https://doi.org/10.1017/jfm.2021.686 Published online by Cambridge University Press

J. Fluid Mech. (2021), vol. 925, A28, doi:10.1017/jfm.2021.686

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

Formation of spiral waves in cylindrical
containers under orbital excitation

G.M. Horstmann!*2:%, S. Anders!, D.H. Kelley2 and T. Weier!

nstitute of Fluid Dynamics, Helmholtz-Zentrum Dresden—Rossendorf, Bautzner Landstrasse 400,
01328 Dresden, Germany

2Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA

(Received 6 January 2021; revised 5 July 2021; accepted 28 July 2021)

The lowest swirling wave mode arising in upright circular cylinders as a response to
circular orbital excitation has been widely studied in the last decade, largely due to its
high practical relevance for orbitally shaken bioreactors. Our recent theoretical study
(Horstmann et al., J. Fluid Mech., vol. 891, 2020, A22) revealed a damping-induced
symmetry breaking mechanism that can cause spiral wave structures manifested in the
so far widely disregarded higher rotating wave modes. Building on this work, we develop
a linear criterion describing the degree of spiralisation and classify different spiral regimes
as a function of the most relevant dimensionless groups. The analysis suggests that high
Bond numbers and shallow liquid layers favour the formation of coherent spiral waves.
This result paved the way to find the predicted wave structures in our interfacial sloshing
experiment. We present two sets of experiments, with different characteristic damping
rates, verifying the formation of both coherent and overdamped spiral waves in conformity
with the theoretical predictions.

Key words: wave—structure interactions

1. Introduction

Ranging from galaxy-scale accretion discs (Boffin 2001) via atmospheric cyclones (Nolan
& Zhang 2017) down to the human heart (Gray & Jalife 1996), rotating spiral waves are a
common phenomenon in nature, which may occur in very diverse and physically different
environments. Besides apparent topological similarities such as that all spirals possess a
pronounced chirality, it is interesting to note that all the known kinds of spiral waves,
most prominent in excitable media and reaction—diffusion systems, are inherently
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nonlinear phenomena. Therefore, it came as a slight surprise to us that our recently
published formulation of interfacial waves in upright circular cylinders (Horstmann,
Herreman & Weier 2020) predicted the formation of non-propagating spiral wave patterns
under the influence of viscous damping as a linear response to orbital excitation.

The interest in liquid sloshing dynamics of partially filled containers arose in the
1950s, in those days mainly with the focus on spacecraft and naval applications. Since
then, sloshing dynamics has been investigated in a wide variety of geometries as a
response to a multitude of excitation modes (Faltinsen & Timokha 2009). Yet, the specific
case of orbitally shaken cylinders, i.e. cylindrical containers following a perfect circular
trajectory, has gained attention only recently, basically in light of three different fields
of interest. First, orbitally shaken bioreactors (Klockner & Biichs 2012) were identified
as an important application in the last decade, where gas transfer, mixing dynamics
and shear stresses are essentially imposed by the wave motion. To this end, wave and
flow dynamics has been studied in several experiments with the aim to better assess the
operating parameters (see e.g. Reclari et al. 2014; Weheliye et al. 2018; Alpresa et al.
2018). Second, it is of fundamental interest to understand the mean mass transport induced
by swirling waves, an old problem that dates back to Prandtl (1949). Significant progress
on this issue has recently been made by Bouvard, Herreman & Moisy (2017) and Faltinsen
& Timokha (2019). And third, the hydrodynamic similarity to the magnetohydrodynamic
‘metal pad roll instability’, a potential limiting factor in aluminium reduction cells and
liquid-metal batteries (Weber et al. 2017; Horstmann, Weber & Weier 2018; Herreman
et al. 2019; Politis & Priede 2021), was utilised by Horstmann, Wylega & Weier (2019).
We introduced a multilayer orbital sloshing experiment, allowing us to imitate the wave
motion as it can arise from the metal pad roll instability.

In two- and three-layer stratifications, the interfacial wave motion is subject to
considerably stronger damping forces as compared to free-surface waves, rendering it
impossible to apply existing inviscid sloshing models. We addressed this issue recently
in Horstmann et al. (2020), where we presented a hybrid model on orbital sloshing of both
free-surface and two-layer interfacial waves under the impact of viscous damping. As the
most intriguing result, the theory predicts the formation of coherent spiral patterns visible
in higher wave modes, which, to the best of our knowledge, have never been reported so
far in the frameworks of non-parametric sloshing. The formation of similar rotating spiral
patterns is known only from physically different Faraday experiments (Kiyashko et al.
1996). The reason for this is twofold. On the one hand, nearly all the sloshing literature
has focused on the lowest natural sloshing frequency, in which no spirals can emerge.
On the other hand, the majority of sloshing experiments concern one-phase free-surface
wave systems, where damping rates are usually far too small to break the symmetry, and
the eigenfrequencies are typically too high to excite stable and linear waves in the higher
modes.

