
APPLICATION PAPER

Skillful statistical prediction of subseasonal temperature by
training on dynamical model data

Laurie Trenary* and Timothy DelSole

Department of Atmospheric, Oceanic, and Earth Science and Center for Ocean-Land-Atmosphere Studies, George Mason
University, Fairfax, Virginia, USA
*Corresponding author. E-mail: laurie.trenary@gmail.com

Received: 09 July 2021; Revised: 23 September 2022; Accepted: 13 January 2023

Keywords: CMIP6; lasso regression; observations; subseasonal prediction; western United States

Abstract

This paper derives statistical models for predicting wintertime subseasonal temperature over the western US. The
statistical models are trained on two separate datasets, namely observations and dynamical model simulations, and are
based on least absolute shrinkage and selection operator (lasso). Surprisingly, statistical models trained on dynamical
model simulations can predict observations better than observation-trained models. One reason for this is that
simulations involve orders of magnitude more data than observational datasets.

Impact Statement

In this study, we show that a statistical prediction model for observed western USwintertime temperature trained
on long dynamical model simulations outperforms a statistical model trained on observations alone. This
encouraging result suggests that statistical subseasonal prediction models can be further improved by training
on both dynamical model simulations and observations.

1. Introduction

Medium-range weather (up to 10 days) and long-range climate forecasts (months-to-seasons) have been
used operationally for decades. While the performance of forecast systems targeting these timescales has
steadily improved, until recently, relatively little effort has been dedicated to the advancing prediction
capabilities at the intermediary subseasonal (2-week-to-1 month) timescales (e.g., National Academy of
Science, 2016). Nevertheless, there is evidence that forecasts are skillful on subseasonal timescales
(Newman et al., 2003; Pegion and Sardeshmukh, 2011). In particular, state-of-the-art numerical forecast
models demonstrate skill in subseasonal prediction, including regional precipitation and temperature,
extreme events (heat waves, cold waves, likelihood of hurricane formation), tornado and hail activity
(DelSole et al., 2017; Vitart and Robertson, 2018).

Tremendous societal needs have driven improvements in subseasonal forecast capabilities. Warnings
of weather hazards such as drought or cold temperature extremes 2-to-4 weeks in advance have the
potential to save lives andmitigate changing demands on energy supplies, water resources, the agriculture
sector, and fisheries (White et al., 2017). Given the far-reaching societal benefits, numerical modeling
projects within the United States (SubX) and internationally (S2S) have been established with the goal of
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improving subseasonal forecast skill (Vitart et al., 2017; Pegion et al., 2019). Parallel to the establishment
of numerical modeling initiatives, in 2016 the U.S. Bureau of Reclamation and the National Oceanic and
Atmospheric Administration (NOAA) established a Subseasonal Climate Forecast Rodeo, a one-year
forecast competition where participants were tasked with developing statistical models for real-time
prediction of western United States (US) temperature and precipitation. The inaugural winners, Hwang
et al. (2019), developed a forecast system of nonlinear statistical models trained on a diverse set of
observational predictors (i.e., soil moisture, geo-potential heights). Their statistical forecast system was
found to be more accurate than operational US Climate Forecasting System (CFSv2). The success of the
Hwang et al. (2019) forecast system demonstrated unequivocally the utility of statistical methods for
subseasonal prediction.

It is plausible that statistical models could be improved still further if they were trained on longer data
sets. Unfortunately, observational data sets for subseasonal prediction are limited to 50 years or less.
Moreover, the effective sample size is smaller than this because predictability mechanisms differ across
seasons, suggesting that models need to be trained for each season separately, and daily temperature is
serially correlated. One approach to obtaining longer training sets is to use dynamical models to generate
them. Of course, dynamical models are imperfect and may be less skillful than some statistical models.
Nevertheless, dynamical models are based on the laws of physics and simulate many of the complex
physical processes that impact subseasonal predictability, so it makes sense to try to use both observa-
tional and dynamical models to constrain the statistical fit. In this paper, we train statistical models on
dynamical model simulations and then use the resulting statistical models to predict observational data. To
mitigate the impact of model errors, particularly those in the subgrid parameterizations that often differ
between dynamical models, we pursue a multi-model approach in which the outputs of several dynamical
models are pooled together for training data. This leads to sample sizes orders of magnitude longer than
observational data sets. Note that in this approach, observations are not used to estimate empirical
coefficients, so any predictive skill arising from the resulting statistical models clearly comes from the
dynamical models and demonstrates that the dynamical models simulate statistical relations relevant to
subseasonal predictability. Presumably, the best statistical models are those that combine both dynamical
model simulations and observational data. Such approaches are part of an active field of research in
transfer learning (Zhuang et al., 2021). In this paper, we use dynamical models to estimate the regression
coefficients of the statistical models and then use observations to select the tuning parameter in the
statistical model. The resulting prediction model is then compared to those trained on observations.

The design of our forecast problem is similar to that of the Forecast Rodeo. Specifically, we predict the
week 3–4 local temperature at a set of grid points over the western US. Each forecast model is estimated
from the least absolute shrinkage and selection operator (lasso) method, which is a standard method in
machine learning (Hastie et al., 2017). Our approach is similar to that of DelSole and Banerjee (2017) and
Buchmann and DelSole (2021), except that here we predict many grid points, instead of just one local
region (as in the former paper) or just one large-scale pattern (as in the latter paper).We find that statistical
models trained on dynamical model data perform better than those trained on observations, suggesting
that sample size is indeed a limiting factor in the statistical prediction of subseasonal temperature.

