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Abstract. We show that for any pair of elliptic curves E1, E2 over � with j-
invariant equal to 0, we can find a polynomial D ∈ �[u, v] such that the cubic twists of
the curves E1, E2 by D(u, v) have positive rank over �(u, v). We also prove that for any
quadruple of pairwise distinct elliptic curves Ei, i = 1, 2, 3, 4, with j-invariant j = 0,

there exists a polynomial D ∈ �[u] such that the sextic twists of Ei, i = 1, 2, 3, 4, by
D(u) have positive rank. A similar result is proved for quadruplets of elliptic curves
with j-invariant j = 1, 728.

2000 Mathematics Subject Classification. 11G05.

1. Introduction. Kuwata and Wang [1] considered an elliptic surface E given by
the equation

E :
(
x3

1 + ax1 + b
)
y2 = x3

2 + cx2 + d,

where a, b, c, d ∈ � fulfill the following condition:

(a �= 0 or c �= 0) and (b �= 0 or d �= 0).

They proved that the set E(�) of rational points on E is dense in the Euclidean topology
in the set E(�) of all real points on E . This result was deduced from the existence of
a specific rational curve L on E (it should be noted that the curve had already been
obtained by Mestre in [2]). As a corollary, from the existence of the curve L, they
deduced that if E1, E2 are elliptic curves and their j-invariants are not equal to 0 or
1,728 simultaneously, then there exists a polynomial D ∈ �[t] such that the quadratic
twists E1, D, E2, D of the curves by D have positive rank. Their method cannot be used
in the case when j(E1) = j(E2) = j, where j = 0, 1, 728. Unfortunately, we are also
unable to show that in these cases one can construct quadratic twists of pairs of elliptic
curves with a positive rank. It is known that each elliptic curve has a quadratic twist.
However, it is well also known that elliptic curves with j-invariant equal to 0, or in
other words, curves of the form E : y2 = x3 + p also have higher twists. The cubic twist
of the curve E by D has the form ED : y2 = x3 + pD2. The sextic twist of the curve E
by D has the form ED : y2 = x3 + pD.

In the case of elliptic curves with j = 1, 728 or, in other words, curves of the form
E′ : y2 = x3 + px, there is one additional twist, the so-called quartic twist. The quartic
twist of the curve E′ by D has the form E′

D : y2 = x3 + pDx.
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Therefore, in view of the results of Kuwata and Wang, it is natural to state the
following.

QUESTION 1.1. Let E1, E2 be elliptic curves with j(E1) = j(E2) = 0. Is it possible to
find a polynomial D ∈ �[t] such that the cubic twists of E1, E2 by D have positive rank?

Similarly, we can ask the following.

QUESTION 1.2. Let E1, E2, . . . , En be elliptic curves with j(Ei) = 0 for i =
1, 2, . . . , n and suppose that Ei �= Ej for i �= j. What is the maximal number n = M6(0)
for which there exists a polynomial D ∈ �[t] such that the sextic twists of Ei, for
i = 1, 2, . . . , n, by D have positive rank?

QUESTION 1.3. Let E1, E2, . . . , En be elliptic curves with j(Ei) = 1, 728 for i =
1, 2, . . . , n and suppose that Ei �= Ej for i �= j. What is a maximal number n = M4(1, 728)
for which there exists a polynomial D ∈ �[t] such that the quartic twists of Ei, for
i = 1, 2, . . . , n, by D have positive rank?

Mestre [2] proved that for a given curve E with j-invariant j = 0 (resp. with j-
invariant j = 1, 728), there is a polynomial D(t) such that the sextic twist (resp. quartic
twist) of the curve E by D(t) has �(t) rank equal to 6 (resp. 4). This results may suggest
that M6(0) ≥ 6 and M4(1728) ≥ 4. As we will see, this prediction is true for quartic
twists (Theorem 3.1). Unfortunately, we are unable to prove that this is the case for
sextic twists. However, we are able to prove that M6(0) ≥ 4 (Theorem 2.3). We also
proved that the answer to the question (1.1) is positive (first part of Theorem 2.1)
and show that in order to find simultaneous cubic twists of three elliptic curves with j-
invariant j = 0, it is enough to find an elliptic curve with positive rank in some family of
elliptic curves depending on two rational parameters (the second part of Theorem 2.1).

