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Abstract
Let G= (S, T, E) be a bipartite graph. For a matching M of G, let V(M) be the set of vertices covered by
M, and let B(M) be the symmetric difference of V(M) and S. We prove that if M is a uniform random
matching of G, then B(M) satisfies the BK inequality for increasing events.
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1. Introduction
Let V be a finite set. We will consider random subsets of V . LetA and B be upward closed subsets
of 2V ; in other words, let A and B be increasing events. Let A�B be the event that A and B both
occur disjointly. More formally, we define

A�B = {A∪ B| A ∈A, B ∈ B,A∩ B= ∅}.
Let G= (S, T, E) be a bipartite graph, and let V = S∪ T. Let M be the set of matchings in G.

For a matchingM ∈M, let V(M) be the set of vertices covered byM, and let

B(M)=V(M)�S,

where � denotes the symmetric difference. Note that we have |B(M)| = |S| for any matchingM.
Our main result is the following.

Theorem 1.1. Let M be a uniform random element ofM. Then B(M) satisfies the BK inequality for
increasing events, that is, ifA and B are upward closed subsets of 2V, then

P(B(M) ∈A�B)≤ P(B(M) ∈A)P(B(M) ∈ B).
For a random subset with independent marginals, the BK inequality was proved by

van den Berg and Kesten [5]. There is an extension of the notion A�B for arbitrary events, see
Subsection 2.1. With this definition, the BK inequality holds for all events in the case of a random
subset with independent marginals. This was conjectured by van den Berg and Kesten [5], and
proved by Reimer [2]. Building on the results of Reimer, van den Berg and Jonasson proved that
the BK inequality also holds for a uniform random k element subset if we only consider increasing
events [4]. Our results extend the results in [4], see the discussion after Theorem 1.4. See also the
paper of van den Berg and Gandolfi [3] for further results.
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We say that an event A depends only on V0 ⊆V , if for any A, B⊆V the conditions A∩V0 =
B∩V0 and A ∈A imply that B ∈A. Note that if A and B are increasing events depending on
disjoint subsets of V , thenA�B =A∩ B. Thus, Theorem 1.1 has the following corollary.

Corollary 1.2. Let B(M) be as above, then B(M) has negative associations, which means the follow-
ing. LetA and B be events depending on disjoint subsets of V. IfA and B are both increasing or both
decreasing, then

P(B(M) ∈A∩ B)≤ P(B(M) ∈A)P(B(M) ∈ B).
IfA is increasing and B is decreasing, then

P(B(M) ∈A∩ B)≥ P(B(M) ∈A)P(B(M) ∈ B).
Now we give a few extensions of Theorem 1.1. Assume that every edge e of G has a positive

weight w(e). For a matching M, we define the weight of M as w(M)=∏
e∈M w(e). Let M be a

random matching, where the probability of a matching is proportional to its weight. We have the
following extension of Theorem 1.1.

Theorem 1.3. Let M be as above. Then B(M) satisfies the BK inequality for increasing events, that
is, ifA and B are upward closed subsets of 2V, then

P(B(M) ∈A�B)≤ P(B(M) ∈A)P(B(M) ∈ B).
Furthermore, let V+ and V− be disjoint subsets of V . Let M′ have the same distribution as M

conditioned on the event that V+ ⊆ B(M) and V− ∩ B(M)= ∅. Let V ′ =V\(V+ ∪V−), and let
B′(M′)= B(M′)∩V ′. Clearly, B′(M′) is a random subset of V ′.
Theorem 1.4. The random subset B′(M′) satisfies the BK inequality for increasing events.

As a special case of Theorem 1.4, we can obtain the statement that a uniform random k ele-
ment subset of an n element set satisfies the BK inequality for increasing event. Thus, our results
generalize the result of van den Berg and Jonasson [4] mentioned above. Indeed, let G be a com-
plete bipartite graph (with constant edge weights) such that |S| = k and |T| = n. If we set V− = S
and V+ = ∅, then M′ is chosen uniformly at random from the set of matchings covering S. By
symmetry, it is clear that B′(M′) is a uniform random k element subset of T.

Theorem 1.4 also has the following corollary.

Corollary 1.5. Let M be as above. Then for any subset X and Y of V, we have

P(X ⊆ B(M))P(Y ⊆ B(M))≥ P(X ∩ Y ⊆ B(M))P(X ∪ Y ⊆ B(M)).

In other words, the law of B(M) satisfies the negative lattice condition. See [1], where various
notions of negative dependence are discussed.

