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Abstract

This paper investigates the effect of heat transfer on the motion of a spherical bubble in
the vicinity of a rigid boundary. The effects of heat transfer between the bubble and the
surrounding fluid, and the resulting loss of energy from the bubble, can be incorporated into
the simple spherical bubble model with the addition of a single extra ordinary differential
equation. The numerical results show that for a bubble close to an infinite rigid boundary
there are significant differences in both the radius and Kelvin impulse of the bubble when
the heat transfer effects are included.

1. Introduction

Over the past couple of decades there has been considerable interest in studying
the motion of a gas or vapour bubble in a liquid. Typically these bubbles occur in
applications such as cavitation and under-water explosions and can be responsible for
considerable damage to nearby structures immersed in the liquid. The mathematical
models for predicting the motion of a bubble fall into two categories. The first
category consists of full numerical models, such as the boundary integral method,
which completely determine the fluid motion and can predict phenomena such as the
re-entrant jet which forms as the bubble collapses, but which are computationally
expensive. The alternative is to use a simplified model where the bubble is assumed
to remain spherical throughout its growth and collapse phases and then use techniques
such as the Kelvin impulse to determine the direction of the bubble jet. However, in
most previous work the relationship between the volume and pressure of the gas inside
the bubble has ignored the effect of heat transfer to or from the bubble and this results
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in a simple polytropic-type model for computing the internal pressure of the bubble
for a given volume [ 1-3]. However, the effects of the heat transfer can be incorporated
into the model by using an additional differential equation for the internal temperature
[8-10], although more sophisticated thermal models have been proposed [7]. In the
case of a pulsating cavitation bubble, the damping of the pulsation is due to the loss
of energy in the bubble. This study investigates the effect of energy loss due to heat
transfer between the bubble and the surrounding water.

This paper describes a simple spherical bubble model which has been modified to
include the effects of the heat exchange between the bubble gas and the surrounding
water. The vapour or gas inside the bubble is assumed to follow the gas law. It is also
true that the Biot number of a cavitation bubble is much smaller than unity. Note that
the Biot number is the product of the heat transfer coefficient, h, and the bubble radius,
R, divided by the thermal conductance of water, k, and is much smaller than unity,
that is, 2hR/k <S 1. Under this condition the "lumped-mass" approximation can be
incorporated into the model and hence the temperature distribution inside the bubble
can be represented by the bulk temperature in the analysis (see [11]). Whilst this may
not always be true for an explosion bubble, the method presented here still gives some
worthwhile insight into the motion of the bubble for very little computational cost.

2. Mathematical model

Assume that the fluid is incompressible, inviscid and irrotational. Then the velocity
at any point in the fluid can be expressed as the gradient of a scalar potential 4> which
in turn satisfies Laplace's equation

V20 = 0.

The basic simplifying assumptions of the bubble models employed here are that the
bubble remains spherical throughout its lifetime, and that its centre of mass cannot
move, allowing the velocity potential due to the bubble to be represented by a point-
source located at the bubble's centre of mass. That is, the potential due to the bubble
at any point x in the fluid is given by [6]

where m(t) is the time-dependent source-strength of the point source and xb is the
position vector of the centre of mass of the bubble. Equating the rate of change of the
bubble radius to the normal velocity of the fluid at the bubble surface leads to
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where R is the bubble radius and an overdot denotes differentiation with respect to
time.

For a bubble close to an infinite rigid boundary the method of images can be used to
modify the velocity potential to include the contribution from the image of the bubble
in the rigid boundary. Further, if the velocity potential on the surface of the bubble
due to the image is approximated by the velocity potential due to the image at the
centroid of the bubble, then the total velocity potential can be expressed in the form

where fi = l/\xb — x^\ and xb is the image of the point xb in the rigid boundary. The
kinetic energy of the fluid is given by [6]

*>— dS,

where n is the unit normal to Sb directed into the liquid. The rate of change of the
kinetic energy must be equal to the rate of work being done. This leads to the ordinary
differential equation

(3/2 + 2(iR)R = h gzb, (2.1)

where p^ is the far-field pressure in the z = 0 plane, pb{t) is the pressure of the gas
inside the bubble, p is the density of the liquid, zb is the z-coordinate of the bubble's
centre and g is the acceleration due to gravity which is assumed to be directed along
the negative z-axis.

