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Abstract We construct some series of polyhedral schemata which represent orientable closed connected
3-manifolds. We show that these manifolds have spines corresponding to certain balanced presentations
of their fundamental groups. Then we study some covering properties of such manifolds and prove that
many of them are cyclic branched coverings of lens spaces. Our theorems contain a number of published
results from various sources as particular cases.
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1. Introduction

The goal of this paper is to study the topological and geometrical properties of certain
classes of group presentations depending on a finite number of integers. This kind of work
can be found in several papers (see, for example, [1–6,8–10,12–17,19,21,27,29]), where
there are many connections between the theory of cyclically presented groups (see § 3 for
the definition) and the topology of cyclic branched coverings of knots. Given a knot K in
the 3-sphere S3, we say that a closed connected 3-manifold M is an n-fold cyclic branched
covering of K if M is the n-fold cyclic covering of S3 branched over K (see, for exam-
ple, [26]). This implies that M is the n-fold cyclic covering of the orbifold O(K, n) having
S3 and K as underlying space and singular set, respectively. In this case, the fundamen-
tal group π1(M) has a cyclic automorphism of order n, and the split-extension group of
π1(M) is the group of the orbifold O(K, n). For example, if K is the trefoil knot, then
the fundamental group of the n-fold cyclic branched covering of K is isomorphic to the
Sieradski group S(n) generated by x1, . . . , xn with cyclic relations xixi+2 = xi+1, where
the indices are taken mod n (see [3]). If K is the figure-eight knot, it was shown in [8]
and [9] that the fundamental group of the n-fold cyclic branched covering of K is iso-
morphic to the Fibonacci group F (2, 2n) generated by a1, . . . , a2n with cyclic relations
aiai+1 = ai+2 (indices mod 2n). Moreover, a combinatorial description for such mani-
folds by Dehn surgeries on the components of certain oriented links was given in [2]
(for surgery on links see also [20]). Sieradski and Fibonacci manifolds admit nice com-
binatorial representations as quotients of polyhedral 3-balls by pairwise identifications
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of oppositely oriented boundary faces. Some natural generalizations of these polyhedral
schemata were given, for example, in [1,5,12,15]. In the present paper we will consider
more general tessellations of the boundary of a 3-ball, including those obtained in the
quoted papers as particular cases. These tessellations define a family of closed orientable
3-manifolds Mn(pi, qi, ki), i = 1, . . . , n, having spines encoded by certain balanced group
presentations. Our goal is to study some topological and geometrical properties of the
constructed manifolds and groups.

For any n � 1, ki ∈ Z, and coprime integers pi, �i (pi � 1), i = 1, . . . , n, we consider
a family of finitely generated groups Gn(pi, �i, ki), which are defined by the following
balanced presentations:

Pn(pi, �i, ki) = 〈x1, . . . , xn, y1, . . . , yn : x−1
i xi+1y

�i
i y

−�i−1+pi−1
i−1 = 1,

(y�i
i y

−�i+1
i+1 )ki−1y�i

i xi+2 = 1 (indices modn)〉.

If pi = �i = 1, the first relations give yi = x−1
i+1xi and substituting in the second relations

yields
P ′

n(1, 1, ki) = 〈x1, . . . , xn : (x−1
i+1xix

−1
i+1xi+2)ki−1x−1

i+1xixi+2 = 1〉.
These presentations were considered in [1] and [15] for ki = 2, and in [5] and [12] for ki =
k � 2. It was shown that they correspond to spines of the n-fold cyclic branched coverings
of the 2-bridge knot (2k + 1)2, which is the closure of the rational (4k − 1)/2-tangle.

