in figure 14(a). These have
been obtained using the data from the DNS but can also be obtained from Stokes-
flow simulations as shown in figure 14(a), which are significantly less computationally
intensive.

The most amplified wavelengths predicted by the stability analysis conducted on
these modelled velocity profiles, with no drag applied on the fluctuations, are in
reasonable agreement with those obtained from the same no-drag analysis on profiles
obtained from the DNS. The growth rates predicted are portrayed in figure 15(g–i).
The wavelengths with maximum growth rates are also summarised in table 2. We
have also conducted stability analyses on these modelled velocity profiles including
the effect of the eddy viscosity. The results are portrayed in appendix B, and they
are essentially the same as the ones obtained using molecular viscosity alone, apart
from a slight reduction in the instability growth rates, which suggests that although
νT is important for setting the shape of the mean velocity profile, its effect on
the fluctuations is not significant. This is likely because the Kelvin–Helmholtz-like
rollers occur near the canopy tips, where νT is small and the molecular viscosity,
ν, dominates. It is worth noting that even though this model is able to capture the
instability wavelength, the velocity profiles obtained using this model do not match
those from the DNS, apart from those of S10 and G10. This is most likely due to
our assumption that the turbulent stresses do not penetrate within the canopy and
remain smooth-like, which fails as the element spacing is increased. As discussed
previously, the wavelength of the instability is set by the shear length. The shear-layer
semi thickness within the canopy, Ls, is set by the canopy drag coefficient, Cx. As
this drag coefficient is the same both from the DNS and for the modelled velocity
profiles, we expect Ls to be similar as well. The shear length above the canopy,
however, could differ, as the profiles from DNS would include the effect of the
turbulent stresses penetrating into the canopy and deviating from their smooth-wall
values, while the modelled velocity profiles do not. The similarity in the instability
wavelengths between these analyses therefore suggest that, for most of the dense
canopies considered in this work, turbulence is essentially precluded from penetrating
into the canopy, and that the shear length above does not vary significantly from its
smooth-wall value.

5. Conclusions

In the present work, we have examined the effect of the canopy layout on
turbulent flows over canopies of densely packed filaments of small size. Three
families of simulations have been conducted, the first with the element height in
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friction units fixed, the second with the element spacing fixed, and the third with
the height-to-spacing ratio fixed. The layouts considered had height-to-spacing ratios
greater than one, and elements spacings in the range s+ ≈ 3–50. The penetration
of turbulent fluctuations within such canopies was limited by their small element
spacings. Consequently, the height of the roughness sublayer was also determined
by the element spacing, rather than their height, extending up to y ≈ 2–3s above
the canopy tips. The canopy drag coefficient was also found to be determined by
the element spacing, Cx ∼ 1/s2. Canopies with small spacings were, therefore, found
to suppress the velocity fluctuations within them owing to the large drag exerted,
and the fluctuations became more intense as the spacing increased. The intensity of
the characteristic Kelvin–Helmholtz-like instability over canopies was observed to be
governed by two competing effects resulting from the canopy drag, the inflection at
the canopy tips and the drag on the fluctuations. Canopies with large drag had a
large shear at the canopy tips, and thus a stronger inflection, which enhanced the
instability, but also exerted a large drag on the velocity fluctuations, which suppressed
the instability. The instability was found to be inhibited in canopies with s+ . 10
and, for the range of canopy spacings considered here, a stronger signature of the
instability was observed as the spacing was increased. We also showed that the main
contribution to the velocity fluctuations deep within the canopy was the footprint of
the Kelvin–Helmholtz-like instability, and that the contribution of the element-induced
dispersive flow was negligible. Short canopies with h/s∼ 1 were also found to inhibit
the instability, owing to the blocking effect of the wall at the canopy base. For height
to spacing ratios h/s& 6, the instability was no longer influenced by the bottom wall,
and the effect of the canopy height on the flow within and above the canopy saturated.
Increasing the canopy height for a fixed spacing did not change the element-induced
velocity fluctuations, and instead affected the surrounding flow through the influence
of height on the instability.