We can also deduce the following theorem from Theorem 1.3.

Theorem 1.6. Let M be uniform random maximum size matching. Then the random subset B(M)
satisfies the BK inequality for increasing events.

2. The proofs
2.1 The definition ofA�B for arbitrary events
Let us recall how to extend the definition of A�B to arbitrary events. A subset C of V is in A�B
if and only if there are disjoint subsets VA and VB of V such that

{D⊆V|D∩VA = C ∩VA} ⊆A
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and
{D⊆V|D∩VB = C ∩VB} ⊆ B.

IfA and B are increasing, then this definition indeed coincides with our earlier definition.

2.2 The proof of Theorem 1.4
In this subsection, we prove Theorem 1.4. Note that Theorem 1.1 and Theorem 1.3 can be
obtained as special cases of Theorem 1.4.

Our proof will use several ideas of Berg and Jonasson [4].
Let I be the set of tuples (W,K, L, R), whereW is a subset of V , K and L are perfect matchings

in the induced subgraph G[W], R is a subgraph of G[V\W] consisting of vertex disjoint paths.1
Fix a linear ordering of the edges of G. Consider an i= (W,K, L, R) ∈ I. Then R is the vertex

disjoint union of the paths P1, P2, . . . , Pk, where we list the paths in increasing order of their lowest
edge. We can write Pj as the union of the matchingsMj,0 andMj,1. This decomposition is unique
once we assume that Mj,0 contains the lowest edge of Pj. For ω = (ω1,ω2, . . . ,ωk) ∈ {0, 1}k, we
define the matchings

Ci,ω =K ∪ ∪k
j=1Mj,ωj and Di,ω = L∪ ∪k

j=1Mj,1−ωj .

Moreover, we define

YC
i =

{
Ci,ω| ω ∈ {0, 1}k

}
,

YD
i =

{
Di,ω| ω ∈ {0, 1}k

}
,

and

Xi =
{
(Ci,ω,Di,ω)| ω ∈ {0, 1}k

}
.

Let Hi be the set of endpoints of the paths P1, P2, . . . , Pk. Let V(R) be the vertex set of R. Let
Bi = ((W ∪V(R))�S)\Hi. Let vj,0 and vj,1 be the two endpoints of Pj. If we choose the indices in
the right way, then we get that

B(Ci,ω)= Bi ∪
{
vj,ωj

∣∣ j= 1, 2, . . . , k
}
,

and
B(Di,ω)= Bi ∪

{
vj,1−ωj

∣∣ j= 1, 2, . . . , k
}
.

This immediately implies that{
B(Ci,ω)

∣∣ ω ∈ {0, 1}k}= {
B
(
Di,ω

)∣∣ ω ∈ {0, 1}k}
= {

Bi ∪H| H ⊆Hi and
∣∣H ∩ {vj,0, vj,1}∣∣= 1 for all j= 1, 2, . . . , k

}
.
(1)

Let Ui = {vj,1| j= 1, 2, . . . , k}. We define the map τi :M→ 2Ui by τi(M)= B(M)∩Ui. It is
clear from what is written above that the appropriate restriction of τi gives a bijection from YC

i to
2Ui , and also from YD

i to 2Ui . Moreover,

Xi =
{
(C,D) ∈ YC

i × YD
i
∣∣ τi(C)=Ui\τi(D)

}
. (2)

We define
M′ = {M ∈M| V+ ⊆ B(M),V− ∩ B(M)= ∅},

1In our terminology, a path must have at least 1 edge.
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Figure 1. The first figure describes a tuple i= (W, K, L, R) ∈ I: the vertices ofW are coloured black; the bold edges correspond
to the edges of K ∪ L∪ R; the labels show the edges of the matchings K, L and the decomposition of R into two paths P1 and
P2, and the two colour classes S and T of the bipartite graphs G. Note that the left most edge belongs to both K and L. In the
second figure vertices ofHi are coloured black; the edges of R= P1 ∪ P2 are bold; the labels show the indexing of the vertices
of Hi , and also the decomposition of the paths P1 and P2 into the matchings M1,0,M1,1 and M2,0,M2,1. The vertical edges are
in M1,0 and M2,0, the tilted edges are in M1,1 and M2,1. (Of course, depending on the linear ordering of the edges, the labels
of M1,0 and M1,1 can be switched, we omitted the linear ordering from these figures.) We used a grey frame to indicate the
elements of Ui . In the last four rows, the bold edges correspond to the matchings Ci,ω and Di,ω as indicated. The vertices in
B(Ci,ω) (and B(Di,ω)) are coloured black. The grey frame again contains the vertices of Ui .

and

I′ = {
i ∈ I| V+ ⊆ Bi,V− ∩ (Bi ∪Hi)= ∅}.