The bubble is assumed to be filled with an ideal, non-condensable gas which
satisfies a gas law of the form

Pbit) V(f) =

7(0

where V(t) is the volume of the bubble, T(t) is the temperature of the gas inside the
bubble and it is a constant. Hence the pressure inside the bubble at any time is given
by

where p0, Vo and To denote the initial internal pressure, volume and temperature of
the bubble respectively.
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Let Q denote the rate of heat energy being transferred into the bubble. At any
instant, this must equal the sum of the work done on the bubble and the change in the
internal energy of the bubble. Thus

Q = Pbit)Ht) + mgE, (2.3)

where E denotes the internal energy of the bubble and mg denotes the mass of the
compressible gas inside the bubble. As the gas is assumed to be non-condensable
the rate of change of the internal energy is proportional to the rate of change of the
temperature of the bubble. Hence

E = Cvt, (2.4)

where Cv is the specific heat of the gas for constant volume. Further, the rate of heat
energy transferred into the bubble is proportional to the product of the surface area
of the bubble and the temperature difference between the bubble and the surrounding
liquid (here assumed to be water), yielding

Q = hA(t)(Tw - T(t)), (2.5)

where h is the heat transfer constant, Tw is the temperature of the surrounding liquid
which is assumed to remain constant and A(t) is the surface area of the bubble.
Substituting (2.4) and (2.5) into (2.3) gives

hA(t)(Tw - T(t)) = pb(t)V + mgCvt, (2.6)

which is a differential equation for the temperature of the gas inside the bubble.
Substituting (2.2) into (2.1) and (2.6), and since the bubble is assumed to be

spherical, it is possible to express its surface area and volume in terms of its radius to
yield

(R + fxR2)R + (3/2 + 2^R)R2 = i lp0 (j±\ (L\ -Poo + pgz\ , (2.7)

which is a system of coupled differential equations which, given suitable initial con-
ditions, can be solved for the bubble radius R and the temperature T.

It is possible to consider an adiabatic gas by taking h = 0 in (2.8). If the process
is also assumed to be isentropic, solving (2.8) leads to the relationship

y (
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where y is the ratio of specific heats. This will allow a comparison with earlier work
where the thermodynamic processes inside the bubble were assumed to be adiabatic.

The Kelvin impulse of the bubble is given by

/ ( r ) = \ <f>ndS. (2.9)

Best and Blake [1] show that this can be written as

7(r) = / ( 0 ) + / F{x)dx, (2.10)

where F(t) is the force applied to the bubble and it is usual to take 7(0) = 0. Further,
it can be shown that [1]

F(t) = -npR
2

R np + ^7tpgR3ez, (2.11)

where ez is the unit vector directed along the positive z-axis, np is the unit vector
perpendicular to the rigid plane, directed into the fluid region and r is the perpendicular
distance of the centre of the bubble from the rigid plane. Thus it is possible to calculate
the Kelvin impulse of the bubble at the end of the first collapse using (2.10) and (2.11).

In general the above equations cannot be solved analytically and have to be solved
numerically. By expressing (2.7) in terms of two first-order differential equations it is
possible to obtain the following system:

R=U,

mgCu

which can be integrated through time using a fourth-order Runge Kutta scheme.
The initial conditions for the system depend on the type of problem under con-

sideration. For the bubbles considered here the initial conditions are that the initial
radius of the bubble is small, the initial rate of change of the radius is zero and there
is a large internal pressure, relative to the surrounding liquid, which causes the bub-
ble to expand. The initial temperature is usually taken to be higher than that of the
surrounding liquid.

