CLASSES OF POSITIVE DEFINITE UNIMODULAR GIRCULANTS

MORRIS NEWMAN AND OLGA TAUSSKY

All matrices considered here have rational integral elements. In particular some circulants of this nature are investigated. An $n \times n$ circulant is of the form

$$
C=\left[\begin{array}{cc}
c_{0} & c_{1} \ldots c_{n-1} \\
c_{n-1} & c_{0} \ldots c_{n-2} \\
& \ldots \\
c_{1} & c_{2} \ldots c_{0}
\end{array}\right]
$$

The following result concerning positive definite unimodular circulants was obtained recently ($3 ; 4$):

Let C be a unimodular $n \times n$ circulant and assume that $C=A A^{\prime}$, where A is an $n \times n$ matrix and A^{\prime} its transpose. Then it follows that $C=C_{1} C_{1}{ }^{\prime}$ where C_{1} is again a circulant.

For general unimodular matrices the assumption $C=A A^{\prime}$ is stronger than symmetry and positive definiteness if and only if $n \geqslant 8$, as was shown by Minkowski (1). The question therefore arises whether symmetry and positive definiteness suffice even for $n \geqslant 8$ in the theorem above; or in other words, whether a unimodular symmetric positive definite circulant is necessarily of the form $A A^{\prime}$. (In this connection it was shown by I. Schoenberg (in a written communication) that a hermitian positive definite circulant with arbitrary complex elements is always of the form $A \bar{A}^{\prime}$ where A is again a circulant).

It will be shown that the circulant M whose first row is

$$
(2,1,0,-1,-1,-1,0,1)
$$

is positive definite, unimodular, but not of the form $A A^{\prime}$.
Mordell (2) showed that every symmetric positive definite unimodular 8×8 matrix which is not of the form $A A^{\prime}$ is congruent to the matrix K which corresponds to the quadratic form

$$
\sum_{i=1}^{8} x_{i}^{2}+\left(\sum_{i=1}^{8} x_{i}\right)^{2}-2 x_{1} x_{2}-2 x_{2} x_{8}
$$

The circulant M therefore is congruent to K.
Received April 12, 1956. The preparation of this paper was sponsored (in part) by the Office of Naval Research.

Theorem 1. The circulant M is not of the form $A A^{\prime}$.
Proof. Any matrix of the form $A A^{\prime}$ corresponds to a quadratic form which represents all integers if $n \geqslant 4$, but certainly represents both odd and even integers for any n. The quadratic form corresponding to M, however, represents only even integers. This proves the theorem.

That M is positive definite can be verified directly. It is no more difficult to characterize all positive definite symmetric unimodular 8×8 circulants. This is done in the following lemma.

Lemma 1. Any circulant C whose first row is $\left(a_{0}, a_{1}, \ldots, a_{7}\right)$ is unimodular, symmetric, and positive definite if and only if

$$
\begin{aligned}
& a_{0}=\frac{1}{2}(1+x), \quad a_{1}=a_{7}=\frac{1}{2} y, \quad a_{2}=a_{6}=0 \\
& a_{3}=a_{5}=-\frac{1}{2} y, \quad a_{4}=\frac{1}{2}(1-x)
\end{aligned}
$$

where $x>0$ and $x^{2}-2 y^{2}=1$. (The circulant M arises from $x=3, y=2$.)
Proof. Any circulant C with first row $\left(a_{0}, a_{1}, \ldots, a_{7}\right)$ has the eight characteristic roots

$$
\alpha_{i}=\sum_{i=0}^{7} a_{i} S^{i}
$$

where ζ runs through the eight roots of $x^{8}-1=0$. The circulant C is unimodular and positive definite if the algebraic integers α_{i} are real positive units. From this it follows that C is unimodular, symmetric, and positive definite if and only if