Our interfacial sloshing experiment can fill exactly this gap. By employing two-layer
stratifications, we can easily excite stable higher-mode small-amplitude waves with
moderate shaking frequencies. We therefore devote this article to the experimental
verification of this hitherto unheeded sloshing phenomenon.

The paper is organised as follows. In § 2, we explain the spiralisation phenomenon
theoretically and classify different spiral regimes as functions of the key dimensionless
groups through a newly introduced spiralisation parameter. In § 3, we introduce our
experimental set-up, which we have extended by the background-oriented schlieren
measurement technique allowing for high-resolution measurements of interfacial wave
patterns. Finally, we compare two different sets of experiments against the theoretical
predictions in § 4.
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Figure 1. (@) Schematic illustration of the orbitally excited cylindrical tank and (b) photograph of our
experimental set-up. The cylinder of radius R is filled with two immiscible liquids, i = 1, 2, of densities
pi, kinematic viscosities v; and layer heights /4;, which stably stratify due to gravity g and form a distinct
liquid-liquid interface of interfacial tension y at the position z = 1(r, ¢). The orbital shaking table prescribes
ideal circular motions of diameter d; and constant angular frequency §2 to the tank while maintaining a fixed
orientation. A charge-coupled device (CCD) camera is mounted coaxially above the observation tank to allow
direct image acquisition in the non-inertial frame of reference. A transparent random dot pattern placed just
beneath the tank bottom, which is homogeneously illuminated from below by a light-emitting diode (LED)
array, serves as the background.

2. Theory

In Horstmann et al. (2020), we derived an analytic solution describing the linear motion
of gravity—capillary interfacial waves in upright circular cylinders undergoing a constant
circular orbital motion. The defined theoretical framework is shown in figure 1(a). An
ideal circular cylinder of radius R contains two immiscible liquid layers (subscripts i =
1, 2) of heights A;, kinematic viscosities v; and densities p;. Under the constraint p; < p2,
both liquids stably stratify due to gravity, g = —ge;, and form a liquid-liquid interface
at the position z = n(r, ¢). The origin of the cylindrical coordinate system O(r, ¢, ) is
located in the centre of the interface 1 and follows the tank motion. Interfacial tension
y was incorporated to also describe the capillary wave regime. The interfacial contact
line at the sidewall was assumed to move freely while maintaining a static contact angle
of 90° (no meniscus). This idealised boundary condition is only justified if the capillary
length 8, = /¥ /(p2 — p1)g is far smaller than the lateral dimensions of the vessel, which
is safely satisfied by all liquid stratifications presented in this study, having a capillary
length of approximately 2 mm; see Bond numbers in table 1. The entire vessel is oscillated
horizontally with a constant angular frequency §2 along a circular trajectory of diameter d.
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Most concisely, this wave problem is governed by eight key dimensionless groups. In
compliance with the free-surface sloshing theory by Reclari et al. (2014), we have chosen
the following set of dimensionless numbers:

d; 22 d QR? hi
Fr="" E=_—> Re=-"—, H=—, (2.1a-d)
2g 2R Vi R
_ R2 —
Bo— P27 PUSR P21 Q2.le,f)
Y p1+ P2

Here, Fr denotes the Froude number representing the forcing expressed by the ratio
of inertial force and gravitational acceleration. The normalised shaking diameter E can
be interpreted as the eccentricity, while Re; are the fluid-dependent Reynolds numbers,
here weighting the cylinder radius with the boundary layer thicknesses &; ~ /v;/$2. The
importance of gravitational forces compared to interfacial tension forces is specified by
the Bond number Bo. Finally, H; denote the dimensionless aspect ratios and the Atwood
number A characterises the transition from interfacial waves (small A) to free-surface
waves (A =~ 1).