Once the bubble's radius and surface velocity have been determined, the Kelvin im-
pulse can be computed by evaluating the integral appearing in (2.10) with a quadrature
rule, such as the trapezium rule, which uses the points in time at which the differential
equations (2.12) have been solved as its nodal points.
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FIGURE 1. The radius of a bubble 1.5 units from a horizontal rigid boundary against time for different
heat transfer constants h.

3. Numerical results

The above equations can be solved numerically in non-dimensional form. The
length scale is the maximum bubble radius for an isolated adiabatic bubble in the
plane z = 0, whilst pressure is scaled with respect to the hydrostatic pressure in
the plane z = 0 and temperatures are scaled to the temperature of the water. The
densities are scaled with respect to the density of the surrounding liquid. This leads
to the following implicit scaling: time: (\/Rm)*JPoo/p, specific heat: Poo/(Twp),
mass of gas in bubble: l/(/?^,p), where Rm denotes the maximum bubble radius. All
calculations in this paper are carried out in terms of these non-dimensional variables.
Here the initial conditions are that the initial radius of the bubble is 0.1, the internal
pressure is 303.76 and the initial internal temperature is 5.

The first problem considered is that of a bubble close to a horizontal rigid boundary
in the plane z = 0. Since the acceleration due to gravity is acting perpendicular to
this plane this is an axisymmetric problem which could be efficiently solved using a
suitable boundary integral method, although that has not been done here.

Figure 1 shows the results of computing the bubble radius for a bubble 1.5 units
from the rigid boundary with h = 0, h = 50 and h = 100. Clearly this shows that
increasing the value of h (and thereby increasing the rate of heat exchange) has an
effect on both the bubble period and the bubble radius.

These results show that as the heat transfer constant increases the bubble period
becomes shorter and the maximum radius of the bubble decreases.
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FIGURE 2. The vertical component of the Kelvin impulse against the distance from a horizontal rigid
boundary for different heat transfer constants h.

Figure 2 shows the effect that changing the heat exchange parameter has on the
vertical component of the Kelvin impulse of each of the bubbles shown in Figure 1.
We note that in this case only the vertical component of the Kelvin impulse is non-zero.

Although there is little change in the distance from the boundary at which the
Kelvin impulse changes sign, there is quite a dramatic effect on the magnitude of
the Kelvin impulse for bubbles relatively close to the rigid boundary. These results
indicate that if the heat transfer effects are included then the magnitude of the Kelvin
impulse is reduced which suggests that the magnitude of a bubble's jet is reduced and
a bubble's general migration towards the boundary will be smaller.

The second problem considered here involves the motion of a bubble close to a
vertical rigid boundary in the plane v = 0. This problem is not axisymmetric and
would require a fully three-dimensional boundary integral method for its solution
which would be computationally very expensive. In this case fx = l/(2yb), where yb

is the coordinate of the bubble's centre.
Figure 3 shows the bubble radius for a bubble 1.5 units from a vertical rigid

boundary for different values of the heat transfer constant. Similar to the bubble close
to a horizontal rigid boundary we can see that the bubble's period gets shorter as the
heat transfer constant is increased, and that the maximum radius (and hence volume)
of the bubble also decreases as the heat transfer constant increases.

Figures 4 and 5 show the horizontal and vertical components of the Kelvin impulse
respectively for each of the bubbles shown in Figure 3. Clearly the horizontal com-
ponent is tending towards zero, as expected, as the bubble gets further away from the
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FIGURE 3. The radius of a bubble 1.5 units from a vertical rigid boundary against time for different heat
exchange constants h.

boundary and the influence of the boundary is diminished. The vertical component is
clearly tending towards the values that are obtained for an isolated bubble away from
any boundaries. Again, in each case the effect of including the heat transfer effects is
to diminish the components of the Kelvin impulse.