On the other hand, the second relations of Pn(pi, �i, ki) give

xi+2 = y−�i
i (y�i+1

i+1 y−�i
i )ki−1

and substituting in the first relations yields new balanced presentations for the groups
Gn(pi, �i, ki):

P ′′
n (pi, �i, ki) = 〈y1, . . . , yn : (y�i

i y
−�i+1
i+1 )ki(y�i+2

i+2 y
−�i+1
i+1 )ki+1y

pi+1
i+1 = 1〉

(from now on the phrase ‘indices modn’ will be understood). These presentations were
considered in [5,13,21] for pi = p, �i = q and ki = k, and in [12] for pi = �i = 1 and
ki = k � 2. It was shown that they define the fundamental groups of an interesting
class of closed orientable 3-manifolds, called (periodic) Takahashi manifolds, first intro-
duced in [30], and subsequently studied by several authors (see [13,21,27]). Examples
of Takahashi manifolds are given by Fibonacci manifolds [2,8,9], generalized Fibonacci
manifolds [16,17], fractional Fibonacci manifolds [14], and Sieradski manifolds [3,4]. As
pointed out in [12], many Takahashi manifolds are also examples of maximally symmetric
3-manifolds in the sense of [32].

In § 2 we briefly recall the representation theory of closed orientable 3-manifolds by
means of RR-systems, and use it to show that the group presentations defined above are
geometric. In § 3 we construct geometrically a family of closed orientable 3-manifolds
by side pairings of oppositely oriented boundary faces of certain polyhedral 3-balls,
and obtain spines corresponding to balanced presentations of their fundamental groups.
Finally, § 4 is devoted to a study of some covering properties of such manifolds, and split
extensions of their fundamental groups.
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2. Geometric presentations

In this section we show that the group presentations P ′′
n (pi, �i, ki) are geometric, that

is, they correspond to spines of closed connected orientable 3-manifolds. To prove this,
we use the combinatorial representations of closed orientable 3-manifolds by RR-systems
(railroad systems), due to Osborne and Stevens (see [22–25,29]), and subsequently com-
pleted by Hog-Angeloni in [11]. We briefly sketch the theory from a qualitative point
of view by making use of an example arising from our geometric constructions (more
details and precise definitions can be found in the quoted papers). So, let P be a finite
balanced group presentation with n generators xi and n relators ri. Let KP denote the
canonical 2-complex (with one vertex) associated with P . It is well known that any closed
connected orientable 3-manifold admits a spine of type KP , but not every 2-complex KP

is a spine of some 3-manifold. There are many criteria in the literature for P to be a
geometric presentation. The first one is based on the representation of 3-manifolds by
Heegaard diagrams. Let M be a closed connected orientable 3-manifold, and let (V1, V2)
denote a Heegaard splitting of M of genus n. A properly embedded disc D in the han-
dlebody V2 is called a meridian disc of V2 if cutting V2 along D yields a handlebody
of genus n − 1. A collection of n mutually disjoint meridian discs {Di} in V2 is called a
complete system of meridian discs of V2 if cutting V2 along

⋃
i Di gives a 3-ball. Let αi

denote the 1-sphere ∂Di which lies in the closed orientable surface ∂V1 = ∂V2 of genus n.
The system (V1; α1, . . . , αn) is said to be a Heegaard diagram of M associated with the
splitting (V1, V2).

The following criterion is well known (see, for example, [11]).

Theorem 2.1. Let P be a finite balanced group presentation with n generators xi and
n relators ri. The canonical 2-complex KP is a spine of a closed orientable 3-manifold
M if and only if it is possible to draw 2-sided simple closed curves α1, . . . , αn on the
boundary of an orientable handlebody V with n handles (one handle for each generator
xi) such that αi reads the relator ri.

Let us consider, for example, the group presentation P = P ′′
2 (pi, �i, ki), where (p1, �1) =

(2,−1), (p2, �2) = (3, 1) and k1 = k2 = 1. Then we have

P = 〈x, y : y3 = (xy)2 = x−2〉.