By introducing the dimensionless variables 7 =r/R, Z=2z/R and 7= t, we
(Horstmann et al. 2020) expressed the linear solution for the dimensionless wave elevation
n(7, ¢, 1) /R in the following form:

n(F .0 i 2Fr Ti(€107)
R 1 ( Eln> (61,, — DJi(e1n)
1+
Bo
r? r?
X ( ; w)l” sin(f — @) + Dln e cos(f— @) |.
Fw] -1 2 1n
A Ay (F L 1) +
Ay " “ (5, = 1)

(2.2)

Here I7,,, := w1,/52 are the dimensionless frequency ratios and A1, := 241,/52 are the
damping ratios, both of which are specified in Appendix A. The values A1, refer here to the
two-layer viscous damping rates derived in Herreman et al. (2019, appendix D). Further,
J1 denotes the first-order Bessel function of the first kind and the €;,, indicate the discrete
wavenumbers, given as the n roots of the first derivative of the first-order Bessel function,
J/1 (€1,) = 0 (Abramowitz & Stegun 1972). Physically, the integers n specify the number
of antinodal cycles (crest—trough pairs) appearing in the wave excited with the frequency
2 = wiy.

Perhaps the most intriguing feature of solution (2.2) is the description of phase lags
developing between the wave motion and the orbital motion of the shaking table, which
emerge in the presence of damping. The phase lag Ag, explicitly given by

1 Ji(€1n7) Anly,
(Bo +e]n) (e, — DIi(ern) (I, — D2+ A7,

M2

n=1

. 23)

A@(F) = arctan
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Figure 2. Spiral wave formation and origin of chirality highlighted by superimposing the first fundamental
Fourier—Bessel modes for a clockwise-rotating orbit (a) and the anticlockwise-rotating orbit (b) of the third
wave mode §2 = w3 for the coherent spiral case shown in figure 3.
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is an intricate function of the radial position 7. As a consequence, the different antinodal
cycles are subject to different phase shifts (with respect to the motion of the shaker),
which are largely dictated by the damping ratios Aj,. Exactly this effect is responsible
for the spiral pattern formation since this position-dependent shifting introduces a relative
twisting between the individual crest—trough pairs (antinodal cycles), letting the waves
appear as one-armed spirals in superposition.

This mechanism, which differs fundamentally from the nonlinear spiral pattern
formation occurring in reaction—diffusion systems and excitable media, deserves further
explanation. In order to arrive at a more lucid understanding, we can graphically examine
how the wave modes are composed of the fundamental Fourier-Bessel modes in the
solution (2.2). Let us consider, by way of example, the third wave mode developing at
the frequency £2 = w13 <= I,,; = 1. To be formally exact, we would have to calculate
this wave by summing up an infinite number of Fourier—Bessel modes 7 in (2.2). However,
only the first few summands contribute significantly to the wave mode, since the terms
Iy, = 1, which appear in the denominators, are small (and therefore significant) only if n
closely matches, in this example, the third eigenfrequency. It is well known that the first n
fundamental Fourier—Bessel modes essentially define the wave structure of waves excited
by the nth eigenfrequency. Higher terms only add small details.

All this is illustrated in figure 2, showing the first three Fourier—Bessel modes,
its superposition as well as the converged solution of a typical 2 = w13 spiral wave
pattern (compare to figure 2 in Horstmann et al. (2020)) resulting from clockwise
(a) and anticlockwise (b) circular excitation. It can be seen how the ongoing twisting
of the fundamental modes leads to spiralisation. In the classic inviscid solution, all
Fourier—Bessel modes have the same phase or are phase shifted by exactly 180°
such that the axial symmetry of the single modes is preserved in the superimposed
solution. The presence of damping, in contrast, inevitably breaks this symmetry.
A remarkable consequence of this symmetry breaking is that spiral waves are characterised
by a pronounced chirality defined by the rotational direction of the shaking table.
Clockwise and anticlockwise spiral waves are, unlike the classical solutions, no longer
indistinguishable. The mere presence of a dissipation source allows the wave to
‘remember’ the rotational sense of excitation.
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Expanding on this, we would like to discuss the spiral wave terminology in some more
detail. Unfortunately, there is no consistent definition of spiral waves in the literature.
Most generally, a spiral is described by a continuous monotonic function r = r(¢) in polar
coordinates. Such a relationship is evident from the white-coloured nodal ridges visible in
the converged solution in figure 2, where the nodal radius is monotonically growing with
the angle ¢. In terms of wave mechanics, however, we have to further distinguish between
propagating and standing waves. Most spiral waves known, e.g. from reaction—diffusion
systems, propagate either outwards from or inwards into the spiral centre (Vanag & Epstein
2001). Such a radial propagation, also in contrast to vertically excited spiral Faraday
waves (Kiyashko et al. 1996), is not present in our solutions. Equation (2.2) describes
a kind of standing wave that azimuthally rotates as a whole like a solid body with the
fixed frequency predetermined by the shaking table. Please note, however, that nonlinear
streaming effects arising at the sidewall will always cause a radial mean mass transport
in the bulk, which is largely associated with the interface elevation (Bouvard et al.
2017).