Lemma 2.1. The sets (Xi)i∈I′ give a partition ofM′ ×M′.
Proof. Let (C,D) ∈M′ ×M′. Consider the multi-graph C ∪D, it is a vertex disjoint union of
cycles and paths. Let R be the union of paths, and let Q be the union of cycles. Let W be the
vertices covered by the cycles. Let i= (W, C ∩Q,D∩Q, R). One can easily prove that i is the
unique element of I′ such that (C,D) ∈ Xi.

Moreover, if i ∈ I′, then Xi ⊂M′ ×M′. Thus, the statement follows. �
Given a subset F of 2V ′ , we defineMF as {M ∈M′|B′(M) ∈F}.
LetA and B be upward closed subsets of 2V ′ .

Lemma 2.2. If for all i ∈ I′, we have∣∣(MA�B ×M′)∩ Xi
∣∣≤ ∣∣(MA ×MB

)∩ Xi
∣∣, (3)
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then

P(B′(M′) ∈A�B)≤ P(B′(M′) ∈A)P(B′(M′) ∈ B).
Proof. Consider any i ∈ I′. If (C1,D1), (C2,D2) ∈ Xi, then C1 +D1 = C2 +D2 as multisets. In
particular, w(C1)w(D1)=w(C2)w(D2). Thus, there is a wi such that w(C)w(D)=wi for any
(C,D) ∈ Xi. Multiplying both sides of Inequality (3) by wi, we obtain that∣∣(MA�B ×M′)∩ Xi

∣∣ ·wi ≤
∣∣(MA ×MB

)∩ Xi
∣∣ ·wi,

which is equivalent to ∑
(C,D)∈

(
MA�B×M′

)
∩Xi

w(C)w(D)≤
∑

(C,D)∈(MA×MB)∩Xi

w(C)w(D).

Summing these inequalities for all i ∈ I′ and using Lemma 2.1, we obtain that∑
(C,D)∈MA�B×M′

w(C)w(D)≤
∑

(C,D)∈(MA×MB)
w(C)w(D).

This can be rewritten as⎛
⎝ ∑

M∈MA�B

w(M)

⎞
⎠( ∑

M∈M′
w(M)

)
≤
⎛
⎝ ∑

M∈MA

w(M)

⎞
⎠
⎛
⎝ ∑

M∈MB

w(M)

⎞
⎠ .

Dividing both sides by
(∑

M∈M′ w(M)
)2, we obtain that

P(B′(M′) ∈A�B)≤ P(B′(M′) ∈A)P(B′(M′) ∈ B). �
From Lemma 2.2, it follows that it is enough to prove that for any i ∈ I′, we have∣∣(MA�B ×M′)∩ Xi

∣∣≤ ∣∣(MA ×MB
)∩ Xi

∣∣. (4)

For a subset F of 2V ′ and i ∈ I′, we define

F i = {
τi(C)

∣∣C ∈ YC
i ∩MF

}= {
B(C)∩Ui

∣∣C ∈ YC
i , B

′(C) ∈F}.
From Equation (1), it follows that

{
B′(C)|C ∈ YC

i
}= {

B′(D)|D ∈ YD
i
}
. Therefore, F i ={

τi(D)|D ∈ YD
i ∩MF

}
. (Note that, even for an increasing F it might happen that F i is not

increasing.) For a subset J of 2Ui , we define J = {Ui\J|J ∈J }.
Then

|(MA×MB)∩ Xi| (5)
= ∣∣{(C,D) ∈ YC

i × YD
i
∣∣τi(C) ∈Ai, τi(D) ∈ Bi, τi(C)=Ui\τi(D)

}∣∣
= ∣∣{(A, B) ∈ 2Ui × 2Ui

∣∣A ∈Ai, B ∈ Bi,A=Ui\B
}∣∣

= ∣∣Ai ∩ Bi
∣∣.