We clarify that our goal is not to derive a statistical forecast system that outperforms that ofHwang et al.
(2019). Rather, our goal is to show the potential of improving skill of statistical models by incorporating
information from dynamical model simulations. Several studies suggest that the strongest source of
subseasonal predictability comes from sea surface temperatures (SSTs) in the tropical Pacific (Vitart,
2013; McKinnon et al., 2016; DelSole et al., 2017). Accordingly, we use a set of predictors that capture
variations in SSTs. It is quite likely that the performance could be improved further by increasing our
predictor set to include other variables like precipitation, sea ice concentration, and indices of the
Madden–Julian Oscillation, as in Hwang et al. (2019), but the dynamical models do not simulate these
variables well. Moreover, SSTs are the dominant source of predictability (Vitart, 2013). For these reasons,
only SSTs are included as predictors.

This paper is presented as follows. In Section 2, we describe the data sets and methods used to derive a
set of statistical models for predicting observed wintertime subseasonal temperature over the western
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US. The statistical models are trained either on observations or preindustrial control runs from Climate
Model Inter-comparison project phase 6 (CMIP6) archive. In Section 3, we present the results. We begin
with an overall performance evaluation of the different statistical models and select for comparison the
best-performing candidate models among the observation and CMIP6-trained group of models. We go on
to demonstrate the advantages of using a large dataset such as CMIP6 data as opposed to the relatively
short observational record to fit the predictive models. We then compare the spatial and temporal skills of
these statistical models in predicting submonthly observed temperatures. The paper concludes with a
summary of our major results.

2. Data and Methods

2.1. Observations

The target data for our study is observed 2-weekmean temperature, obtained by averaging dailyminimum
and maximum 2-meter temperatures from the NOAA-Climate Prediction Center Global Gridded Tem-
perature dataset (https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html). The data are available
from 1979 to the present, but we focus our analysis on the years 1982–2019 to avoid the large number
of missing data at the start of the record. Daily SST data are obtained from the NOAA Optimum
Interpolation SST dataset for the period 1982–2019 (Reynolds et al., 2007). All data are regridded to a
1 � 1 degree resolution.

2.2. CMIP6

We also use climate model simulations for training. The particular model simulations we use are from the
CMIP6 archive. To avoid the confounding effects of external forcings (i.e., greenhouse gases and
anthropogenic aerosols) on predictability, we limit our selection to preindustrial control simulations. A
collection of 13 models with a collective total of 6889 years of daily data are selected for analysis (see
Table 1). These models were selected because they provide daily surface temperature data. Consistent
with observations, the target data are 2-weekmean temperatures estimated by averaging theminimum and

Table 1. List of CMIP6 models with preindustrial control runs was analyzed in this study.

CMIP6 I.D. Experiment Label Number of years

AWI-CM-1-1-MR r1i1p1f1-gn AWI 499

CNRM-CM6-1 r1i1p1f1-gr CNRM-CM6 499

CNRM-ESM2-1 r1i1p1f1-gr CNRM-CM6 499

CanESM5 r1i1p1f1-gn CanESM5 799

EC-Earth3 r1i1p1f1-gr EC 500

EC-Earth3-Veg r1i1p1f1-gr EC-Veg 499

GFDL-CM4 r1i1p1f1-gr1 GFDL-CM4 499

GFDL-ESM4 r1i1p1f1-gr1 GFDL-ESM4 499

HadGEM3-GC31-LL r1i1p1f1-gn HadGEM3 499

IPSL-CM6A-LR r1i1p1f1-gr IPSL 499

MRI-ESM2 r1i1p1f1-gn MRI 199

NorEMS2-LM r1i1p1f1-gn NorESM2 300

UKESM1-0-LL r1i1p1f2-gn UKESM2 1099

Note. Models were selected if daily data was available.
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maximumof daily 2-m temperature.Model SST data are also used. All data are regridded to a 1�1 degree
resolution. A description of the CMIP6 experiments can be found in Eyring et al. (2016).

2.3. Data processing

The statistical forecast models are fit at the 499 grid points shown in Figure 1, using 2-week averages for
target and predictor variables and predictions target the winter months December to February. The
forecast year for a given winter corresponds to December. To illustrate, a forecast for winter 2000, targets
2-week averages from December 2000 to February 2001. Averages for surface temperature are estimated
inclusively for every start day in the winter months of December–February. For instance, the 2-week
average for December 1st is given by the average over the period December 1–14, and the corresponding
predictors are averaged for the dates November 4–17. Climatology for daily-to-weekly data is often
estimated using local regression and polynomial or harmonic regression (DelSole et al., 2017; Pegion
et al., 2019). A study by Pegion et al. (2019) demonstrated that these different methods produce nearly
identical climatologies. In this work, we estimate the climatology as a fifth-order polynomial fit across all
2-week means between December and February (e.g., DelSole et al., 2017). This order of polynomial is
selected to ensure that the climatological signals are accurately estimated at the different geographical
locations. We tested whether the statistical models performance are sensitive to polynomial order and
found no impact on skill (not shown). Anomalies are estimated with respect to climatology. Observed
anomalies are detrended to remove the impacts of anthropogenic forcings (e.g., Johnson et al., 2014).