In Horstmann et al. (2020), we have illustrated this spiral formation for different
fixed damping rates in order to stress this phenomenon in a simple way. However, the
formation of spiral waves turned out to be far more complex when applying the individual
damping ratios Ay, (A2), which can take considerably different values for the different
wave modes n. Thereby, the wave crests and troughs do not necessarily merge into
coherent spirals, but can become positionally separated and therefore incoherent. By way
of examples, figure 3 shows different representative wave patterns that arise from solution
(2.2). Essentially, we have identified four characteristic wave regimes: the well-known
inviscid solutions, incoherent spirals with one or multiple discontinuities, continuous
coherent spirals as well as overdamped waves, where the latter are defined by damping
ratios larger than one A,,, > 1, due to which they would rapidly decay within only one
wave period after switching off the shaking table.

This result has led to the question of if and how we can classify these regimes as
functions of the dimensionless groups. As a first step, we seek a suitable wave criterion
quantifying the degree of spiralisation. A simple way is the pair-by-pair comparison of the
crest or trough amplitudes inthe j = 1,2, ..., (n — 1) nodal cycles (visible in the inviscid
solutions as white rings), located at the positions

- K1j
Tnodalj = 77— : -1 , forwiy = 2 < winy1,
Win Dln
(—' = ) €1n + (—1 ) €1n+1
Fw1n+1 - len Fw1n+1 - len
2.4)
with the m/2 phase shifted inner amplitudes of the j=1,2,...,n antinodal cycles

(crest—trough circles surrounding the white rings in the inviscid solution), located at the
positions

Elj

I, - len g Iy - F‘Uln !

In+1 In+1

for wy, < 2 < wip1-

(2.5)

The numbers «y; are given as the j zeros of the first-order Bessel function J;(«1;) = 0.
In the case of resonant excitations (£2 = wy,), expressions (2.4) and (2.5) simplify to

Tnodal,j = K1j/€1n and ;’antinodal,j = €1j/€1n-
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Figure 3. Different characteristic spiral wave regimes visualised for the first three spiralisable modes
appearing at the eigenfrequencies 2 = w12, w13 and wy4. The interface elevations 1 (7, ¢)/no, here normalised
by the maximum wave amplitude 1, are calculated by applying the default parameters E = 1, Bo = 10%,
A=0.1,Re; = Rer = 12.5 x 104«/1~Tr, Hi =2 — H> and Hy = 0.8 (incoherent spirals) in (2.2). The inviscid
waves were created by taking the limits Re; = Rep > 1 and the overdamped waves by setting Re; = Rey =
200+/Fr. Finally, the coherent spirals are obtained by H, = 0.05. In each case, Fr is chosen to correspond to
the eigenfrequencies by setting I%,,,, I, and I, = 1 in accordance with (A1). Black and green circles mark
crest locations on the first nodal and antinodal cycle, respectively (see text).

For a better clarification, the points 70441,1 and 7anrinodar,1 are marked as black and green
dots, respectively, in the 2 = w3 solutions in figure 3. In the case of inviscid waves, the
pair-to-pair amplitude ratios at 7,,04a,; compared tO Funsinodal,j are always zero, whereas
they would approach one for perfectly homogeneous spirals. On this basis, we introduce
the spiralisation parameter S as follows:

. (‘ 77(;' = ;nodal,ja Y = 0)
S := min —
n(r = Tantinodal.j,» ¥ = 1/2)

') j=12,...,(n—1). (2.6)

This parameter is suitable to analyse the spiralisation as a function of the dimensionless
groups. Because spiral formation is a gradual process, there is no fixed threshold allowing
one to distinguish sharply between coherent and incoherent spirals, but we observed
numerically that spirals appear comparatively homogeneous and shaped like the coherent
spirals presented in figure 3 for S > 0.1 £ 0.02. Therefore, we propose S = 0.1 as a
criterion to identify coherent spirals, whereas the regime S < 0.1 comprises incoherent
spiral waves as well as the inviscid solutions (S = 0). Overdamped waves, in contrast,
cannot be identified by means of the parameter since the inner nodal and antinodal cycles
gradually disappear in this regime.