Similarly, ∣∣(MA�B ×M′)∩ Xi
∣∣= ∣∣(A�B)i∣∣. (6)

Lemma 2.3. We have

(A�B)i ⊆Ai�Bi.
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Proof. Let F ∈ (A�B)i, then F = τi(C) for some C ∈ YC
i such that B′(C) ∈A�B. Since A and

B are upward closed, there are disjoint sets VA ∈A and VB ∈ B such that B′(C)=VA ∪VB. We
define

UA = {vj,1|
{
vj,0, vj,1

}∩VA = ∅, j ∈ {1, 2, . . . , k}}
and

UB = {vj,1|
{
vj,0, vj,1

}∩VB = ∅, j ∈ {1, 2, . . . , k}}.
Since VA and VB are disjoint and

∣∣B′(C)∩ {vj,0, vj,1}∣∣= 1 for all j, we obtain that UA and UB
are disjoint.

Moreover, if for some C′ ∈ YC
i , we have τi(C)∩UA = τi(C′)∩UA, then VA ⊆ B′(C′).

Consequently B′(C′) ∈A and τi(C′) ∈Ai. The analogous statement is true for VB and UB.
Therefore, the pair UA,UB witnesses that F = τi(C) ∈Ai�Bi. �

Recall the following theorem of Reimer [2]. See also [4].

Theorem 2.1. (Reimer) Let X and Y be subsets of 2U, where U is a finite set. Then

|X�Y| ≤ ∣∣X ∩Y
∣∣.

Combining Theorem 2.1 with Equations (5) and (6) and Lemma 2.3, we obtain that∣∣(MA�B ×M′)∩ Xi
∣∣= |(A�B)i| ≤ |Ai�Bi| ≤ ∣∣Ai ∩ Bi

∣∣= ∣∣(MA ×MB
)∩ Xi

∣∣.
This proves Inequality (4).

2.3 The proof Corollary 1.5
Let X0 = X\Y and Y0 = Y\X. Clearly the events X0 ⊆ B(M) and Y0 ⊆ B(M) depend on disjoint
sets. Theorem 1.4 gives us

P(X0 ⊆ B(M)|X ∩ Y ⊆ B(M))P(Y0 ⊆ B(M)|X ∩ Y ⊆ B(M))
≥ P(X0 ⊆ B(M), Y0 ⊆ B(M)|X ∩ Y ⊆ B(M)),

and this is equivalent with the statement of the corollary.

2.4 The proof Theorem 1.6
Let t > 0, and set all the edge weights to be equal to t. Let Mt be the corresponding random
matching. By Theorem 1.3, ifA and B are increasing events, then

P
(
B
(
Mt
) ∈A�B)≤ P(B

(
Mt
) ∈A)P

(
B
(
Mt
) ∈ B).

Observe that

lim
t→∞ P

(
B
(
Mt
) ∈A)= P(B(M) ∈A), lim

t→∞ P
(
B
(
Mt
) ∈ B)= P(B(M) ∈ B)

and lim
t→∞ P

(
B
(
Mt
) ∈A�B)= P(B(M) ∈A�B).

Thus, the statement follows.

Acknowledgements
The author is grateful to Péter Csikvári, Miklós Abért and the anonymous referees for their
comments. The author was partially supported by the ERC Consolidator Grant 648017.

https://doi.org/10.1017/S0963548322000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000189


Combinatorics, Probability and Computing 157

References
[1] Borcea, J., Brändén, P. and Liggett, T. (2009) Negative dependence and the geometry of polynomials. J Am Math Soc

22(2) 521–567.
[2] Reimer, D. (2000) Proof of the van den Berg–Kesten conjecture. Comb. Probab. Comput. 9(1) 27–32.
[3] van den Berg, J. andGandolfi, A. (2013) BK-type inequalities and generalized random-cluster representations. Probab.

Theory Relat. Fields 157(1-2) 157–181.
[4] van den Berg, J. and Jonasson, J. (2012) A BK inequality for randomly drawn subsets of fixed size. Probab. Theory

Relat. Fields 154(3-4) 835–844.
[5] van den Berg, J. and Kesten, H. (1985) Inequalities with applications to percolation and reliability. J. Appl. Probab.

22(3) 556–569.

Cite this article: Mészáros A (2023). A BK inequality for random matchings. Combinatorics, Probability and Computing 32,
151–157. https://doi.org/10.1017/S0963548322000189

https://doi.org/10.1017/S0963548322000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000189
https://doi.org/10.1017/S0963548322000189

	Introduction
	The proofs
	The definition of "026E30F mathcalA"026E30F square "026E30F mathcalB for arbitrary events
	The proof of Theorem 1.4
	The proof Corollary 1.5
	The proof Theorem 1.6