This presentation is geometric since it arises from the Heegaard diagram drawn in Fig-
ure 1. Then KP corresponds to a spine of a closed orientable 3-manifold. The curves α1

and α2 on the boundary of a genus 2 orientable handlebody read the relators (xy)2x2

and y3x2, respectively.
Cutting the surface F = ∂V along a system of meridian discs determines a 2-sphere

with 2n holes. These holes correspond to pairs of attaching discs, Di and D̄i say, arising
from the cutting of the handles of V . Any curve αi specified above splits into a finite
collection of pairwise-disjoint simple arcs {αij} running on the punctured 2-sphere. We
can always assume that these arcs are transversal to the boundaries of the holes. For
example, the Heegaard diagram of Figure 1 can be represented on the punctured 2-
sphere, as shown in Figure 2.
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Figure 1. A Heegaard diagram of M = (O 0 O : −1(2, −1)(3, 1)(2, 1))
inducing the presentation 〈x, y : (xy)2 = x−2 = y3〉.

Of course, we can restate Theorem 2.1 in the following equivalent form that uses
graphical representations on punctured spheres.

Theorem 2.2. With the above notation, KP is a spine of a closed orientable 3-mani-
fold M if and only if it is possible to draw n collections αi = {αij} of pairwise-disjoint
simple arcs on a 2-sphere with 2n holes such that αi reads the relator ri.

It turns out that each ‘hole’ Di on the punctured 2-sphere can be regarded as a hexagon
labelled by the generator xi of P . The edges of this hexagon are labelled by integers pi,
�i and pi +�i, where pi and �i are coprime. The arcs of the collections αi = {αij} connect
the hexagons. Their endpoints avoid the corners of the hexagons. We run from an arc
αij to the next one αij+1 by proceeding along a line segment which lies in the interior of
a hexagon and is orthogonal to two of its edges. To obtain the relator ri corresponding
to the collection αi = {αij}, it suffices to read the labels of the edges of the hexagons
encountered running along the arcs of the collection. This construction, which gives rise
to an RR-system (railroad system), is shown in Figure 3 for our initial example.

The following is a fundamental result in the theory of RR-systems (see the quoted
papers).

Theorem 2.3. The complex KP is a spine of a closed connected orientable 3-manifold
if and only if it is possible to draw collections αi of pairwise-disjoint simple arcs on a
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Figure 2. The Heegaard diagram of M = (O 0 O : −1(2, −1)(3, 1)(2, 1))
drawn on the punctured 2-sphere.

2-sphere with n hexagons labelled by integers pi, �i and pi + �i, where pi and �i are
coprime (briefly, an RR-system), such that αi reads the relator ri.

As an application, we state a nice result that follows immediately from Theorem 3.1
of [22] (cf. also the subsequent remark on p. 485).

Proposition 2.4. Let M be a closed connected orientable 3-manifold having a spine
which corresponds to the geometric presentation

〈x, y : xpyn = 1, (xmyq)kxmyn+q = 1〉,

where |p|, |n| > 1, and p, m, respectively, n, q, are coprime integers. Then M is homeo-
morphic to the Seifert fibred manifold defined by the invariants

(O 0 O : −1(p, m)(n, −q)(k + 1, k)).

Now let us consider the RR-system depicted in Figure 4. Then it induces a balanced
presentation with three generators y1, y2 and y3 and three relations (indices mod 3)

(y�i
i y

−�i+1
i+1 )ki(y�i+2

i+2 y
−�i+1
i+1 )ki+1y

pi+1
i+1 = 1,

where k1 = 1, k2 = 2 and k3 = 3 (one can directly draw pictures of RR-systems for the
general case by simple iterations). If pi and �i are coprime, Theorem 2.3 implies that
these presentations are geometric, and so they correspond to spines of closed orientable
3-manifolds. More precisely, we have the following theorem.
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Figure 3. An RR-system inducing the group presentation 〈x, y : (xy)2 = x−2 = y3〉.

Theorem 2.5. For all coprime integers pi and �i (pi � 1) and ki ∈ Z, the balanced
group presentations P ′′

n (pi, �i, ki) arise from RR-systems, that is, they are geometric.
Then the canonical 2-complexes corresponding to them are spines of closed connected
orientable 3-manifolds Mn(pi, �i, ki).

We will see in § 4 that the manifold Mn(pi, �i, ki) for n = 1 is homeomorphic to the
lens space L(p, �) (including the 3-sphere for p = 1), where pi = p and �i = �.