The numerical evaluation of S while varying all the dimensionless parameters (2.1a—f)
revealed very complex spiralisation dynamics, with no obvious scaling dependences.
Surprisingly, we found that the Reynolds numbers Re; are not the most critical parameters
for achieving coherent spirals. The presence of damping is a necessary but not sufficient
precondition. The Bond number Bo and the aspect ratios H; have a more significant
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Figure 4. Spiral regimes visualised in H>—Bo space for the wave modes §2 = w2, w13 and w4 and different

Galilei numbers /Ga; = Re;/N/Fr = \/gR3v? ;- The Froude numbers were chosen to meet the eigenfrequencies
I',,, = 1 according to (A1), with E = 1, A = 0.05 and H; = 2 — H». The coherent spiral regime is defined by
S > 0.12, whereas S < 0.08 reflects incoherent spirals, including the classical inviscid solutions. In between,
0.08 < S < 0.12 highlights the gradual transition.

influence, with the general tendency that large Bo (gravity wave limit) and shallow layers
(either small H; or Hy) strongly favour coherent spirals. In contrast, S is independent of E
and depends only weakly on A in the interfacial wave regime A < 0.2 considered here.

To provide a more quantitative understanding of the most important spiralisation
characteristics, we study different parameter spaces around the accessible regimes of
our experimental set-up introduced in § 3. In the following, we set £ = 1 without loss
of generality. Further, we choose A = 0.05, a typical value for oil-water stratifications,
assume symmetric viscosities Re; = Rey for the sake of simplicity and fix the aspect
ratio of the cylinder to H; 4+ Hy = 2. Given these conditions, figure 4 shows the
different spiral wave regimes in Hx—Bo spaces for the first three spiralisable wave modes
2 = w1z, w13 and wyg and different damping strengths, here expressed in terms of the

frequency-independent Galilei numbers /Ga; = Re;/~/Fr = /gR? vl.z. This reformulation
was necessary to ensure comparability throughout the wave modes, which have very
different eigenfrequencies. The three visualised spiral regimes represent different contour
levels of S, defined as follows: S < 0.08 represents classic waves and incoherent spirals;
0.08 < &S < 0.12 marks the transitional regime towards coherent spirals; and S > 0.12
classifies clean coherent spirals. Although these boundaries were chosen somewhat
arbitrarily on aesthetic grounds, figure 4 well reflects the overall spiralisation behaviour
and reveals its complexity. The first presented mode §2 = wy> plays a small role of its own,
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as the two nodal cycles merge particularly easily. All other modes (also higher modes not
shown here) exhibit very similar but not identical behaviour: coherent spirals are predicted
to evolve only for sufficiently high Galilei numbers in the gravity wave and shallow water
limits.

3. Experiment

In Horstmann et al. (2019), we established an acoustic measurement technique for the
reconstruction of rotating interfacial waves, originally with the aim of measuring waves in
opaque liquid-metal stratifications. However, the proper verification of the smaller-scale
spiral wave patterns requires continuous measurements to high resolution. For this
purpose, we advanced the experimental apparatus to apply the background-oriented
schlieren (BOS) method (often also called synthetic schlieren). This technique can be
applied to directly measure the instantaneous topography of interfacial slopes between
transparent fluids with different refractive indices (Moisy, Rabaud & Salsac 2009). The
implementation is shown in figure 1(b). All experiments were conducted in a cylindrical
vessel made from clean acrylic glass. The inner radius measures R = 50 mm and the total
height of the inner volume was adjusted to &7 + hy = 75 mm. The entire observation cell
is placed on a stand mounted on a 420 mm x 420 mm shaking tray following ideal orbital
motions excited by a modified Kuhner LS-X laboratory shaker. The shaker allows for a
continuous adjustment of shaking diameters up to d; = 70 mm and facilitates shaking
frequencies f = §2 /2 in the range 20 r.p.m. < f < 500 r.p.m.