2. Cubic and sextic twists. In this section we are interested in the construction
of cubic and sextic twists of pairs and triples of elliptic curves with j-invariant j = 0.
Let us recall how a torsion part of the curve E : y2 = x3 + q looks like with a fixed
q ∈ � [4, p. 323]. If q = 1, then TorsE ∼= �/6�. If q �= 1 and q is a square in �,
then TorsE = {O, (0,

√
q), (0, −√

q)}. In case when q = −432, we have TorsE =
{O, (12, 36), (12, −36)}. If q �= 1 and q is a cube in �, then TorsE = {O, (− 3

√
q, 0)}.

In the remaining cases we have TorsE = {O}. As an immediate consequence we obtain
that if ED : y2 = x3 + qD is a sextic twist of the curve E by D ∈ �[t] \ � and on the
curve ED we have a �(t) rational point P = (x, y) with xy �= 0, then the order of the
point P in the group ED(�(t)) is not finite. Thus, the curve ED over �(t) has positive
rank.

Now we are ready to prove the following theorem.

THEOREM 2.1.
(1) Let a, b ∈ � \ {0} and suppose a �= b. Consider the elliptic curves E1 : y2

1 = x3
1 +

a, E2 : y2
2 = x3

2 + b. Then there exists a polynomial D ∈ �[u, v] such that the cubic
twist of Ei by D has positive rank for i = 1, 2.

(2) Let a, b, c ∈ � \ {0} and suppose that these numbers are pairwise distinct. Suppose
that there exists rational numbers u, v such that the set of rational points on the
curve

E(a, b, c) : Y 2 = X(v3X − 1)((av6 − bu6)X + v3(cu6 − a))
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is infinite. Then the set of those numbers D, for which the cubic twists of elliptic
curves

E1 : y2
1 = x3

1 + a, E2 : y2
2 = x3

2 + b, E3 : y2
3 = x2

3 + c

by D have positive rank is infinite.

Proof. In order to prove our theorem we will construct rational curves on
hypersurface U given by the system of equations

U : D2 = y2
1 − x3

1

a
= y2

2 − x3
2

b
.

Let us consider the second equation in the system defining the hypersurface U and let
U ′ be the hypersurface defined by this equation, i.e.

U ′ :
y2

1 − x3
1

a
= y2

2 − x3
2

b
.

Let F(x1, y1, x2, y2) = b(y2
1 − x3

1) − a(y2
2 − x3

2).
We will show that the hypersurface U ′ is birationally equivalent to �3. In order to

prove this, let us put

x1 = pT, y1 = qT, x2 = rT, y2 = T. (1)

For xi, yi defined in this way, we have

F(x1, y1, x2, y2) = T2((ar3 − bp3)T − (a − bq2)).

By solving this equation with respect to T , we get a double root T = 0 and another
one given by

T = a − bq2

ar3 − bp3
=: λ(p, q, r).

Let S = {(p, q, r) ∈ �3 : ar3 − bp3 = 0} be the set where the function λ is not defined.
By the definition of λ, we get a rational function � : �3 \ S → U ′ given by

� : �3 \ S 
 (p, q, r) �→ (pλ(p, q, r), qλ(p, q, r), rλ(p, q, r), λ(p, q, r)) ∈ U ′.

Now define S′ = {(x1, y1, x2, y2) ∈ U ′ : y2 = 0}. Then for the rational function � :
U ′ \ S′ → �3 given by

� : U ′ \ S′ 
 (x1, y1, x2, y2) �→
(

x1

y2
,

y1

y2
,

x2

y2

)
∈ �3

we have � ◦ � = id�3\S and � ◦ � = idU ′\S′ . These equalities imply that the
hypersurface U ′ is birationally equivalent to �3.