For n = 2, the group presentation P ′′
n (pi, �i, ki) becomes

P ′′
2 = P ′′

2 (pi, �i, ki) = 〈y1, y2 : (y�1
1 y−�2

2 )k1(y�1
1 y−�2

2 )k2yp2
2 = 1,

(y�2
2 y−�1

1 )k2(y�2
2 y−�1

1 )k1yp1
1 = 1〉;

hence

P ′′
2 = 〈y1, y2 : yp1

1 = (y�1
1 y−�2

2 )k1+k2 = y−p2
2 〉

∼= 〈y1, y2 : yp1
1 yp2

2 = 1, (y�1
1 y−�2

2 )k1+k2−1y�1
1 yp2−�2

2 = 1〉.

Since this presentation is geometric, we apply Proposition 2.4 to get the following result.

Proposition 2.6. For any coprime integers pi and �i (pi > 1) and ki ∈ Z, the manifold
M2(pi, �i, ki) is homeomorphic to the Seifert fibred space defined by the invariants

(O 0 O : −1(p1, �1)(p2, �2)(k1 + k2, k1 + k2 − 1)).

In particular, our example is the spherical Seifert manifold defined by the invariants
(O 0 O : −1(2,−1)(3, 1)(2, 1)). By [28] we recall that the geometry of a Seifert bundle can
be determined from the invariants χ and e, where χ is the Euler characteristic of the base
orbifold and e is the Euler number of the Seifert bundle. For the manifolds M2(pi, �i, ki)
we have

e =
1

k1 + k2
− �1

p1
− �2

p2
, χ = −1 +

1
k1 + k2

+
1
p1

+
1
p2

.

As a consequence, the geometric structures of such manifolds are completely determined
as follows.
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Figure 4. An RR-system inducing the presentations P ′′
n (pi, �i, ki)

(case n = 3, k1 = 1, k2 = 2, k3 = 3).

Corollary 2.7. If
p1p2 = (k1 + k2)(p1�2 + p2�1)

and χ < 0 (respectively, χ = 0, χ > 0), then M2(pi, �i, ki) is an H2×R-manifold (respect-
ively, a Euclidean manifold, a S2 × R-manifold). If

p1p2 �= (k1 + k2)(p1�2 + p2�1)

and χ < 0 (respectively, χ = 0, χ > 0), then M2(pi, �i, ki) is a S̃L2(R)-manifold (respect-
ively, a nil-manifold, a spherical manifold).

3. Polyhedral constructions

In this section we construct a nice polyhedron Pn(pi, �i, ki) (which is homeomorphic
to a 3-ball) representing the closed orientable manifold Mn(pi, �i, ki). It turns out that
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the fundamental group of this manifold is isomorphic to the group Gn(pi, �i, ki) defined
above. Moreover, the canonical 2-complex associated with the balanced presentation
Pn(pi, �i, ki) is a spine of the manifold Mn(pi, �i, ki). So this presentation is geometric,
and arises from a Heegaard diagram of the manifold which can be immediately obtained
from its polyhedral representation.

Theorem 3.1. For n � 1, ki ∈ Z, ki � 2, and coprime integers pi, �i, 1 � pi < �i, the
balanced presentation Pn(pi, �i, ki) of the group Gn(pi, �i, ki) corresponds to a spine of a
closed connected orientable 3-manifold Mn(pi, �i, ki).

Proof. Let us consider a triangulated 3-ball Pn(pi, �i, ki) whose boundary consists of
n polygons T ′

i of �i + �i−1 − pi−1 + 2 edges in the northern hemisphere, n polygons Q′
i of

ki�i + (ki − 1)�i+1 + 1 edges in the southern hemisphere, and polygons Ti and Qi having
the same number of edges of T ′

i and Q′
i, respectively, in the equatorial zone (i = 1, . . . , n;

indices mod n). For example, the polyhedron P3(pi, �i, ki), where gcd(pi, �i) = 1, �i > pi

(i = 1, 2, 3), k1 = 2, k2 = 3 and k3 = 4 is depicted in Figure 5. Here we have used a
simplified notation, that is, an ‘edge’ labelled, for example, by a symbol y�i−pi

i represents
a sequence of �i − pi equally oriented edge segments labelled by yi.