Linear stability analysis conducted on the mean velocity profiles obtained from
the DNS is able to capture the approximate wavelength of the instability observed
in the DNS for canopies with small element spacings. The analysis fails for larger
element spacings, for which the assumption of the flow perceiving the canopy in
a homogenised fashion breaks down. We showed that the shear-layer thickness,
which determines the instability wavelength, has two components, one within the
canopy and the other above. The latter is set by the height above the canopy tips
at which the vorticity gradient concentrates, and is essentially constant for the
present canopies, y+c ≈ 5. The shear-layer thickness within the canopy follows the
conventional definition, Ls =U/(dU/dy), and is determined by the canopy drag, thus
depending linearly on the canopy spacing. We have also proposed a simplified model
to capture the most amplified instability wavelength over dense canopies. The model
assumes that the turbulence above the canopy does not penetrate within and remains
smooth-wall-like, and uses the mean streamwise drag coefficient of the canopies to
synthesise an approximate mean-flow profile. The stability analysis conducted using
these synthesised profiles yields similar results to those conducted using the mean
profiles from DNS.
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Appendix A. Immersed-boundary method and validation

For the present work, a modified version of the immersed-boundary algorithm
proposed by García-Mayoral & Jiménez (2011) is used. The algorithm of García-
Mayoral & Jiménez (2011) was based on a direct-forcing approach, which applies a
body force within the immersed-boundary points to drive the velocity at these points
to zero (Mittal & Iaccarino 2005). The condition to implement at the points within
the canopy elements is

un+1
− un

1t
=
−un

1t
. (A 1)

Following García-Mayoral & Jiménez (2011), this condition can be approximated by
modifying the right-hand side of (2.1)[

I −1t
βk

Re
L
]

un
k =−1t

βk

Re
Lun

k−1. (A 2)

The original code of García-Mayoral & Jiménez (2011) used a collocated grid
for the wall-normal coordinate and was extended by Fairhall & García-Mayoral
(2018) to employ a staggered grid. Fairhall & García-Mayoral (2018) also split the
Laplacian operator on the left-hand side of (2.1) into its wall-parallel and wall-normal
components following Kim & Moin (1985)[

I −1t
βk

Re
L
]

u≈
[

I −1t
βk

Re
Lxz

] [
I −1t

βk

Re
Ly

]
u, (A 3)

where Lxz includes the wall-parallel components of L, and Ly the wall-normal one.
Splitting the Laplacian in this manner still retains the second-order temporal accuracy
of the code (Kim & Moin 1985). Equation (2.1) can then be written as[

I −1t
βk

Re
Ly

]
u=

[
I −1t

βk

Re
Lxz

]−1

RHS, (A 4)

where RHS refers to the right-hand side of (2.1). In the present work, we implement
a modified version of the immersed-boundary algorithm used by García-Mayoral &
Jiménez (2011) into the above algorithm, which offers an improvement in the accuracy
for the velocities within the immersed-boundary regions. This implementation is
summarised below. The right-hand side of (A 4) is then transformed to physical
space, and modified to satisfy the following conditions within the immersed-boundary
points [

I −1t
βk

Re
Ly

]
un

k =

{
−1t

βk

Re
Lyun

k−1, y= ytips,

0, y 6= ytips,
(A 5)
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FIGURE 19. Velocity profiles obtained using the two immersed-boundary algorithms
described in appendix A, after one time step, starting from random initial conditions. Here,
(a,b) show results obtained from the algorithm utilised by García-Mayoral & Jiménez
(2011) and Abderrahaman-Elena et al. (2019), given by (A 2), and (c,d) those from the
present algorithm, using (A 5). The shaded regions mark the location of the solid obstacles.
The same data are plotted in the (a,c) and (b,d) columns, except that the right column
portrays the velocities in a logarithmic scale.

where ytips denotes the wall-normal plane at the canopy tips. At the interfaces, the
condition imposed by (A 5) yields un

k =O(1t2), which is of the order of the temporal
discretisation error of the code. As a staggered grid is used, the wall-normal grid
points for the streamwise velocities are offset by half a grid spacing from those
of the wall-normal velocity. The element tips are aligned with the grid for the
streamwise velocity. For the wall-normal velocity, the interface condition is set at
the grid point just below the canopy-tip plane, which enforces near-zero wall-normal
velocity at the canopy tips through continuity. Away from the interfaces, within the
immersed boundary region, the condition set by (A 5) results in an exponential decay
of the velocity in the wall-normal direction from its O(1t2) value at the interface.
To illustrate this decay, the results from a simple, one-dimensional implementation
of this algorithm are shown in figure 19. The velocity is assumed to vary only in
the wall-normal direction. For these test cases, random initial conditions are used to
mimic turbulent fluctuations in the flow. The velocity fields obtained for these cases,
after one time step, using the immersed boundary conditions of (A 5) are compared
to those obtained using (A 2) in figure 19.

