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Abstract

Objective: To explore the use of epidemiological modelling for the estimation of
health effects of behaviour change interventions, using the example of computer-
tailored nutrition education aimed at fruit and vegetable consumption in The
Netherlands.
Design: The effects of the intervention on changes in consumption were obtained
from an earlier evaluation study. The effect on health outcomes was estimated using
an epidemiological multi-state life table model. Input data for the model consisted of
relative risk estimates for cardiovascular disease and cancers, data on disease
occurrence and mortality, and survey data on the consumption of fruits and
vegetables.
Results: If the computer-tailored nutrition education reached the entire adult
population and the effects were sustained, it could result in a mortality decrease of 0.4
to 0.7% and save 72 to 115 life-years per 100 000 persons aged 25 years or older.
Healthy life expectancy is estimated to increase by 32.7 days for men and 25.3 days for
women. The true effect is likely to lie between this theoretical maximum and zero
effect, depending mostly on durability of behaviour change and reach of the
intervention.
Conclusion: Epidemiological models can be used to estimate the health impact of
health promotion interventions.
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Health promotion interventions are intended to improve

health. Good practice requires that their effects be

evaluated. Typically, health promotion interventions aim

to promote health behaviours, i.e. behaviours that reduce

the risk of disease, such as non-smoking, physical activity

and fruit and vegetable intake. The degree to which this is

achieved is assessed in impact evaluation. However,

ultimately we are interested in health gain and not in

promoting health behaviour change as such. Knowledge

of the effects on health outcomes, such as the number of

cases of disease prevented or years of life gained, makes

the beneficial effects of health promotion visible and

allows comparison of different interventions. This requires

outcome evaluation, which is included in most health

education and promotion planning models such as the

Precede–Proceed Model1. However, in practice this may

prove difficult. How, for example, does one determine the

health effects of a programme that promotes the

consumption of fruits and vegetables?

A major problem with outcome assessment is that most

health effects of health behaviour change occur only after

many years. Even apart from the delay, this makes

measurement of health outcomes complicated and

expensive, if not impossible. For example, a decrease in

smoking prevalence is followed by a decrease in the

incidence of chronic obstructive lung disease several years

later, and prevalence and mortality lag even more as

incident cases are prevalent for a number of years and

then die. Public health professionals and policy-makers

are not generally willing to wait that long before deciding

whether an intervention is worth the investment.

As an alternative to actual measurement, estimates of

health outcomes can be obtained using impact evaluations

and epidemiological simulation models. These models are

currently used to assess the burden of disease caused by

specific risk factors and to estimate the effects of trends in

risk factors, but have also been used to assess the health

effects of public health interventions2–4.

In the present paper we illustrate the use of an

epidemiological model and estimate the potential effects

on the Dutch population (totalling just over 16 million) of

individual nutrition advice via computer-tailored nutrition
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education, a promising behaviour change intervention

strategy5.

Methods

The method consists of a two-step process (Fig. 1). The

first step is to estimate the effect of an intervention on the

exposure of a population to a determinant of health (i.e.

the consumption of fruits and vegetables). This is

preferably based on a meta-analysis of evaluation studies

of a behaviour change intervention approach. If such a

meta-analysis is not available, estimates from single well-

conducted studies can be used. In the second step an

epidemiological model is used to estimate the change in

health outcomes due to the intervention-induced change

in exposure of a particular population. We shall first

introduce the health promotion intervention and its impact

evaluation (step 1), then briefly explain the structure and

contents of the model (step 2), and discuss how we

connected the two steps and what assumptions we made

where data were not available.

Computer-tailored nutrition education

Individualisation of health education interventions via

computer-tailoring is regarded as one of the most

promising health education techniques, and is effective

in inducing dietary behaviour change5. In computer-

tailoring, an expert system is used to provide respondents

with personally relevant dietary change information

based on a personal assessment of dietary intake and

potential mediators of change, such as intentions, attitudes

and self-efficacy expectations. Brug et al. conducted a pre-

test–post-test randomised trial of a computer-tailored

feedback intervention on fat, fruit and vegetable intakes in

Dutch adults6. The intervention group received computer-

generated feedback letters tailored to their dietary intake,

awareness of personal intake levels, intentions, attitudes

and self-efficacy expectations. Participants subsequently

received a second computer-tailored feedback letter

tailored to the changes they made after the initial

feedback. A post-test was conducted 4 weeks after this

second feedback letter. The reference group received

generic nutrition information. For the present study we

compared pre- and post-test measurements of fruit and

vegetable consumption and expressed this difference as a

percentage of pre-test consumption. The intervention

achieved consumption increases of 15% for fruits and

13.2% for vegetables.