If the parameters satisfy the conditions listed above, the oriented edges fall into 2n
classes labelled x1, . . . , xn and y1, . . . , yn.

For each i = 1, . . . , n, the boundary cycle of the polygons Ti and T ′
i is given by the

word
x−1

i xi+1y
�i
i y

−�i−1+pi−1
i−1 ,

where the indices are taken mod n. For each i = 1, . . . , n, the boundary cycle of the
polygons Qi and Q′

i is defined by the word

(y�i
i y

−�i+1
i+1 )ki−1y�i

i xi+2,

where the indices are taken mod n. Now we consider the pairwise identifications of the
boundary faces of the polyhedron Pn(pi, �i, ki). For each i = 1, . . . , n, let ti identify
the polygons Ti and T ′

i , and let qi identify the polygons Qi and Q′
i so that the corre-

sponding oriented edges of the polygons carrying the same label are identified together.
As a result of this side pairing, we get a cellular complex which triangulates an ori-
entable pseudomanifold Mn(pi, �i, ki). This quotient complex has one vertex, 2n edges,
2n 2-cells, and one 3-cell. So it is a closed connected orientable 3-manifold, as its Euler
characteristic vanishes. The fundamental group of this manifold is isomorphic to the
group Gn(pi, �i, ki). Furthermore, the balanced presentation Pn(pi, �i, ki) corresponds to
a spine of the constructed manifold. �

Let us consider now the particular case pi = 1, �i = � � 1 and ki = k � 2, and
denote the polyhedron Pn(pi, �i, ki) simply by Pn(k, �). The boundary of this polyhedron
consists of n (2� + 1)-gons

T ′
i = NHi · · ·AiAi+1 · · ·Hi+1
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Figure 5. The polyhedron P3(pi, �i, ki), �i > pi, gcd(pi, �i) = 1, k1 = 2, k2 = 3 and k3 = 4.

in the northern hemisphere, n [�(2k − 1) + 1]-gons

Q′
i = S · · ·KiBiCiDi · · ·Bi+1

in the southern hemisphere, n (2� + 1)-gons

Ti = Ai−1Bi−1Ci−1Li−1 · · ·Mi−1,

and n [�(2k − 1) + 1]-gons

Qi = AiAi+1Bi+1 · · ·CiLi · · ·Mi

in the equatorial zone, where i = 1, . . . , n, and all indices are taken modn. Thus Pn(k, �)
has 4n faces, (2� + 1)n + n[�(2k − 1) + 1] edges, and �n(2k + 1) + 2 − 2n vertices. For
example, the polyhedron P3(3, 2) is depicted in Figure 6.

If � = 1 and k = 2, we obtain exactly the polyhedra considered in [1] and [15], whose
side pairing quotients triangulate the cyclic branched coverings of the knot 52. If � = 1
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Figure 6. The polyhedron P3(k, �), where k = 3 and � = 2.

and k � 2, then we have the polyhedra constructed in [5] and [12], which give polyhedral
schemata for cyclic branched coverings of the knot (2k + 1)2.

By side pairings, the oriented edges fall into 2n classes labelled x1, . . . , xn (each one
of them formed by exactly three edges), and y1, . . . , yn (each one of them consisting of
�(2k + 1) − 1 edges). For each i = 1, . . . , n, the boundary cycle of the (2� + 1)-gons Ti

and T ′
i is given by the word x−1

i xi+1y
�
iy

−�+1
i−1 , where the indices are taken mod n. For each

i = 1, . . . , n, the boundary cycle of the [�(2k − 1) + 1]-gons Qi and Q′
i is defined by the

word (y�
iy

−�
i+1)

k−1y�
ixi+2, where the indices are taken mod n. Now we consider the pairwise

identifications of the boundary faces of the polyhedron Pn(k, �). For each i = 1, . . . , n,
let ti identify the (2� + 1)-gons Ti and T ′

i , and let qi identify the [�(2k − 1) + 1]-gons Qi

and Q′
i so that the corresponding oriented edges of the polygons carrying the same label

are identified together. This produces cycles of equivalent edges as follows. For the label
xi, we have

Bi−1Ai−1
ti−→ NHi

t−1
i−1−−−→ Bi−2Ci−2

q−1
i−2−−−→ Bi−1Ai−1,
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whence
tit

−1
i−1q

−1
i−2 = 1.