Climatically relevant variations of SST are large-scale and characterized by distinct patterns (e.g.,
Deser et al., 2010). We select predictors from the Pacific and Atlantic Oceans, where fluctuations in SSTs
are known to impact global climate through teleconnections (Horel and Wallace, 1981). The respective
domains of the predictors are shown in Figure 2 as the black and blue regions. No single pattern of SST
variability drives all predictable variations in climate. For this reason, we usemultiple patterns to represent
large-scale variations of SSTs. Typically, these large-scale patterns of variability are estimated using
empirical orthogonal function (EOF) analysis. A drawback to EOF analysis is that the patterns recovered
are data-dependent. This means that the leading patterns of variability that represent one data set may not
be the same pattern recovered for a different data set. Ultimately, when comparisons between data sets are
desirable, it is preferable to use a common basis set to describe all data. For this reason, we will isolate the
large-scale variations by projecting the daily SST data onto the eigenvectors of the Laplacian operator

Figure 1. Map of the forecast target region. Each red dot denotes a forecast location on a 1 � 1
degree grid.
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(DelSole and Tippett, 2015). The Laplacian eigenvectors form a basis that depends only on the domain
geometry and are orthogonal in space, with the first pattern associated with the spatial mean, the second a
dipole, the third a tripole, and so forth. Projecting the data onto each Laplacian eigenvector yields a time
series for each eigenvector. An example of the leading Laplacians is shown in Figure 3. In this study, we
will represent large-scale SST variations in the Pacific and Atlantic using 50 Laplacians for each basin.
The inclusion of more Laplacians time series did not impact the performance of the lasso models.

2.4. Building the statistical forecast systems

Our objective is to determine if training on dynamical models can produce skillful prediction models.
There is no unique configuration for statistical models, so we consider a range of reasonable choices.
Specifically, we construct five distinct statistical forecast systems to predict observed western US
subseasonal winter temperatures. Each forecast system is comprised of a set of statistical models, fit at
each grid point in the target region (see Figure 1), yielding a total of 499 statistical models per forecast
system. The candidate forecast systems differ in terms of how the grid-point statistical models are fit and
the data sets used to train the models. A description of each statistical forecast systems is provided below
and summarized in Table 2.

2.4.1. Benchmark
ENSO is the greatest contributor to seasonal predictability over the US, and hence it is anticipated to be a
strong contributor to subseasonal predictability (National Academy of Sciences, 2016). Accordingly, we
construct a benchmark forecast where 2-week average surface winter temperature anomalies are predicted

 225 ° W  180 ° W  135 ° W   90 ° W   45 ° W    0 °
  0 °

 45 ° N

Predictor Location

Figure 2. Map depicting predictor locations. Black and blue denote the domains of the Pacific and
Atlantic basins, respectively. Large-scale variations in both basins are represented by the leading
50 Laplacian eigenvectors.
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Figure 3. The second (a) and third (b) eigenvectors of the Laplacian operator for the Pacific basin.
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at each grid point from the 2-week lagged Nino3.4 index, a commonly used measure of ENSO variability.
TheNino3.4 index is the spatial average of SSTanomalies between 5°S-5°N over longitudes 120–170°W.

Let n and s denote the temporal and spatial indices, where n¼ 1,…,N and s¼ 1,…,S. Let Yns denote
the target variable and Xnp denote the predictors for p¼ 1,…,P. Let the Nino3.4 index be denoted by zn.
The prediction based on Nino3.4 index is a linear regression model, where the regression coefficients
βs ¼ β0,s,β1,s

� �
are obtained by minimizing the cost function

bβNino3:4s ¼ argmin
βs

XN
n¼1

Yns�β0,s�β1,szn
� �2( )

: (1)

Note that the regression coefficients are chosen to minimize the cost function at each spatial location
separately. These regression models are fit using a leave-one-out approach, such that the regression
coefficients β0,s and β1,s for a givenwinter are estimated from all otherwinters from the observational dataset.

2.4.2. Lasso
The performance of the benchmark models will be compared to predictions made by a suite of statistical
models based on lasso. The different lassomodels have the same set of target and predictor variables. That
is, the target variables are 2-week mean surface temperatures anomalies and the predictors are large-scale
SST anomalies in the Pacific and Atlantic Oceans, which are represented by 50 Laplacian time series for
each basin, giving a total of 100 SST predictors. The predictors lag the target variables by 2 weeks. We
estimate the lasso coefficients by either minimizing the cost function locally or across all grid points. This
distinction and the difference between lasso and OLS are discussed in more detail below.

Lasso is similar to OLS, except that the mean square error (MSE) is minimized subject to a constraint
on the norm of the regression coefficients (Tibshirani, 1996).More precisely, the lasso coefficients βp,s are
obtained by minimizing the cost function

bβsingle‐tasks ¼ argmin
βs

1
2N

XN
n¼1

Yns�β0,s�
XP
p¼1

Xn,pβp,s

 !2
8<:

9=;þ λ
XP
p¼1

βp,s
�� ��, (2)

where Xn,p denotes elements in the matrix of predictors, ∣ � ∣ denotes the absolute value, and λ is a tuning
parameter that determines the strength of the penalty term. As λ is increased, the lasso coefficients are
reduced toward 0. Conversely, as λ goes to 0, the penalty term has less weight and the cost function
approaches the traditional OLS form.

There is no closed-form solution to equation (2) and the minimization problem must be solved
iteratively. We use the glmnet package to find lasso solutions as λ is varied (Friedman et al., 2010).
Examples of how λ is selected for different lasso models are provided in Section 2.4.3.

The above formulation predicts each target variable separately.We call this formulation “single-task” lasso
and we derive two lasso models from the above minimization problem: one trained on observations and one
trained on CMIP6 data. These lasso models are called OBS-single-task and CMIP6-single-task, respectively.

Table 2. Summary of statistical forecast models.

