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All matrices considered here have rational integral elements. In part icular 
some circulants of this na ture are investigated. An n X n circulant is of the 
form 

I Co C\ . . . Cn-i I 

r _ I Cn—l Co . . . Cn—2 I 

L<:i c-2 . . . Co J 

The following result concerning positive definite unimodular circulants was 
obtained recently (3 ; 4 ) : 

Let C be a unimodular n X n circulant and assume that C = AA\ where 
A is an n X n matrix and A' its transpose. Then it follows that C= C\C\ where 
C\ is again a circulant. 

For general unimodular matrices the assumption C = A A' is stronger than 
symmet ry and positive definiteness if and only if n > 8, as was shown by 
Minkowski (1). The question therefore arises whether symmet ry and positive 
definiteness suffice even for n > 8 in the theorem above; or in other words, 
whether a unimodular symmetric positive definite circulant is necessarily 
of the form A A''. (In this connection it was shown by I. Schoenberg (in a 
wri t ten communication) tha t a hermitian positive definite circulant with 
arbi t rary complex elements is always of the form A A' where A is again a 
circulant) . 

I t will be shown tha t the circulant M whose first row is 

(2, 1,0, - 1 , - 1 , - 1 , 0 , 1) 

is positive definite, unimodular, bu t not of the form A A''. 

Mordell (2) showed tha t every symmetric positive definite unimodular 
8 X 8 matr ix which is not of the form A A' is congruent to the matr ix K which 
corresponds to the quadrat ic form 

8 / 8 \ 2 

Yl Xi + V 12 Xi) — 2*1*2 - 2X2*8. 

The circulant M therefore is congruent to K. 
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T H E O R E M 1. The circulant M is not of the form A A'. 

Proof. Any matr ix of the form A A ' corresponds to a quadra t ic form which 
represents all integers if n > 4, b u t certainly represents both odd and even 
integers for any n. T h e quadra t ic form corresponding to M, however, represents 
only even integers. This proves the theorem. 

T h a t M is positive definite can be verified directly. I t is no more difficult 
to characterize all positive definite symmetr ic unimodular 8 X 8 circulants. 
This is done in the following lemma. 

LEMMA 1. Any circulant C whose first row is (a0, ai , . . . , a7) is unimodular, 
symmetric, and positive definite if and only if 

ao = è ( l + x), a i = a7 = \y, a2 = a% = 0, 

a-* = ab = — \y, a4 = \{\ - x), 

where x > 0 and x2 — 2y2 = 1. (The circulant M arises from x = 3, y = 2.) 

Proof. Any circulant C with first row (a0, a i , . . . , a7) has the eight char-
actens t ic roots 

7 

7 = 0 

where f runs through the eight roots of x8 — 1 = 0. The circulant C is uni­
modular and positive definite if the algebraic integers at are real positive 
units. From this it follows t ha t C is unimodular , symmetr ic , and positive 
definite if and only if 

(1) a() + 2a 1 + 2a2 + 2a3 + a4 = 1 (f = 1), 

(2) a0 - 2a 1 + 2a2 - 2a3 + a4 = 1 (f = - 1), 

(3) a„ - 2a2 + a4 == 1 (f2 = - 1), 

(4) a0 - a4 + (ax - a3)(f - f3) = 6! (f4 = - 1), 

(5) ao - a4 - (ai - a3) (f - f8) = e2 (f4 = - 1), 

where ei, €2 are real and positive units. 

The equations (1), (2), (3) imply t ha t a2 = 0, a0 + a4 = 1, a,\ + a» = 0. 
Introducing these relations and f — f3 = =b V 2 for f4 = — 1 into (4) and 
(5) we obtain 

2a0 - 1 + 2a 1 \/2 = eu 

2a0 — 1 — 2ai y/2 = e2. 

Hence 

((')) (2a«, - I ) 2 - 8a!2 = 6ie2. 

Since the left side of (6) is rational it follows t ha t €ie2 = 1. Pu t t ing 2a0 — 1. = x 
and 2a 1 = y the assertion follows. Since the general solution of x2 — 2y2 = 1 

https://doi.org/10.4153/CJM-1957-010-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-010-5


is given by 

we find that 

POSITIVE DEFINITE UNIMODULAR CIRCULANTS 

x - V2 y = (3 - 2 y/2)p = (1 - V2)2*, 

x - V2y = Zv - 2p . 3"-1 V2 
= (_!)/> _ 2p(-l)p~l V2 (mod 4). 

Thus y is always even, and 

1 + x 1 + ( - I f ( , 0. 
—2~" = ^ ( m o d 2 ) ' 

i.e., a0 is even when p is odd and odd when p is even. Thus the circulants 
derived from a solution with an even p are congruent to the identity, while 
those derived from a solution with an odd p are congruent to K. 

As the referee pointed out, the two classes of circulants can also be obtained 
from the fact that every positive definite unimodular 8 X 8 circulant C is a 
power of M. For, every power Mn is certainly such a circulant. Conversely, 
the proof of Lemma 1 shows that there is exactly one such circulant whose 
characteristic roots are given powers of the characteristic roots of M. 

If then n is even, we have Mn = M^n.M^n ~ I and for n odd we have 
Mn = Mh(n-l) MM^n~l) ~ M. 
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