For the label yi, we get

Ai+1Ai
qi−→ CiDi

qi−→ · · · qi−→ SKi

q−1
i−1−−−→ · · ·

q−1
i−1−−−→ Ci−1Li−1

ti−→ Hi+1Ai+1
t−1
i+1−−→ AiMi

qi−→ · · ·
qi−→ KiBi

q−1
i−1−−−→ · · ·

q−1
i−1−−−→ Li−1Mi−1

ti−→ Ai+1Ai,

whence
(qk

i q
−(k−1)
i−1 tit

−1
i+1)

�−1qk
i q

−(k−1)
i−1 ti = 1.

Let us denote the quotient manifold simply by Mn(k, �). So we have proved the following
corollary which extends a result of [15] (case � = 1 and k = 2).

Corollary 3.2. For any n � 1, � � 1 and k � 2, the fundamental group of the manifold
Mn(k, �) admits the balanced presentation (which is the dual of the presentation Pn(k, �)
of the group Gn(k, �))

P ∗
n(k, �) = 〈t1, . . . , tn, q1, . . . , qn : tit

−1
i−1q

−1
i−2 = 1, (qk

i q
−(k−1)
i−1 tit

−1
i+1)

�ti+1 = 1〉.

The first relations give qi = ti+2t
−1
i+1 and substituting into the second relations yields

((ti+2t
−1
i+1)

k(tit−1
i+1)

k−1tit
−1
i+1)

�ti+1 = 1,

hence we get a further consequence as follows.

Corollary 3.3. With the above notation, the group Gn(k, �) admits the cyclic pre-
sentation

〈t1, . . . , tn : ((ti+2t
−1
i+1)

k(tit−1
i+1)

k)�ti+1 = 1〉,

which is isomorphic to the cyclic presentation

P ′′
n (k, �) = 〈y1, . . . , yn : (y�

iy
−�
i+1)

k(y�
i+2y

−�
i+1)

kyi+1 = 1〉

obtained in § 1.

4. Split extensions and branched coverings

In this section we consider the manifolds Mn(pi, �i, ki), where pi = p � 1, �i = � � 1,
gcd(p, �) = 1 and ki = k � 2. We denote such manifolds briefly by Mn(k, �, p) (and
Mn(k, �) as usual for p = 1). We will prove that these manifolds are cyclic branched
coverings of the lens space L(p, �) (including the 3-sphere for p = 1). This gives explicit
examples of L(p, �)-hyperelliptic manifolds in the sense of [18]. We also study the
split-extension group of Gn(k, �) by the cyclic automorphism corresponding to cyclic
presentations of it. For this, we recall a few definitions on group presentations and
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refer to any standard textbook for more details. Let Fn be the free group of rank n

generated by x1, . . . , xn, and let θ be the automorphism of Fn defined by setting
θ(xi) = xi+1, for i = 1, . . . , n, where the indices are taken mod n. For a reduced word
w in Fn, let Gn(w) be the factor group Fn/R, where R is the normal closure in Fn

of the set {w, θ(w), . . . , θn−1(w)}. Then Gn(w) has a cyclic presentation with genera-
tors x1, . . . , xn, and relations w = 1, θ(w) = 1, . . . , θn−1(w) = 1. A group G is said to
have a cyclic presentation if G is isomorphic to Gn(w) for some w and n. Of course,
θ induces an automorphism of Gn(w) which determines an action of the cyclic group
Zn = 〈θ : θn = 1〉 on Gn(w). The split-extension group Hn(v) of Gn(w) by Zn admits
a presentation with generators x and θ, and relations θn = 1 and v(θ, x) = 1, where
v(θ, x) = w(x, θ−1xθ, . . . , θ−(n−1)xθn−1).