For x1, y1, x2, y2 defined by (1), where T = λ(p, q, r), we have

y2
1 − x3

1

a
= y2

2 − x3
2

b
= (a − bq2)2(p3 − q2r3)

(ar3 − bp3)3
.
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Now, using the above parametrization of the set of rational points on the hypersurface
U ′ and the equality above, we can see that constructing rational points on the
hypersurface U is equivalent to constructing rational points on the threefold given
by the equation

h2 = (p3 − q2r3)(ar3 − bp3). (2)

In order to find rational points on the above hypersurface, we put p = u2 and r = 1,
where u is an indeterminate. Then the equation (2) defines a quadratic curve, say C3,
over the field �(u) with a �(u)-rational point (q, h) = (u3, 0). Using standard method
we find a parametrization of rational points on quadric C3 given by

q = −u3(1 + (a − bu6)v2)
1 − (a − bu6)v2

, h = 2u3(a − bu6)v
1 − (a − bu6)v2

.

Using these expressions and performing all the necessary calculations, we can define
the following polynomial D ∈ �[u, v]:

D(u, v) = 2v(1 − 2(a + bu6)v2 + (a − bu6)2v4).

Now, after some necessary computations and simplifications we can see that on the
curves

E1, D : y2
1 = x3

1 + aD(u, v)2, E2, D : y2
2 = x3

2 + bD(u, v)2,

which are cubic twists of the curves E1 and E2 respectively, we have �(u, v)-rational
points given by

P1 = (x1, y1) =
(

D(u, v)
2v

, (1 + (a − bu6)v2)
D(u, v)

2v

)
,

P2 = (x2, y2) =
(

D(u, v)
2u2v

, (1 − (a − bu6)v2)
D(u, v)

2u3v

)
.

From the remark presented at the beginning of this section, the point Pi has infinite
order on the curve Ei, D for i = 1, 2. This conclusion finishes the proof of the first part
of the theorem.

In order to prove the second part of the theorem, we consider a hypersurface

V : D2 = y2
1 − x3

1

a
= y2

2 − x3
2

b
= y2

3 − x3
3

c
.

Let us consider a hypersurface V ′ defined by the equations

V ′ :
y2

1 − x3
1

a
= y2

2 − x3
2

b
= y2

3 − x3
3

c
.

In order to find rational curves on V ′, let us put

x1 = u2T, y1 = pT, x2 = v2T, y2 = qT, x3 = T, y3 = rT

and take F(x, y) = y2 − x3. Note that if T = (−bp2 + aq2)/(−bu6 + av6) =: f1(p, q),
then the first equation defining V ′ is satisfied. On the other hand, if T = (−cq2 +
br2)/(b − cv6) =: f2(q, r), then the second equation defining V ′ is satisfied. From this
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reasoning we see that in order to find rational points on V ′ it is enough to show that
the quadric

Q :
−bp2 + aq2

−bu6 + av6
= −cq2 + br2

b − cv6
,

defined over the field �(u, v), has infinitely many rational points. On Q we have the
�(u, v)-rational point [p : q : r] = [u3 : v3 : 1]. Using a standard method we find a
rational parametrization of �(u, v)-rational points on the quadric Q

p = u3(−a + cu6 + (−bu6X2 + av6)X2),

q = (a − cu6)v3 + 2(bu6 − av6)X + (−bu6 + av6)v3X2,

r = a − cu6 − 2(a − cu6)v3X + (−bu6 + av6)X2.

For p, q, r defined above, we get T = T(X) := f1(p, q) = f2(p, q) and thus

F(u2T, pT)
a

= F(v2T, qT)
b

= F(T, rT)
c

= X(v3X − 1)((av6 − bu6)X + v3(cu6 − a))(2u3T(X))2.

Therefore, under our assumption we can find u, v ∈ � such that the set of rational
points on the curve E(a, b, c) is infinite, and then we can find an infinite set of rational
numbers, say D, such that for each D ∈ D, the cubic twist of the elliptic curve Ei by D
has positive rank for i = 1, 2, 3. �

From the first part of our theorem, we get an interesting corollary which is as
follows.