Statistical model name βs estimation λ selection

Nino3.4 (benchmark) OLS: observation using leave-one-out (37 years) N/A

OBS-single-task Lasso: observations (18 years) 10-fold cross-validation

OBS-multi-task Lasso: observations (18 years) 10-fold cross-validation

CMIP6-single-task Lasso: CMIP6 (6889 years) Observations (18 years)

CMIP6-multi-task Lasso: CMIP6 (6889 years) Observations (18 years)
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Weekly temperature is spatially correlated, so making use of information between neighboring grid
points during the training stage may yield a better prediction model. One approach to doing this is “multi-
task lasso,” which was used by Hwang et al. (2019). The cost function for multi-task lasso is

bβmulti‐task ¼ argmin
β

1
2N

XS
s¼1

XN
n¼1

Yns�β0,s�
XP
p¼1

Xn,pβp,s

 !2
8<:

9=;þ λ
XP
p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS
s¼1

β2p,s

vuut : (3)

In multi-task lasso, squared errors are summed over all targets and the penalty term now applies to the
whole group of predictors and a given predictor is either included in the statical model for all targets, or
excluded for all targets.

We selected lasso regression to build our statistical forecast models because themethod tends to reduce
some of the regression coefficients to 0, thus performing predictor selection and aiding in the interpret-
ability of the statistical models.

2.4.3. Selecting the lasso tuning parameter
For lasso models trained on observations, the first 18 years (1982–1999) of observational data are used to
fit the regression model and to select λ using a 10-fold cross-validation. When CMIP6 data are used for
training, the λ is selected to minimize the normalized mean-square-error (NMSE) with respect to the same
18 years of observations during the period 1982–1999. A summary of how the statistical models are
trained and tuning parameter λ selected is presented in Table 2.

To illustrate the λ selection process, Figure 4a–c shows curves of NMSE versus λ at three different
locations for predictions made by the CMIP6-single-task model. The regression coefficients are estimated
fromCMIP6 simulations, yielding βs λð Þ, then, based on these coefficients, NMSEs λð Þ is evaluated at each
location s using observations for predictors and target variable. The λ that minimizes NMSE is denoted by
a red asterisk. Two extreme cases are shown in Figure 4a,c, where the λ that minimizes NMSE is small
(near zero) and large, respectively. For the case where λ≈ 0 (Figure 4a), the cost function approaches the
traditional OLS form and all the predictors are included. Alternatively, when λ is large (Figure 4c), the
regression coefficients are set to zero. The NMSE-λ curve shown in Figure 4b represents an intermediate
scenario, where only some regression coefficients are set to 0.

2.5. Skill metrics

Statistical model performance will be evaluated in terms of similarity between forecast and verification
data and prediction accuracy. The most widely used metrics to evaluate these measures of model
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Figure 4. NMSE of a lasso model versus λ for forecasts locations (a) Yakima, Washington, (b) Austin,
Texas, and (c) Colorado Springs, Colorado. The NMSE curves are estimated from lasso predictions made
with the CMIP6-single-task model and evaluated with respect to observations for winters (DJF) during
1982–1999. A red asterisk denotes the λ that minimizes the NMSE.
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performance are temporal correlation, spatial correlation, and MSE (Jolliffe and Stephenson, 2012;
Coelho et al., 2019).

For temporal similarity measures, we will use the standard Pearson correlation coefficient. We refer to
this metric as the temporal correlation coefficient since it is estimated across time at each grid point as:

ρ sð Þ¼
PT

t¼1 F0 s, tð Þ �V 0 sð , tÞð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1F

0 s, tð Þ2
� �

� PT
t¼1V

0 s, tð Þ2
� �r , (4)

where F0 s, tð Þ and V 0 s, tð Þ are the t matched pairs of centered forecast and verification data at location s,
where there are S total grid-point forecasts.

Spatial similarity in the predicted and observed spatial patterns will be measured using the anomaly
correlation or cosine similarity (Jolliffe and Stephenson, 2012). To avoid confusion, we will refer to this
metric as the spatial correlation. Note, this is the only metric used in evaluating the machine learning
forecast models ofHwang et al. (2019). The expression used to compute the spatial correlation is similar in
form to ρ sð Þ, with the exception that the spatial mean has not been removed and the summation is over
space rather than time. Formally, the spatial correlation is

γ tð Þ¼
PS

s¼1 F0 s, tð Þ �V 0 sð , tÞð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
s¼1F

0 s, tð Þ2
� �

� PS
s¼1V

0 s, tð Þ2
� �r : (5)

The spatial correlation measures the similarity of spatial patterns of 2-week temperature anomalies.
Importantly, the spatial correlation can be computed for each 2-week period; that is, it is a time series.
Forecast accuracy is often measured by MSE and is formally expressed as:

MSE sð Þ¼
PT

t¼1 F0
t sð Þ�V 0

t sð Þ� �2
T

: (6)

A standard approach is to compare MSE to some reference forecast, typically the climatological mean
corresponding to F

0
sð Þ¼ 0, which yields the NMSE sð Þ:

NMSE sð Þ¼
PT

t¼1 F0 s, tð Þ�V 0 s, tð Þð Þ2PT
t¼1 V 0 s, tð Þð Þ2 : (7)

A forecast with NMSE >1 has no skill, since its MSE is greater than that of the reference forecast. The
NMSE can be decomposed into its constituent parts when expressed as the mean-square-error skill score
(MSESS). Following Murphy (1988), MSESS can be expanded as follows:

MSESS sð Þ¼ 1�NMSE sð Þ¼ ρ sð Þ2� ρ sð Þ� σF0 sð Þ
σV 0 sð Þ

� 	2

� F
0
sð Þ�V

0
sð Þ

σV 0 sð Þ

 !2

, (8)

where ρ sð Þ is the temporal correlation (see equation (4)), and σF0 sð Þ and σV 0 sð Þ are the standard deviations
for the forecast and verification anomalies respectively. The first term in the MSESS is the square of the
temporal correlation (ρ sð Þ2) and gives the maximum value ofMSESS. The next two terms reduce the skill
score and represent the amplitude and the mean biases, respectively. For this study, the forecast and
verification data are centered and consequently the mean bias term is 0. We perform a decomposition of
MSESS to evaluate the trade-off between correlation and amplitude bias impacts on statistical model
performance.