Let us consider the polyhedron Pn(k, �), and let ρ be the symmetry of order n of
Pn(k, �) such that

ρ : Ti → Ti+1, T ′
i → T ′

i+1, Qi → Qi+1, Q′
i → Q′

i+1,

where the indices are taken mod n. With respect to the presentation of Gn(k, �) written in
Corollary 3.2, the action of the automorphism ρ is given by ti → ti+1 and qi → qi+1. Let
Hn(k, �) denote the split-extension group of Gn(k, �) by the cyclic group Zn generated
by ρ.

Theorem 4.1. For n � 2, k � 2 and � � 1, the split-extension group Hn(k, �) is the
fundamental group of the orbifold O((4k� − 1)/2�, n) with the 3-sphere as underlying
space and the 2-bridge knot (4k� − 1)/2� with index n as singular set.

First proof. From the presentation of Gn(k, �) given in Corollary 3.2, we get the
following presentation of Hn(k, �) with t = t1 and q = q1:

Hn(k, �) = 〈ρ, t, q : ρn = 1, (ρ−1tρ)t−1ρq−1ρ−1 = 1,

(qkρq−(k−1)ρ−1tρ−1t−1ρ)�ρ−1tρ = 1〉.

Hence we have

Hn(k, �) = 〈ρ, t, q : ρn = 1, (t−1ρ)−1ρ(t−1ρ) = ρq,

(qkρq−(k−1)ρ−1tρ−1t−1ρ)�ρ−1tρ = 1〉.

The element µ = ρq is conjugate to ρ from the first relation

µ = (t−1ρ)−1ρ(t−1ρ)

and so µn = 1. Then we have q = ρ−1µ, and

((ρ−1µ)kρ(ρ−1µ)−(k−1)µ−1)�µ = t−1ρ.

Thus we obtain a 2-generator presentation for the group Hn(k, �):

Hn(k, �) = 〈ρ, µ : ρn = µn = 1, ρu = uµ〉,
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−1

1 2

1 2 3
2k − 1

a

b2   − 1

Figure 7. The 2-bridge knot (4k� − 1)/2�.

where

u = [(ρ−1µ)kρ(ρ−1µ)−(k−1)µ−1]�

= [(ρ−1µ)kρ(ρ−1µ)−kρ−1]�

= [(ρ−1µ)k, ρ]�.

Since u coincides with the sequence ρε1µε2 · · ·µε4k�−4ρε4k�−3µε4k�−2 , where the exponent
εi is the sign ±1 of 2i� reduced mod 8k�−2 in the interval (−(4k�−1), 4k�−1), the word
u corresponds to the 2-bridge knot (4k�−1)/2�. In particular, the group 〈ρ, µ : ρu = uµ〉
is isomorphic to the knot group of (4k� − 1)/2�, and the generator ρ corresponds to the
meridian. Therefore, the group Hn(k, �) is isomorphic to the fundamental group of the
orbifold O((4k� − 1)/2�, n). We recall that the presentation

〈a, b : b[(b−1a)k, b]� = [(b−1a)k, b]�a〉

defines the group of the 2-bridge knot (4k� − 1)/2�, where a and b correspond to the
labels used in Figure 7. �

Second proof. From the presentation P ′′
n (k, �) (see § 1), we get

(y�
0y

−�
1 )k(y�

2y
−�
1 )ky1 = 1,

hence

Hn(k, �) = 〈ρ, y : ρn = 1, (y�ρ−1y−�ρ)kρ−1(ρ−1y�ρy−�)kyρ = 1〉
= 〈ρ, y : ρn = 1, [y�, ρ−1]kρ−1 = ρ−1y−1[y�, ρ−1]k〉.