COROLLARY 2.2. Let a, b ∈ � \ {0} and consider elliptic curves E1 : y2
1 = x3

1 +
a, E2 : y2

2 = x3
2 + b and let us denote by Ei,D the cubic twist of the curve Ei by D for

i = 1, 2. Then the set

A := {D ∈ � : the curves E1, D, E2, D have positive rank over �}

is dense in �.

Proof. This is a simple consequence of the fact that degree of the polynomial
D ∈ �[u, v] (with respect to v) constructed in the first part of the previous theorem is
odd. �

Now, we state and prove theorem concerning the existence of twists of positive rank
for four elliptic curves with j-invariant j = 0. More precisely, we prove the following.

THEOREM 2.3. Let a, b, c, d ∈ � \ {0} be pairwise distinct and consider the elliptic
curves

E1 : y2
1 = x3

1 + a, E2 : y2
2 = x3

2 + b, E3 : y2
3 = x3

3 + c, E4 : y2
4 = x3

4 + d.

Then there exists a polynomial D ∈ �[u] such that the sextic twist of the elliptic curve Ei by
D(u) has positive �(u)-rank for i = 1, 2, 3, 4. Thus, the constant defined in Question 1.2
satisfies M6(0) ≥ 4.
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Proof. We will show that the set of rational curves on the hypersurface

V6 :
y2

1 − x3
1

a
= y2

2 − x3
2

b
= y2

3 − x3
3

c
= y2

4 − x3
4

d

is nonempty. It is clear that we are interesting in nontrivial rational curves only, i.e. a
curves L : xi = fi(u), yi = gi(u) which satisfy the condition y2

i − x3
i �= 0 for i = 1, 2, 3, 4.

Let us put

x1 = u2T, x2 = x3 = x4 = T, y1 = pT, y2 = qT, y3 = rT, y4 = sT. (3)

Now, let us note that if T = (−bp2 + aq2)/(a − bu6) =: f1(p, q), then the first equation
defining the hypersurface V6 is satisfied. On the other hand, if T = (−cq2 + br2)/(b −
c) =: f2(q, r), then the second equation defining the hypersurface V6 is satisfied, and
finally if T = (−dr2 + cs2)/(c − d) =: f3(r, s), then the third equation defining the
hypersurface V6 is satisfied. Hence, it is enough to show that the system of equations

−bp2 + aq2

a − bu6
= −cq2 + br2

b − c
= −dr2 + cs2

c − d

has nontrivial �(u)-rational solution. The above system is equivalent to

(b − c)p2 = (a − cu6)q2 + (bu6 − a)r2, (b − c)s2 = (d − c)q2 + (b − d)r2. (4)

From the geometric point of view, the system (4), as an intersection of two quadric
surfaces with rational point [p : q : r : s] = [u3 : 1 : 1 : 1], is birationally equivalent to
an elliptic curve of the form y2 = x3 + Ax + B for some A, B ∈ �[u] depending on
a, b, c, d. Although it is possible to give precise values of A and B (this could be done
using the result from [3, p. 77]), for our purposes, it is enough to find one non-trivial
point (i.e. different from [u3 : 1 : 1 : 1]) on the curve defined by (4). Now, we will
construct the desired solution of the system (4).

Using standard methods we can find parametric solutions of the first equation in
the system (4) in the following form:

p = (b − c)u3 − 2(a − cu6)v + (a − cu6)u3v2,

q = c − b + 2(b − c)u3v − (a − cu6)v2,

r = b − c − (a − cu6)v2,

where v is a rational parameter. We put the obtained parametrization into the second
equation in the system (4). We get the curve defined over the field �(u) by the equation
C6 : s2 = ∑4

i=0 Ai(u)vi =: f (v), where

A0 = (b − c)2, A1 = 4(b − c)(c − d)u3,

A2 = −2(ab + ac − 2ad + (bc − 3c2 − 2bd + 4cd)u6), A3 = 4(c − d)u3(a − cu6),
A4 = (a − cu6)2.