We use spatial averages of NMSE and temporal correlation to identify the best-performing statistical
models. Following Wilks (2011), the spatial average of NMSE is estimated as

NMSE½ � ¼
PS

s¼1

PN
t¼1 F0 s, tð Þ�V 0 s, tð Þð Þ2PS
s¼1

PN
t¼1V

0 s, tð Þ2 : (9)
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The spatial average of temporal correlation is estimated as

ρ½ � ¼
PS

s¼1ρ sð Þ
S

: (10)

2.6. Statistical significance of metrics

The data being analyzed are serially correlated, so standard methods of estimating uncertainty and
statistical significance for performance metrics are not applicable. Accordingly, resampling methods
are used to evaluate the uncertainty and statistical significance of the performance metrics.

2.6.1. Uncertainty of spatial averaged metrics
For forecasts trained onCMIP6data, the regression coefficients are not reestimatedwhen comparing forecast
performance across the candidate statistical models, since they are very robust due to the large training set.
However, the regression coefficients depend on λ. To quantify uncertainty associated with λ, we randomly
select 18 distinct years from the observational record, use the corresponding matched-pairs of target and
predictors to determine λ (see Section 2.4.3), and then use the remaining 19 year record of observation data to
evaluate the performance of theCMIP-single and -multi-taskmodels. To preserve the serial correlation in the
data, the paired target and predictors are sampled such that all sequential data for a givenwinter are sampled.
This process is repeated 1,000 times to build up distributions of the spatially averaged NMSE and temporal
correlation. The uncertainty is given as the 5th and 95th percentiles of these distributions.

For forecasts trained on observations, both λ and the regression coefficients have uncertainties that
need to be quantified. To do this, a bootstrap sample of 18 distinct years from the observational record is
used to train the statistical models and select λ through 10-fold cross-validation. The remaining 19 years of
paired target variables and predictors are then used to evaluate the newly trained models. As before, the
serial correlation in the data is preserved by selecting all sequential data for a given winter. This process is
repeated 1,000 times for the OBS-single-task model to build distributions of the performance metrics. We
use only 100 permutations for the OBS-multi-task because of the excessive computational requirements
needed for the retraining and evaluation. The uncertainty is given as the 5th and 95th percentiles of these
distributions.

We estimate uncertainties for the benchmark Nino3.4 statistical model, by randomly selecting 37 years
of paired forecasts and verification data and estimating the performance metrics for the bootstrapped
samples. Again, we preserve serial correlation by selecting sequential data for each winter. This process is
repeated 1,000 times to build up distributions of the two metrics. The uncertainty for each metric is given
as the 5th and 95th percentiles of the respective distributions.

The above uncertainty analyses aim to quantify the sampling effects of the observational data on
estimates of statistical model performance. Given that the CMIP6 data are sufficiently long, we can also
quantify the impacts of training set size on statistical model performance. To do so, we retrain the CMIP6-
single-task model using a training data set that varies in length from 50 to 3000 years and evaluate model
performance with respect to spatially averaged NMSE with the verification period fixed to 2000–2018.
For instance, if the length of the training set is specified to be 3000 years, a training set of that length is
found by samplingCMIP6 datawith replacement, where each year is a set of consecutive 2-week forecasts
for the target months of December–February. The data are sampled with replacement because there is not
enough data to sample without replacement. To illustrate, if we wish to find 3000-year samples in the
dataset, sampling without replacement would yield only two samples, which is insufficient for empirical
uncertainty estimation. The process of selecting a training set, model retraining, and evaluation is repeated
60 times for each specified training set size. The uncertainty is given as the 5th and 95th percentiles of the
respective distributions.

2.6.2. Statistical significance of similarity metrics
To quantify uncertainty in the temporal correlation we use a permutation method (DelSole et al., 2017).
Under the null hypothesis of no predictability, the forecasts and observations are independent. Thus, a
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permutation sample can be derived by separately permuting the year labels for forecast and observed data.
The permutation sample preserves the mean and variance of the forecast and observations, but temporally
misaligns the forecast-observation pairing. For this particular problem, the data are permuted for winter
forecasts targeting the months of December–February. We permute the winter forecasts and verification
data 5,000 times to create 5,000 realizations of correlation maps from the null hypothesis of no skill
(or more precisely, the null hypothesis of exchangeability). The temporal correlation between the local
forecast and verification is computed for each grid point separately and statistical significance is assessed
locally by comparing the correlation value to the local 95th percentile from the permutation sample. In
addition, the field significance is assessed based on the counts of positive correlations. Negative
correlations are not considered skillful and therefore not included in the count. This process is repeated
10,000. The resulting cumulative distribution function is then used to determine the local p-value of the
number of positive correlations.