Setting λ = yρ, we see that λ is conjugate with ρ because λv = vρ, where v = [y�, ρ−1]k,
hence λn = 1. So we get

Hn(k, �) = 〈λ, ρ : ρn = λn = 1, λv = vρ〉,

where v = [(λρ−1)�, ρ−1]k. Now the proof can be completed as above. �
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Figure 8. Simplifications along closed curves.

Theorem 4.2. For any n � 2, k � 2, and coprime integers p, �, 1 � p < �, the manifold
Mn(k, �, p) is the n-fold cyclic covering of the lens space L(p, �) branched over a knot
which is the image of the south–north axis of the polyhedron Pn(k, �, p) under rotation
of angle 2π/n. Furthermore, the manifold Mn(k, �) is the n-fold cyclic covering of the
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Figure 9. Cancellations of handles.

3-sphere branched over the 2-bridge knot (4k�−1)/2�, that is, Mn(k, �) is homeomorphic
to the Minkus manifold Mn(4k� − 1, 2�) constructed in [19].

Proof. The manifolds Mn(k, �, p) are n-fold coverings of an orbifold with underlying
topological space M1(k, �, p) and singular set the image of the NS-axis of the polyhe-
dron Pn(k, �, p) under the rotational symmetry of order n. To prove the first part of the
statement, we consider the polyhedral representation of M1(k, �, p), and construct a Hee-
gaard diagram of the manifold directly deduced from the scheme. It is easy to see that
this diagram represents the lens space L(p, �). Now it remains to analyse the case p = 1.
Rotation by 2π/n about the axis NS of the polyhedron Pn(k, �) defines an action of Zn
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on Mn(k, �). The quotient of the action is the 3-sphere and the image of the axis NS is
a knot K. The isotropy group of a point of Mn(k, �) not on NS is trivial. The quotient
Mn(k, �)/Zn is obtained by taking a fundamental domain for the action of Zn on Mn(k, �)
and making identifications (see Figure 8a for k = 3 and � = 2). A Heegaard diagram for
this quotient is pictured in Figure 8b and the axis of the rotation is drawn as a dotted
curve. Now we apply the method used in [9] for the figure-eight knot (and subsequently
extended in [7]) to our case. Then we modify Figure 8b to Figure 9b by simplifications
along closed curves and cancellations of handles. Figure 8c is obtained from Figure 8b
by a simplification along the closed simple curve C (also called a Whitehead–Zieschang
reduction). Figure 8d (respectively, Figure 9a) is obtained from Figure 8c (respectively,
Figure 8d) by a simplification along the closed simple curve D (respectively, E). Fig-
ure 9b (respectively, Figure 9c) is obtained from Figure 9a (respectively, Figure 9b) by a
cancellation of handles. By using Reidemeister moves, it is easy to see that the knot in
Figure 9c is equivalent to the knot (4k� − 1)/2� (which is 23/4 in our example) shown in
Figure 9d. �

Theorem 4.2 says that the manifold Mn(k, �) is the n-fold cyclic covering of the orbifold
O((4k�− 1)/2�, n). By [10], this orbifold is hyperbolic for any n � 3 if k � 2 or � � 2. So
we immediately obtain the following consequences.

Proposition 4.3. For any n � 3, the manifold Mn(k, �), k � 2, � � 1, is hyperbolic.
Furthermore, M2(k, �) is the lens space L(4k�−1, 2�), and M1(k, �) is the 3-sphere (hence
they have spherical structures).

Proposition 4.4. For any n � 3, the group Gn(k, �), k � 2, � � 1, is infinite and
torsion free, G2(k, �) is the cyclic group of order 4k� − 1, and G1(k, �) is trivial.

Final remark.
The complete classification of the geometry of the manifolds Mn(pi, �i, ki) is still an

open problem for arbitrary values of the parameters. If n � 2, then they are home-
omorphic to Seifert fibred spaces (including the lens spaces and the 3-sphere), so the
geometry is known (see § 2). By Proposition 4.3 several manifolds contained in our class
have hyperbolic structures. (For a general reference on the geometry and the toplogy of
3-manifolds see, for example, [31].)
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