$$
\begin{align*}
a_{0}+2 a_{1}+2 a_{2}+2 a_{3}+a_{4} & =1 & & (\zeta=1), \tag{1}\\
a_{0}-2 a_{1}+2 a_{2}-2 a_{3}+a_{4} & =1 & & (\zeta=-1), \tag{2}\\
a_{0}+a_{4} & =1 & & \left(\zeta^{2}=-1\right), \tag{3}\\
a_{0}-a_{4}+\left(a_{1}-a_{3}\right)\left(\zeta-\zeta^{3}\right) & =\epsilon_{1} & & \left(\zeta^{4}=-1\right), \tag{4}\\
a_{0}-a_{4}-\left(a_{1}-a_{3}\right)\left(\zeta-\zeta^{3}\right) & =\epsilon_{2} & & \left(\zeta^{4}=-1\right), \tag{5}
\end{align*}
$$

where $\epsilon_{1}, \epsilon_{2}$ are real and positive units.
The equations (1), (2), (3) imply that $a_{2}=0, a_{0}+a_{4}=1, a_{1}+a_{3}=0$. Introducing these relations and $\zeta-\zeta^{3}= \pm \sqrt{ } 2$ for $\zeta^{4}=-1$ into (4) and (5) we obtain

$$
\begin{aligned}
& 2 a_{0}-1+2 a_{1} \sqrt{ } 2=\epsilon_{1}, \\
& 2 a_{0}-1-2 a_{1} \sqrt{ } 2=\epsilon_{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(2 a_{0}-1\right)^{2}-8 a_{1}{ }^{2}=\epsilon_{1} \epsilon_{2} . \tag{6}
\end{equation*}
$$

Since the left side of (6) is rational it follows that $\epsilon_{1} \epsilon_{2}=1$. Putting $2 a_{0}-1=x$ and $2 a_{1}=y$ the assertion follows. Since the general solution of $x^{2}-2 y^{2}=1$
is given by

$$
x-\sqrt{ } 2 y=(3-2 \sqrt{ } 2)^{p}=(1-\sqrt{ } 2)^{2 p}
$$

we find that

$$
\begin{aligned}
x-\sqrt{ } 2 y & \equiv 3^{p}-2 p \cdot 3^{p-1} \sqrt{ } 2 \\
& \equiv(-1)^{p}-2 p(-1)^{p-1} \sqrt{ } 2 \quad(\bmod 4)
\end{aligned}
$$

Thus y is always even, and

$$
\frac{1+x}{2} \equiv \frac{1+(-1)^{p}}{2}
$$

i.e., a_{0} is even when p is odd and odd when p is even. Thus the circulants derived from a solution with an even p are congruent to the identity, while those derived from a solution with an odd p are congruent to K.

As the referee pointed out, the two classes of circulants can also be obtained from the fact that every positive definite unimodular 8×8 circulant C is a power of M. For, every power M^{n} is certainly such a circulant. Conversely, the proof of Lemma 1 shows that there is exactly one such circulant whose characteristic roots are given powers of the characteristic roots of M.

If then n is even, we have $M^{n}=M^{\frac{1}{2} n} \cdot M^{\frac{1}{2} n} \sim I$ and for n odd we have $M^{n}=M^{\frac{1}{2}(n-1)} M M^{\frac{1}{2}(n-1)} \sim M$.

References

1. H. Minkowski, Grundlagen für eine Theorie der quadratischen Formen mit ganzzahligec Koeffzienten, Gesammelte Abhandlungen 1 (1911), 3-144.
2. L. J. Mordell, The definite quadratic forms in 8 variables with determinant unity, J. de Math. pures et appliquées, 17 (1938), 41-46.
3. M. Newman and O. Taussky, On a generalizaiion of the normal basis in abelian algebrain number fields, Comm. on Pure and Applied Math. 9 (1956), 85-91.
4. O. Taussky, Unimodular integral circulants, Math. Zeitschr. 63 (1955), 286-289.

National Bureau of Standards, Washington 25, D.C.