To assess significance of the spatial correlation scores, we count the winters within which the number
of positive scores exceeds the negative scores. This count is the total number of skillful forecast winters.
Under the null hypothesis of no skill, the forecast has equal chances of producing positive or negative
scores and the count of skillful winters should follow a binomial distribution with p¼ :5. Although
forecasts within a winter are serially correlated, forecast between winters are assumed independent and
therefore the binomial distribution can be applied to the count of skillful winters.

3. Results

3.1. Statistical model selection

First, we evaluate the overall performance of the statistical models in terms of the spatial averages of
NMSE and correlation coefficient to help isolate the best-performing statistical models. The confidence
intervals of the two metrics are represented by the vertical bars in Figure 5a,b, where the bars capture the
fluctuations of each metrics when different segments of the observations are used in statistical model
evaluation. Confidence intervals are computed as described in Section 2.6.1.

Referring to Figure 5a, we see that the confidence intervals for the spatial averaged NMSE are near or
above 1 for all candidate models. This illustrates the challenge of subseasonal forecasting: spatial average
measures of local skill tend to be indistinguishable from values expected from no-skill models. Overall,
the statistical models trained on CMIP6 data have lower NMSE than statistical models trained on
observations, including the benchmark Nino3.4 model. In particular, the spatially averaged temporal
correlation shown in Figure 5b, is low and generally negative for the statistical models trained using
observation data. Only the CMIP6-single-task model consistently produces forecasts that are character-
ized by a positive spatially averaged temporal correlation. This result shows that training statistical models
on dynamical model simulations can yield better forecasts than models trained on observations only.
The OBS-multi-task model shows no improvement over the OBS-single-task. To better understand why
statistical model performance improves when trained on CMIP6 data, we will compare the skill from the
CMIP6-single-task (the best-performing model) with the similarly formulated OBS-single-task model.
The statistical models are compared in terms of MSESS and its decomposition (see equation (8)) in
Section 3.3.

3.2. Training set size and statistical model performance

A plausible explanation for why statistical models trained on CMIP6 simulations predict observations
better than observation-trained models is that the size of the training data is much larger in the former than
in the latter. To test this hypothesis, we re-train the CMIP6-single-task model using a training data set that
varies in length from 50 to 3000 years and evaluate model performance with respect to spatially averaged
NMSE for the verification period 2000–2018. The range of uncertainty is reported as the 5th–95th
percentiles of the 60 estimates of spatially averaged NMSE for each sample size and shown as the vertical
bars in Figure 6. The threshold for a skillful forecast is denoted by the horizontal black line which shows a
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NMSE of 1. When the training set size is 50 years, which is more than double the number of years
available for training with observations, the CMIP6-single-task model has no skill. As the sample size is
increased up to 3000 years, the spatially averaged NMSE systematically drops, yielding reliably skillful
forecasts (NMSE < 1) when the training set size is 2000 years or greater. DelSole and Banerjee (2017)
arrive at a similar conclusion concerning the impacts of training set size on statistical model performance
(see their Figure 12). Note that the NMSEs of the CMIP6-single-task model differ between Figures 5a
and 6. Although this difference is not critical to our study, the reason for the difference is that the
observations are bootstrapped in Figure 5awhereas they are not in Figure 6. To elaborate on this, Figure 5a
shows the variation in skill when different segments of the observational record are used for validation and
verification, but using fixed CMIP6 training set, while Figure 6 shows the variation in skill when different
segments of the CMIP6 training set are used, but using fixed observational verification set. In essence,
Figure 5a quantifies uncertainty from verification randomness under fixed training set, whereas Figure 6
quantifies uncertainty from training randomness under fixed verification set.

3.3. Statistical model comparison

Themap ofMSESS estimates from the CMIP6-single-task model, shown in Figure 7a, is characterized by
regions of positive values along the west-coast, from northern California up through Washington and
extending eastward into Idaho. Forecasts in the continental interior are characterized by negativeMSESS.
In contrast, we see MSESS values for the OBS-single-task model, shown in Figure 7d, are negative over
much of forecast region.

To diagnose the sources of these errors, we decompose the MSESS according to equation (8) into
contributions from the squared temporal correlation coefficient and amplitude bias. To aid in interpret-
ation, all subsequent analyses are based on the square root of these two terms. Recall that since the
forecasts and verification data are centered, the mean bias term is 0. Maps of the temporal correlation for
the CMIP6-single-task and OBS-single-task models are shown in Figure 7b,e, respectively. For the
CMIP6-single-task predictions, positive correlations are found over much of the western US, with the
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Figure 5. Performance of statistical prediction models based on spatial averages of the (a) NMSE and
(b) temporal correlation. The horizontal black line denotes a NMSE of 1 in (a) and the zero correlation in
(b). Five statistical models are compared: the benchmark Nino3.4 regression model, two observation-
trained, and two CMIP6-trained lasso models. The vertical black bars denote the uncertainty of the
performance metrics when observation data for the period 1982–2018 are bootstrapped. The method for
evaluating this uncertainty varies across statistical models and the details of how uncertainty is estimated
can be found in Section 2.6.
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largest correlations along the west coast, and weaker and sometimes negative correlation in the contin-
ental interior. These regions of positive correlation determine the positive MSESS values along the west
coast shown in Figure 7a. Positive temporal correlation coefficients recovered from OBS-single-task
model are similarly concentrated in the Pacific Northwest. However, the OBS-single-task model has large
areas of negative correlations in the southern portions of the forecast region. The positive correlations
estimated for the OBS-single-task model correspond to regions of near-zero MSESS values shown in
Figure 7d. For both set of statistical models, the contributions of temporal correlation to forecast skill are
reduced by the amplitude bias, shown in Figure 7c,f. This analysis indicates that both statistical forecast
systems underestimate the amplitude of the predicted temperature anomalies. However, this amplitude
bias is markedly larger for predictions made by the OBS-single-task model.