The fruit and vegetable health model

The effect of a change in fruit and vegetable consumption

on health outcomes was estimated using a proportional

multi-state life table model7. This model compares two

populations: one that is modelled after the Dutch

population and an identical population for which the

fruit and vegetable intake can be manipulated. The mean

consumption (in grams per day) is fitted to a Weibull

distribution of which the mean is shifted upwards in the

intervention population while keeping the shape par-

ameter stable. This results in a new distribution pattern at a

higher consumption level. Both curves are translated into

discrete consumption categories (see Fig. 2).

Consumption levels influence the incidence of ischaemic

heart disease, stroke and cancer of the oesophagus,

stomach, colorectum, lung and female breast8,9. This effect

is quantified via the potential impact fraction (PIF), which is

defined as the proportional change in expected incidence

as a consequence of a specified change in exposure level.

PIF is calculated on the basis of age- and gender-specific

exposure data and the relative risks of disease incidence at

the corresponding levels of exposure (see Table 1).

Changes in the incidenceof a disease lead to corresponding

changes in prevalence and mortality. Finally, the disease-

specific data of the diseases in themodel are integrated in a

life table. From this life table, summary measures of

population health such as life expectancy, years lost to

disease and health-adjusted life-years (DALYs) can be

derived10. The difference in health outcomes of the two

populations is attributed to the intervention, i.e. the change

in consumption of fruits and vegetables. The data used to

construct the model were the most recent estimates of

disease frequency provided by the Dutch National Institute

of Public Health and the Environment, population data and

mortality rates from the Central Bureau of Statistics,

Intervention

Exposure change

Change in health outcomes

Step 1: Evaluation at level of determinants

Step 2: Epidemiological model

Fig. 1 Overview of methods
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Fig. 2 Example of the estimated change in consumption distri-
bution of fruits and vegetables due to computer-tailored health
promotion, assuming participation of the entire population (shown
here is the effect on men aged 45–64 years)
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consumption data from the National Food Consumption

Survey 1997–1998, estimates of relative risk of coronary

heart disease and stroke from a review and of cancer from

a recent meta-analysis, and the Dutch disability

weights9,11–13. The model was implemented in Micro-

softw Excel. Ninety-five per cent uncertainty intervals (UI)

that express the uncertainty in the protective effects of fruits

and vegetables were calculated byMonte Carlo simulation,

using the program @Risk14.

Assumptions

When estimating the effect of an intervention on a

population, questions may arise for which an evaluation

does not provide direct answers. For this study, we made

the following supplementary assumptions. First, the

participants in the study by Brug et al. were assumed to

be representative of the Dutch adult population. Second,

the effect of the intervention was defined as the difference

between baseline measurement (T1) and 8 weeks later

(T3, 4 weeks after last feedback). The control group was

ignored because for this study we were interested in the

effect of the intervention versus no intervention, not in the

additional effect of tailoring and feedback over generic

health education. Third, the results of the intervention

were expressed as percentage increase in average total

consumption of fruits and vegetables per person per day

(as opposed to using absolute numbers of grams, which

would have been equally defensible). Fourth, the effects

on fruits (þ15.0%) and vegetables (þ13.2%) combined

are estimated to be the average of the two values (i.e.

þ14.1%). Finally, changes in consumption are assumed

lifelong. This left us with the question what percentage of

the Dutch population could be expected to participate in

the programme. By way of sensitivity analysis, we

calculated outcomes for participation rates of 100%, 25%

and 10% of the Dutch population of age 25 years and over.

Results

The 14.1% increase in the average consumption of fruits

and vegetables results in a shift in the consumption

distribution of the Dutch population. As an illustration,

Fig. 2 shows the effect on men aged 45–64 years.