Let us note that the point Q = (v, s) = (0, b − c), lies on the curve C6. Moreover, we
should note that under the assumption Ei �= Ej for i �= j, the polynomial f is not even
(i.e. f (v) �= f (−v)). We use the point Q in order to compute the value of D(u) we are
looking for.
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Let us put v = S, s = mS2 + nS + b − c, where m, n are indeterminates. Then we
have the equality (mS2 + nS + b − c)2 − f (S) = ∑4

i=1 ai(m, n)Si, where ai ∈ �[m, n, u]
and ai is of degree 3i with respect to u for i = 1, 2, 3, 4. It is easy to check that the
system of equations a1(m, n) = a2(m, n) = 0 has a unique solution with respect to m, n
given by

m = m(u) = −a(b + c − 2d) + (−bc + c2 + 2bd − 2d2)u6

b − c
, n = n(u) = 2(c − d)u3.

For m, n as above, we see that the equation a3(m, n)S3 + a4(m, n)S4 = 0 has a triple
root at S = 0 and a �(u)-rational root S given by

S = S(u) = −a3(m(u), n(u))
a4(m(u), n(u))

= 2(b − c)u3

a + (b − c − d)u6
.

Thus, the point P = (S(u), m(u)S(u)2 + n(u)S(u) + b − c)) lies on the curve C6.
Using the values of m, n and S and performing all the necessary calculations and

simplifications in order to get polynomial values of p, q, r, s and

D(u) = y2
1 − x3

1

a
= y2

2 − x3
2

b
= y2

3 − x3
3

c
= y2

4 − x3
4

d
,

we get

p = (b − c)u3(−3a2 + 2a(b + c + d)u6 + (b2 − 2bc + c2 − 2bd − 2cd + d2)u12),

q = (b − c)(−a2 − 2a(b − c − d)u6 + (3b2 − 2bc − c2 − 2bd + 2cd − d2)u12),

r = (b − c)(a2 − 2a(b − c + d)u6 + (b2 + 2bc − 3c2 − 2bd + 2cd + d2)u12),

s = (b − c)(a2 − 2a(b + c − d)u6 + (b2 − 2bc + c2 + 2bd + 2cd − 3d2)u12)

and D(u) = 8(b − c)6u6(a + (b − c − d)u6)(a + (−b + c − d)u6)(a + (−b − c + d)u6)
F(u)2, where

F(u) =(b2 − 2bc + c2 − 2bd − 2cd + d2)2u24+
− 4a(b3 − b2c − bc2 + c3 − b2d + 10bcd − c2d − bd2 − cd2 + d3)u18

+ 2a2(3b2 + 2bc + 3c2 + 2bd + 2cd + 3d2)u12 − 4a3(b + c + d)u6 + a4.

The value of T = T(u) := f1(p, q) = f2(q, r) = f3(r, s) is given by

T = T(u) = (b − c)2F(u)
(a + (b − c − d)u6)4

.

From our reasoning we can see that on the curves Ei,D, which are the sextic twists of
Ei by D(u) for i = 1, 2, 3, 4, we have the points

P1 = (x1, y1) = (u2T(u)), p(u)T(u)),

P2 = (x2, y2) = (T(u), q(u)T(u)),

P3 = (x3, y3) = (T(u), r(u)T(u)),

P4 = (x4, y4) = (T(u), s(u)T(u)).
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From the remark presented at the beginning of this section, the point Pi is of infinite
order on the curve Ei, D for i = 1, 2, 3, 4. �

REMARK 2.4. It is also possible (by the same method) to find a polynomial D ∈
�[u, v, w] such that the sextic twist of the elliptic curve Ei by D(u, v, w) has positive
�(u, v, w)-rank for i = 1, 2, 3, 4. Indeed, taking the substitution

x1 = u2T, x2 = v2T, x3 = w2T, x4 = T, y1 = pT, y2 = qT, y3 = rT, y4 = sT

instead of (3), leads to the intersection of two quadric surfaces defined over �(u, v, w)
by {