Since the upper bound of the MSESS is determined by the temporal correlation, we quantify the
statistical significance of this metric as discussed in Section 2.5. The percentage of grid-point forecasts
that predict the correct sign of temperature anomalies and the corresponding p-values are listed in the title
of Figure 7b,e. For CMIP6-single-task, 78% of the grid points are characterized by positive correlation,
which has a p-value of .021 (i.e., it is field significant). In contrast, theOBS-single-taskmodel has positive
correlations only over 59% of the grid points, which has p-value of .26 (i.e., not field significant).

The maps of temporal correlation indicate that forecasts produced by statistical models trained on
CMIP6 data are generally skillful over large portions of the western US. This metric says nothing about
how well the model performs for any given 2-week average. Figure 8a,b shows the distribution of the
spatial correlation as a function of time for the CMIP6-single-task and OBS-single-task models,
respectively. For a given winter, the vertical bar represents the 25th–75th percentile of the spatial
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Figure 6. Spatial averaged NMSE versus training set size for the CMIP6-single-task model. The vertical
bars represent the uncertainty in spatially averaged NMSE for the CMIP6-single-task model with respect
to data included in the training set. This uncertainty is estimated by bootstrapping CMIP6 data to create a
training dataset of a specified length, re-training the lassomodel, followed by verification. This process is
repeated 60 times and the bars give the 5th–95th percentiles of these 60 estimates. The number of years
included in the training dataset is varied from 50, 100, 300, 500, 750, 1000, 2000, and 3000 years. The
verification data are observed winter (DJF) temperatures for the period 2000–2018. Distinct from the
analysis shown in Figure 5, the observation data used in validation and verification are not bootstrapped.
The vertical axis is scaled to highlight the uncertainties with respect to the no-skill line of a NMSE of 1.

e7-12 Laurie Trenary and Timothy DelSole

https://doi.org/10.1017/eds.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.2


 120 ° W
 110 ° W  100 ° W   90°  W

  80°  W
  70°  W

30 ° N  

 40° N  

 50° N  

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

 120° W
 110° W  100° W   90°  W

  80°  W
  70°  W

30 ° N  

 40 ° N  

 50 ° N  

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

 120° W
 110° W  100° W   90 °  W

  80°  W
  70°  W

30 ° N  

 40 ° N  

 50 ° N  

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

 120° W
 110° W  100° W   90°  W

  80°  W
  70°  W

30° N  

 40 ° N  

 50 ° N  

–0.5

–0.4

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

–0.3

 120° W
 110° W  100° W   90°  W

  80°  W
  70°  W

30 ° N  

 40 ° N  

 50 ° N  

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

 120 ° W
 110° W  100° W   90 °  W

  80 °  W
  70°  W

 30° N  

 40° N  

 50° N  

–0.5

–0.4.

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

CMIP6 single-task
       MSESS

CMIP6 single-task
   Amplitude Bias

                  CMIP6 single-task
    Temporal Correlation (78, pval = 0.0211)

(a) (b) (c)

OBS single-task
       MSESS

(d)
OBS single-task
   Amplitude Bias

(f)
                 OBS single-task
    Temporal Correlation (59, pval = 0.256)

(e)

Figure 7. Average performance of CMIP6-single-task and OBS-single-task model evaluated in terms of
MSESS (left column), temporal correlation (middle column), and amplitude bias (right column). Each
metric is evaluated with respect to observed and forecast winter (DJF) temperature anomalies for the
period 2000–2018, where the year corresponds to aDecember start date. Maps of MSESS for (a) CMIP6-
single-task and (d) OBS-single-task models. A forecast is skillful if MSESS > 0. Maps of the temporal
correlation for (b) CMIP6-single-task and (e) OBS-single-task models. The percentage of forecasts that
positively correlate with verification data is listed in parentheses. Statistical significance of the
correlation maps is estimated with respect to a field significance test, with the corresponding p-value
listed in the title. The þ sign denotes grid points where the correlation is locally significant. Maps of
amplitude bias for (c) CMIP6-single-task and (f) OBS-single-task models. A negative bias indicates a
forecast under-predicted the amplitude of the temperature anomalies.
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Figure 8. Spatial correlation between observed winter (DJF) temperature anomalies for the period
2000–2018 and predictions made with (a) CMIP6-single-task and (b) OBS-single-task models. The
observed winter (DJF) temperature anomalies are for the period 2000–2018, where the year corresponds
to December. The vertical lines represent the 25th–75th percentiles of spatial correlation coefficient
between forecast and observations. The median is denoted by the black asterisk. The percentage of
forecast within a givenwinter that have a positive spatial correlation score with observations is listed next
to the median.
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correlation and the black asterisk gives themedian value. The number of forecasts for a givenwinter varies
between 90 and 91, depending upon leap year. The number listed next to eachmedian gives the percentage
of forecasts that predict the correctly signed temperature anomalies. The CMIP6-single-task model
produces forecasts where 14 of the 19 forecast winters predict the correctly signed temperature anomalies.
Variations in the predictive capability are also evident for OBS-single-task, where 13 of the 19 winter
forecasts produce correctly signed anomalies. These results suggest that while CMIP6-single-task model
performs well overall in terms of individual grid points, the individual statistical forecast models do not
consistently predict the large-scale pattern of temperature anomalies. That said, the overall skill of the
CMIP6-single task and OBS-single-task model in predicting the spatial pattern of temperature anomalies
is indistinguishable from a no-skill forecast for both statistical models. The study by Hwang et al. (2019),
where forecasts are evaluated only with respect to spatial correlation, also found statistical prediction are
characterized by a wide range in spatial correlation scores. It is worth pointing out that the performance of
the statistical forecast system derived by Hwang et al. (2019), cannot be directly compared with the
statistical model evaluated here, because the statistical models are trained on different datasets, target a
different range of dates, and use a slightly different metric.