Although both algorithms result in small velocities within the solid regions, the
implementation proposed here results in a smoother and much faster decay of
the velocity within the solid. In the DNS code, however, the velocity correction
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FIGURE 20. Instantaneous realisations of the (a) streamwise, (b) wall-normal and (c)
spanwise velocities in a plane passing through the middle of the canopy elements for
case S48, scaled with the friction velocity uτ . The clearest and darkest contours represent
intensities of ±0.1, respectively.

step introduces an error of order 1t2 in all the immersed-boundary points. Even
so, in experience it was observed that the proposed algorithm is a more stable
numerical implementation of the immersed boundaries compared to the one proposed
by García-Mayoral & Jiménez (2011). This is likely due to the present method
not generating sharp gradients in the velocity field within the solid obstacles at the
pressure calculation step. The velocity within the canopy elements, or the permeability
error, in the DNS is observed to be less than 0.1uτ , for all the conducted simulations,
and is much smaller than velocity in the ‘fluid’ points surrounding the elements.
This is illustrated in the instantaneous realisations of the velocity fields from one
of the simulations are portrayed in figure 20. For completeness, the wall-normal
grid distribution for case S10 is portrayed in figure 21. In order to validate the
implementation of the immersed boundaries, we have replicated the DNS for the
collocated roughness elements with height h+ ≈ 12 of Abderrahaman-Elena et al.
(2019). The mean velocity profiles, r.m.s. fluctuations and the Reynolds shear stresses
obtained from the present simulations show good agreement with the results of
Abderrahaman-Elena et al. (2019), as shown in figure 22. We have also conducted a
grid-dependence analysis, for which the results are portrayed in figure 23. Velocity
r.m.s. fluctuations for cases S48 and G100 are shown for different wall-parallel
resolutions.
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FIGURE 21. Wall-normal grid distribution for the simulation of case S10. (a) Variation of
the wall-normal coordinate and (b) grid resolution with an equispaced auxiliary variable j.
Dashed lines mark the location of the canopy tip plane.
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FIGURE 22. Root mean square velocity fluctuations, mean velocity and Reynolds shear
stress profiles. The solid lines represent the results obtained from the present code, and
the + symbol represent the data of case C12 from Abderrahaman-Elena et al. (2019).

Appendix B. Comparison of inviscid and viscous stability analysis
Here, we provide the governing equations used to perform a stability analysis with

a turbulent viscosity varying in the wall-normal direction, νT(y). The modified Orr–
Sommerfeld equation is then given by

(αU − iCy)(D2
− α2)ṽ − αU′′ṽ − i(Cx −Cy)D2ṽ + 2iν ′T(D

3
− α2D)ṽ

+ iνT(D4
− 2α2D2

+ α4)ṽ + iν ′′T(D
2
+ α2)ṽ =ω(D2

− α2)ṽ. (B 1)

A similar equation, excluding the canopy drag terms, has also been used by
Reynolds & Hussain (1972), Del Alamo & Jiménez (2006), Pujals et al. (2009) and
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FIGURE 23. Root mean square velocity fluctuations and Reynolds shear stress profiles.
The panels (a,c,e,g) represent case G100 and those in (b,d, f,h) represent case S48. The
solid lines in (a,c,e,g) represent the results from using 27 points per spacing; the symbols
E, 18 points; and +, 9 points per spacing. The solid lines in (b,d, f,h) represent the results
from using 36 points per spacing; the symbolsE, 24 points; and +, 12 points per spacing.

Gómez-de-Segura et al. (2018). In figure 24(a–f ), we compare the results obtained
from viscous and inviscid analysis conducted using the velocity profiles from the
DNS. In figure 24(g–i), we show the results from inviscid and viscous stability
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FIGURE 24. Growth rates of different perturbation wavelengths obtained from the stability
analysis performed on (a–c) mean profiles obtained from the DNS, with drag on the
perturbations included in the stability analysis; (d–f ) mean profiles obtained from DNS,
with no drag on the perturbations; and (g–i) mean velocity profiles obtained using
equation (4.10), with no drag on the perturbations. ——, viscous analysis including
molecular viscosity alone; - - -, inviscid analysis; · · · · · ·, viscous analysis including an
eddy viscosity. The colours from red to blue represent (a,d,g) cases S10 to S48; (b,e,h)
cases H16 to H128; and (c, f,i) cases G10 to G100.

analyses, using both molecular and turbulent viscosities, performed using the velocity
profiles obtained from (4.10).
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