Assuming a participation rate of 100%, this change in

consumption would result in a mortality decrease of about

786 (95% UI 587–979) deaths annually, or 0.4–0.7% in

relative terms, over 10 000 life-years or DALYs (Table 2).

Healthy life expectancy would rise by almost 33 (95% UI

23–43) days for men and 25 (95% UI 16–34) days for

women. When lower participation rates are assumed,

health gain diminishes linearly (Table 3).

Discussion

The predicted increase in life expectancy of 3 weeks is

about half that of lowering daily intake of salt by 6 g per

person, but reaching that effect would probably require

multiple interventions15. The Dutch breast cancer screen-

ing programme increases female life expectancy by about

5 weeks, but is more demanding in terms of resources and

emotions than a computer-tailored fruit and vegetable

promotion16.

The results of this exercise are dependent on the quality

of the data and methods used, as well as on a number of

assumptions.

Uncertainty in the data

The results are most sensitive to two kinds of data

uncertainties. First, the effect of the intervention was

estimated on the basis of a single evaluation, which makes

it vulnerable to bias. The use of a formal review of all

similar interventions would be preferable, but at present

none is available. Second, the estimates of the relative risks

of disease for different levels of consumption of fruits and

vegetables are subject to considerable uncertainty8,12. This

reflects the fact that it is not known exactly what the active

components in fruits and vegetables are, the difficulty of

accurately measuring fruit and vegetable intakes, and

controversy over the best study designs to investigate

possible preventive effects of fruit and vegetable

consumption8. Recent cohort studies generally give

lower effect estimates than case–control studies; we

used estimates based on reviews that included both

designs (Table 1)9,12.

Uncertainty in the assumptions

In the analysis a number of assumptions have been made,

of which especially the assumed participation rates and

Table 1 Relative risks of disease incidence for fruit and vegetable consumption

Relative risk (95% confidence interval) Unit

Ischaemic heart disease 0.8 (0.65–0.90)* 400þ versus 0–99 g day21

Cerebrovascular accident 0.8 (0.60–0.95)* 400þ versus 0–99 g day21

Oesophagus cancer 0.81 (0.72–0.90) per 100 g day21 increase
Stomach cancer 0.78 (0.72–0.84) per 100 g day21 increase
Colorectal cancer 0.93 (0.88–0.98) per 100 g day21 increase
Lung cancer 0.87 (0.80–0.93) per 100 g day21 increase
Breast cancer 0.98 (0.96–0.99) per 100 g day21 increase

* For ischaemic heart disease and cerebrovascular accident no confidence intervals were available but the values stated were
interpreted as such.
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the sustainability of the effects influence the health

outcomes. In studies on computer-tailored nutrition

interventions that have been published, participation

rates of up to 80% have been reported17. A tailored

intervention targeting highly educated male employees

had a participation of 74%18. These rates will be hard to

match in the open Dutch population, although much will

depend on the recruitment strategy. In our model,

participation relates linearly to health outcomes. Because

of this assumed linearity, health outcomes can be derived

for any assumption regarding participation levels.

The results are also sensitive to assumptions regarding

durability of the change in consumption. The effect

estimate was obtained in an evaluation 4 weeks after the

participants received their last feedback. The results

presented are based on the assumption that they continue

eating more fruits and vegetables. In one study the effects

lasted for at least 8 weeks19. Short-term effects of short-

term interventions are, however, often not sustained20.

Again, different assumptions on sustainability of interven-

tion effects can be used as input in our model. If we

assume, for example, that half of the participants fall back

to their previous consumption levels soon after the

intervention, health effects will also halve. Assessment of

fruit and vegetable consumption some years after the

intervention could help to determine what longer-term

effect can realistically be expected.

Finally, we assumed that the population was represen-

tative of the open Dutch population. However, the study

population was predominantly female and more highly

educated than average, which may have led to over-

estimation of the effects. There is insufficient evidence to

draw firm conclusions about the influence of educational

level and gender on the effectiveness of tailored health

education. There are indications that it is similarly effective

among lower-educated women in the USA21, but a study

among predominantly highly educated male employees

reported only a 5% increase in fruit and vegetable intake18.

Limitations due to the structure of the model

Apart from the limitations due to the data and uncertainty

in the assumptions, the time factor introduces uncertain-

ties that our model does not fully address.