In terms of aggregate metrics, the CMIP6-single-task model provides the most skillful forecasts.
Here we examine a pair of high- and low-skill forecasts made by this statistical forecast system. The
high-skill forecast, shown in Figure 9b, tends to capture the overall spatial structure of the observed
temperature anomalies shown in Figure 9a. Notably, the amplitude of the predicted anomalies is
reduced compared to observations. Consistent with analysis presented in Figure 7, the forecast is
skillful in terms of predicting the correct sign of temperature anomalies, but underestimates their
amplitude. The low-skill forecast, shown in Figure 9d, similarly predicts temperature anomalies that
vary with latitude. However, the sign of the anomalies is completely opposite of the observed
temperature anomalies shown in Figure 9c. Notably, the individual CMIP6-single-task models are
capturing coherent patterns, which may suggest a common forcing mechanism is driving predictable
variations over the target region.
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3.4. Predictor selection

Lastly, we examine differences in the frequency of predictor selection between theCMIP6-single-task and
OBS-single-task-models. Lasso assigns zero values to selected regression coefficients, clearly indicating
that the associated predictor is less important than the other predictors with nonzero coefficients. Thus, we
can use nonzero coefficients as a kind of predictor selection. Since lasso is fitted at each grid point, we can
collect statistics of predictor selection across grid points. The frequency with which each predictor is
selected using CMIP6 and observational training data is shown in Figure 10. Regardless of the forecast
model, no predictor is selected consistently across all grid points. That said, a notable distinction between
Figure 10a and b, is the larger percentage of predictor selection for lasso models fit using CMIP6 data.
Generally, Laplacians time series from the Pacific are selected by a large percentage of the individual
CMIP6-single-task models. In contrast, the OBS-single-task model shows less agreement in predictor
selection across the location. The robust selection of key predictors for the CMIP6-trained models can
likely be attributed to improved estimates of regression coefficients given the vast amount of data used in
statistical model training.

4. Conclusion

This paper derives statistical models for predicting wintertime subseasonal temperature over the western
US. Our goal was to show that statistical models trained on dynamical model data can be skillful, thereby
demonstrating that dynamical models provide information relevant to subseasonal prediction. As a
reference benchmark, we use simple linear regression to predict 2-week mean temperature at each grid
point based on the Nino3.4 index. This benchmark is compared to models with tens more predictors
derived from lasso. The lasso coefficients are estimated in two different ways, namely under a single-task
or multi-task formulation. In all cases, the forecasts are validated on observational data that was excluded
from the statistical model construction.

With respect to spatial averages of NMSE and temporal correlation, the statistical models trained on
CMIP6 data are more skillful than statistical models trained on observation data. Performance of the most
skillful statistical model, CMIP6-single-task, is characterized by spatially averaged NMSE <1 and a
regionally average temporal correlation that is positive. This is not the case for the OBS-single-task
model, a similarly configured set of statistical models trained on observation data, where spatially average
NMSE is greater than 1 and the averaged temporal correlation is negative. A direct comparison of the
MSESS between the CMIP6-single-task and OBS-single-task models, shows a greater portion of the
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Figure 10. Percentage of predictors selected across all 499 individual grid points for the (a) CMIP6-
single-task and (b) OBS-single-task models. The horizontal black line denotes the 60% selection level.
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forecast region with positive MSESS values for the CMIP6-single-task model. The MSESS for OBS-
single-task is characterized by mostly negative values. The positive MSESS identified for the CMIP6-
single-task model can be attributed to the statistical model’s ability to correctly predict the sign of the
temperature anomalies (i.e., positive and field significant temporal correlation coefficients) for large
portions of the western US. In contrast, the OBS-single-task model skill in predicting the correct sign of
the temperature anomalies is largely limited to the Pacific Northwest. The greatest source of error between
the two statistical models is the amplitude bias, where forecasts from the OBS-single-task model
underpredict the magnitude of the temperature anomalies over much of the target region, which in turn,
accounts for negative MSESS values. We demonstrate that size of the training set impacts skill of the
statistical models and conclude from this that the increase in sample size from using simulated data more
than compensates for the limitations due to imperfections in dynamical models. These results are
encouraging and suggest that skill of statistical subseasonal prediction models can be further improved
by using both dynamical model simulations and observations in statistical model training.

In general, the single-task models performed better thanmulti-task models, when evaluated in terms of
spatial averages of NMSE and temporal correlation. Even still, the skill of the single-task models is nearly
indistinguishable from no skill, with regards to these two performance metrics. This low skill on a local
basis does not necessarilymean there is no significant skill for large-scale patterns. Notably, the individual
CMIP6-single-task models predict coherent large-scale temperature anomalies over the target region.
This suggests that statistical model skill might be further improved by isolating predictable large-scale
patterns. Initially, lasso was chosen because of its potential for interpretability, but for our study, this
turned out not to be the case. In Trenary and DelSole (2022), we develop a statistical technique that is able
to identify predictable large-scale patterns despite the limited local predictability.
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