Figures 6 and 7 show the magnitude and direction, respectively, of the Kelvin
impulse for different distances from the vertical rigid boundary. In all cases it can
be seen that the Kelvin impulse rapidly decreases as the bubble moves away from
the boundary. Further, the magnitude of the Kelvin impulse gets smaller as the heat
transfer constant increases, which is what we would expect in light of the results
presented in Figures 4 and 5. Figure 7 shows that as the bubble moves away from
the boundary, the direction of the Kelvin impulse changes from near horizontal and
towards the boundary (corresponding to an angle of 90°) to almost vertically upwards
(corresponding to an angle of 0°). The size of the heat transfer has a much smaller
effect on the direction of the Kelvin impulse, particularly when the bubble is close to
the boundary.

4. Conclusions

This paper has shown that the heat transfer between a bubble and the surrounding
water can have a significant effect on the motion of the bubble. This can clearly be
seen in the differences in the bubble radius between the adiabatic case (h = 0) and
the heat transfer case (h > 0). These changes in the motion of the bubble affect the
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FIGURE 4. The horizontal component of the Kelvin impulse against the distance from a vertical rigid
plane for different heat transfer constants h.
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FIGURE 5. The vertical component of the Kelvin impulse against the distance from a vertical rigid plane
for different heat transfer constants h.
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FIGURE 6. The magnitude of the Kelvin impulse against the distance from a vertical rigid plane for
different heat transfer constants h.
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FIGURE 7. The direction of the Kelvin impulse against the distance from a vertical rigid plane for different
heat transfer constants h.
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way in which the bubble interacts with other structures in the fluid domain. Further,
this work seems to indicate that the heat transfer effects are a major influence on the
magnitude of the Kelvin impulse for bubbles which are close to the boundary. The
results seems to indicate that the adiabatic case will over-estimate the magnitude of the
Kelvin impulse and this implies that the jet predicted by more sophisticated methods,
such as the boundary integral method [3,4], will be larger and faster than is the case
when heat transfer is included. However, the results seem to indicate that for bubbles
close to vertical boundaries the changes in the direction of the Kelvin impulse when
heat transfer effects are included are relatively small.

References

[1] J. P. Best and J. R. Blake, "An estimate of the Kelvin impulse of a transient cavity", J. Fluid Mech.
261 (1992) 75-93.

[2] J. R. Blake, "The Kelvin impulse: Applications to cavitation bubble dynamics", J. Austral. Math.
Soc. Sen B 30 (1988) 197-212.

[3] J. R. Blake, B. B. Taib and G. Doherty, 'Transient cavities near boundaries. Part 1. Rigid bound-
aries",/ Fluid. Mech. 170(1986)479^197.

[4] J. R. Blake, B. B. Taib and G. Doherty, "Transient cavities near boundaries. Part 2. Free surface",
J. Fluid. Mech. 181 (1986) 197-212.

[5] P. J. Harris, "A simple method for modelling the interaction of a bubble with a rigid structure",
Proc. Inst. Acoustic. 18 (1996) 75-84.

[6] J. Lighthill, An informal introduction to fluid mechanics, IMA Monograph Series (Oxford Univer-
sity Press, 1986).

[7] A. Prosperetti, "The thermal behavior of oscillating gas bubbles", /. Fluid Mech. 222 (1991)
587-616.

[8] W. K. Soh, "On the thermodynamic process of a pulsating vapor bubble", App. Math. Mod. 18
(1994)685-690.

[9] W. K. Soh and A. A. Karimi, "On the calculation of heat transfer in a pulsating bubble", App.
Math. Mod. 20 (1996) 638-645.

[10] W. K. Soh and J.Shen, "The effects of heat transfer on a Rayleigh bubble", in Transport Phenomena
in Thermal Science and Process Engineering, Kyoto Research Park, Japan, November, (1997) 109-
114.

[11] F. M. White, Heat and mass transfer (Addison Wesley, Reading, MA, 1988).

https://doi.org/10.1017/S1446181100013420 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013420