(cv6 − bw6)p2 = (cu6 − aw6)q2 + (−bu6 + av6)r2,

(cv6 − bw6)s2 = (c − dw6)q2 + (−b + dv6)r2,

with �(u, v, w)-rational point (p, q, r, s) = (u3, v3, w3, 1). Using standards method it
is possible to find a parametric solution (with parameter t) of the first equation of our
system. After that we put the obtained parametrization into the second equation of
the system and the problem is reduced to finding non-trivial �(u, v, w)-rational point
(i.e. a point (t0, s0) whose t-coordinate satisfies t0 �= 0) on a curve of the form C : s2 =∑4

i=0 ai(u, v, w)ti. This can be done using exactly the same method as in the proof of
the theorem above. After necessary simplifications we get a polynomial D ∈ �[u, v, w]
and points Pi = (xi, yi) on curves Ei,D which are the sextic twists of the curves Ei for
i = 1, 2, 3, 4. Moreover, it is possible to show that the set of �(u, v, w)-rational points
on C is infinite.

REMARK 2.5. We tried to use the method employed in the theorem above to
construct simultaneous sextic twists with positive rank of five elliptic curves with j-
invariant j = 0. Unfortunately, we have been unable to do this. However, we firmly
believe that our method can be used in order to prove that M6(0) ≥ 5.

3. Quartic twists. In this section we are interested in the construction of quartic
twists of quadruplets of elliptic curves with j-invariant j = 1, 728. Before we give our
result, let us recall how the torsion part of the curve E : y2 = x3 + px with a fixed
p ∈ � \ {0} [4, p. 311] looks like.

If p = 4, then TorsE ∼= �/4�. If −p is a square in �, then TorsE ∼= �/2� × �/2�,
and finally if p does not fulfill any of these conditions, then TorsE ∼= �/2�. As an
immediate consequence, we obtain that if ED : y2 = x3 + pDx is the quartic twist of the
curve E by D ∈ �[t] \ � and on the curve ED we have a �(t) rational point P = (x, y)
with y �= 0, then the order of the point P in the group ED(�(t)) is not finite. Thus, the
curve ED over �(t) has a positive rank.

Now, we are ready to prove the following

THEOREM 3.1. Let a, b ∈ � \ {0} and consider the elliptic curves

E1 : y2
1 = x3

1 + ax1, E2 : y2
2 = x3

2 + bx2, E3 : y2
3 = x3

3 + cx3, E4 : y2
4 = x3

4 + dx4

Then there exists a polynomial D ∈ �[t] such that the quartic twist of the elliptic curve
Ei by D has positive rank for i = 1, 2, 3, 4. Thus, the constant defined in Question 1.3
satisfies M4(1728) ≥ 4.
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Proof. In order to prove our theorem we must show that the set of rational curves
on the hypersurface

W :
y2

1 − x3
1

ax1
= y2

2 − x3
2

bx2
= y2

3 − x3
3

cx3
= y2

4 − x3
4

dx4

is nonempty. It is clear that we are interested in nontrivial rational curves only, i.e.
curves L : xi = fi(u), yi = gi(u) which satisfy y2

i − x3
i �= 0 for i = 1, 2, 3, 4.

Define a rational function f (x, y) = (y2 − x3)/x and put

x1 = x2 = T1, x3 = x4 = T2, y1 = pT1, y2 = qT1, y3 = rT2, y4 = sT2, (5)

where p, q, r, s and T1, T2 are indeterminates.
Now let us note that if T1 = T1(p, q) = (−bp2 + aq2)/(a − b), then the first

equation defining the hypersurface W is satisfied. On the other hand, if T = T2(r, s) =
(−dr2 + cs2)/(c − d), then the third equation defining the hypersurface W is satisfied.
Moreover, we have

f (T1(p, q), pT1(p, q))
a

= f (T1(p, q), qT1(p, q))
b

= (p2 − q2)(−bp2 + aq2)
(a − b)2

,

f (T2(r, s), rT2(r, s))
c

= f (T2(r, s), sT2(r, s))
d

= (r2 − s2)(−dr2 + cs2)
(c − d)2

.