The first is that the model used in this study does not

incorporate a time dimension, but instead gives causal

effects as immediate. In reality there is a time lag between

change in consumption and incidence of disease, and

between incidence and mortality. The health gain due to

an increase in consumption in a particular year would in

reality materialise over a number of subsequent years, but

in the end the health gain will be equal to the size of the

effect predicted by the model7. If it is important to estimate

when effects will occur, dynamic models are more

appropriate. Dynamic models use the output of one year

as input for the next, making the model more realistic but

also more complex.

Second, the model uses the present occurrence of

disease. As the disease pattern changes with time, so does

the effect of the intervention, which means that the

accuracy of predictions decreases the further we look into

the future. However, patterns of disease in populations

generally change slowly, so that accuracy for the first 10 or

20 years will not be biased much.

Finally, this is a macro-simulation model that ignores

heterogeneity within the population, such as health

differences linked to socio-economic status (SES). Because

lower socio-economic groups consume less fruits and

vegetables and have higher disease rates, they are likely to

gain more health than those with higher SES. In general,

micro-simulation models (which have individuals as basic

unit) are better suited for the assessment of heterogeneity,

but again at the cost of increased complexity and data

requirements.

Possibilities for further analysis

A next step could be to estimate the costs of the

intervention programme and perform a cost-effectiveness

analysis. This kind of analysis would help decision-makers

set priorities and decide whether to invest in a computer-

tailored nutrition advice, a school fruit programme or e.g.

a campaign to help smokers quit. For optimal compar-

ability, similar methods should be used for all assessments.

The value of forecasting health effects

Despite the above limitations and the uncertainty inherent

in any prediction, epidemiological models can be useful to

estimate the effect of interventions on population health.

First, modelling makes the health effects of alternative

interventions comparable. This can inform decisions on

the allocation of resources for health and aid in setting

priorities. Whereas the results of impact evaluations are

often difficult to compare, with the help of models

different interventions can be translated into forecasts of

total health gain in generic terms (e.g. life-years or

DALYs)22.

Second, epidemiological models provide a logical

framework in which evidence can be summarised and

assessed for its consequences. This is useful even without

actually running the model. As shown above, use of the

Table 3 Annual health gain due to computer-tailored health pro-
motion with 10%, 25% and 100% of the total Dutch population
aged 25 years and over participating

Participation rate (%)

100 25 10

Mortality difference 2786 2196 279
Life-years gained 10 547 2637 1055
DALYs gained 13 789 3447 1379
Life expectancy at birth (days) 22.9 5.7 2.3
DALE at birth (‘DA-days’) 29.0 7.2 2.9

DALY – healthy life-years; DALE – healthy life expectancy; DA – disabil-
ity-adjusted.
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model raises questions that need to be answered in order

to estimate health effects of interventions at the population

level. How strong is the protective effect of fruits and

vegetables? What proportion of the target group will

participate? The model splits up the general question ‘what

is the health effect’ into sub-questions. For each of these,

evidence needs to be sought and assessed for validity.

This leads to the third advantage of the use of models: it

shows where the gaps in the evidence are, and where

future research can contribute to reducing uncertainty in

effect estimates for interventions.

Fourth, this stepwise approach makes the assessment

process transparent. Each of the steps in the thought

process can be judged for validity. Alternative assumptions

can also be assessed for their consequences.

A fifth advantage is that even when there is little

evidence available, at least the possible effects of an

intervention can be explored. An uncertainty analysis

can be done to establish likely boundaries of potential

health effects, and a sensitivity analysis reveals how

sensitive the results are to changes in input parameters.

In our analysis for example, we included estimates of

the health effect assuming a participation rate of 100%.

This shows that the health effect of computer-tailored

health education is unlikely to yield more than 10 000

life-years annually.

In conclusion, health promotion needs to move beyond

process evaluation and start assessing its effects on

population health. In this venture, epidemiological

models can be used to estimate the health effects of

health promotion interventions, building upon impact

evaluation of these interventions. Since no prediction can

be better than the information that it is based upon,

thorough evaluation of interventions is crucial. These

should preferably be conducted a considerable time after

the intervention in order to estimate the durability of the

behaviour changes.
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