Thus, it is clear that in order to find a rational curve on the hypersurface W , it is
enough to find a rational curve on the surface

S4 : (c − d)2(p2 − q2)(−bp2 + aq2) = (a − b)2(r2 − s2)(−dr2 + cs2).

Let us denote by F(p, q, r, s) the polynomial defining the surfaceS4. From the geometric
point of view, S4 is a quartic surface containing the line p = q, r = s defined over �.
Using this fact, it is possible to show that our surface is birationally equivalent to
an elliptic curve of the form y2 = x3 + Ax + B for some A, B ∈ �[u] depending on
a, b, c, d. Although it is possible to give the precise values of A and B (this could be
done using the result from [3, p. 77]), for our purposes, it is enough to find one non-
trivial rational curve (i.e. a parametric curve satisfying (p2 − q2)(r2 − s2) �= 0) on the
surface S4.

In order to find the desired curve on the surface S4, we put

p = uT + t, q = vT + t, r = T + 1, s = 2T + 1, (6)

where u, v, t are indeterminates. Then for p, q, r, s defined in this way, we have
F(p, q, r, s) = ∑4

i=1 ai(u, v)Ti, where ai ∈ �[u, v, t] and ai is of degree i. It is easy to
check that the system of equations a1(u, v) = a2(u, v) = 0 has a solution with respect
to u, v given by

u = u(t) = −5a + b + (11c − 7d)t4

6(c − d)t3
, v = v(t) = a − 5b + (11c − 7d)t4

6(c − d)t3
. (7)
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For u, v as above, we see that the equation a3(u, v)T3 + a4(u, v)T4 = 0 has a triple root
at T = 0 and a �(t)-rational root T given by

T(t) = −a3(u(t), v(t))
a4(u(t), v(t))

. (8)

Now using the values of u, v and T and performing all the necessary calculations and
simplifications in order to get polynomial values of p, q, r, s, we obtain

p(t) = −108(c − d)2t12

(a − b)2
(u(t)T(t) + 1)a4(u(t), v(t)),

q(t) = −108(c − d)2t12

(a − b)2
(v(t)T(t) + t)a4(u(t), v(t)),

r(t) = −108(c − d)2t12

(a − b)2
(T(t) + 1)a4(u(t), v(t)),

s(t) = −108(c − d)2t12

(a − b)2
(2T(t) + 1)a4(u(t), v(t)).

Now we can compute the polynomial D(t) = f (T1(u, v), pT1(u, v))/a, where u, v are
given by (7) and p is as above, which is the value of the proper twist that we are looking
for

D(t) = 72t4(a + b − (c + d)t4)(a2 + 14ab + b2 − (c2 + 14cd + d2)t8)

× (4(a + b)2 + 4(a + b)(c + d)t4 + (c2 − 34cd + d2)t8)

× (a2 − 34ab + b2 + 4(a + b)(c + d)t4 + 4(c + d)2t8) × G(t),

where G(t) = ∑4
i=0 bit4i and bi ∈ �[a, b, c, d] are given by

b0 = (a2 − 34ab + b2)2, b1 = −4(a + b)(c + d)(a2 − 34ab + b2),

b2 = 6(a2c2 − 10abc2 + b2c2 − 10a2cd − 476abcd − 10b2cd + a2d2 − 10abd2 + b2d2),

b3 = −4(a + b)(c + d)(c2 − 34cd + d2), b4 = (c2 − 34cd + d2)2.

From our computations we see that on Ei,D, which is the quartic twist of Ei by D(t) for
i = 1, 2, 3, 4 respectively, we have the points

P1 = (x1, y1) = (T1(p(t), q(t)), p(t)T1(p(t), q(t))),

P2 = (x2, y2) = (T1(p(t), q(t)), q(t)T1(p(t), q(t))),

P3 = (x3, y3) = (T2(r(t), s(t)), r(t)T2(r(t), s(t))),

P4 = (x4, y4) = (T2(r(t), s(t)), s(t)T2(r(t), s(t))).

From the remark presented at the beginning of this section, the point Pi is of infinite
order on the curve Ei, D for i = 1, 2, 3, 4. �
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