For the appropriate implementation of BOS, the experimental set-up from Horstmann
et al. (2019) was extended by two components. For backlight illumination, we have
installed a Luminitronix MiniMatrix array of 10 x 10 LEDs (15 cm x 15 cm) below the
vessel. To achieve a homogeneous diffusive backlight, we further mounted a 2 mm thick
white sheet of polystyrene above the LED array. The emitted light passes vertically through
the cylinder and is captured by an AVT Prosilica GT1660 monochrome camera. The
camera was mounted coaxially 270 mm above the vessel, resulting in an imaging of the
fluid cell of 1000 px x 1000 px with a resolution of 0.1 mm px~'. In this arrangement
the camera follows the orbital motion of the shaking table, which has the advantage that
acquired images can be processed directly without the need to transform the frame of
reference. Finally, a transparent background was installed just beneath the bottom of the
fluid vessel. We generated a random dot pattern of ~ 20 dots mm ™2 using the software
PIVview that was printed onto a transparent plastic sheet.

The principle of BOS is based on the fact that local wave elevations are reflected as
virtual displacements 5x(r, ¢) of the dot pattern with regard to a reference image obtained
when the interface is flat. Light rays originating from points below the interface are
refracted by a certain angle dependent on the local slope of the interface Vn(r, ¢) and
the refractive indices of all involved phases. For better clarification of this principle,
a supplementary movie is provided (available at https://doi.org/10.1017/jfm.2021.686)
showing spiral wave motion becoming directly visible as caustics in the reference pattern.

Our theoretical model predicts that coherent spirals preferentially form if one of the
fluid layers is shallow. Fortunately, restricting to shallow bottom layers H, < 0.25 is also
favourable for BOS measurements. It is shown by Moisy et al. (2009) that, if the reference
pattern—interface distance is small and the camera—interface distance is large (paraxial
approximation), the interfacial slope is linearly correlated with the displacement field,

Vi(r, @) ~ =8x(r, ¢), 3.1)
925 A28-9
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Figure 5. Normalised absolute values of the gradient fields ||6\n || due to (2.2) corresponding to the coherent
spirals (@) and overdamped solutions (b) shown in figure 3.

provided that wave amplitudes and slopes are small ||n1,|| < R/€1,, which was anyway a
basic requirement for the linearisation of our model (Horstmann ez al. 2020). In principle,
it is possible to determine the proportionality analytically by reconstructing the ray paths
and inverting (3.1). This would allow one to determine wave amplitudes quantitatively, as
recently demonstrated by Simonini et al. (2021) for free-surface sloshing in cylindrical
containers. However, in our case the gradient is analytically known from (2.2). Therefore,
we can avoid all the uncertainties that would arise from the reconstruction of the multiple
refracted light rays and the numerical inversion procedure of (3.1).

In order to verify the predicted spiral patterns with the highest accuracy, it is expedient to
directly compare normalised gradient fields V» following from (2.2) with the experimental
displacement fields dx. This way, we compare the slope of the interface throughout space
and time up to a single unknown scaling parameter, which is of no significance and
can be eliminated through normalisation. Based on this concept, we determined §x from
recorded schlieren patterns by correlating successive images using the software PIVview
3.6. All displacement fields presented below were phase-averaged and interpolated on a
standardised 0.5 mm x 0.5 mm Cartesian grid in order to increase the accuracy. This way,
we could keep maximum measurement uncertainties in §x(r, ¢) well below +0.1 mm.

4. Results

On the basis of relation (3.1), we now seek to verify the predicted existence of linear spiral
waves. First, we need to analyse the gradient fields as they follow from the solution (2.2).
It is a well-known fact that the application of the gradient operator on two-dimensional
spiral patterns doubles the number of spiral arms. Hence, the one-armed spiral patterns
from figure 3 are expected to become visible as two-armed spirals in the schlieren
images. For clarity, figure 5 shows the normalised magnitude of the gradient fields
IVnll = IVnl|l/max(]|Vn|) for the coherent and overdamped spirals from figure 3. The
coherent spirals are reflected by a continuously connected slope crest involving (n + 1)
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f dy Oi y Vi h; R
Working liquid (r.p.m.) (cm) (g cm_3) (mN cm_l) (cm2 s7h (cm)  (cm)
Paraffin oil (PP) 32-122 2.5 0.846 <0.05 ~ 0.36 5.9 5
Silicone oil (AK 35) 0.955 ~ (.35 1.6
Paraffin oil (PP) 34-117 0.9 0.846 0.072 ~ 0.36 6.5 5
Water 0.998 ~ (.01 1
Working liquid Fr E A Bo Re; H;
Paraffin oil (PP) 0.014-0.208  0.25 0.06 >534 ~ 233-887 1.18
Silicone oil (AK 35) ~ 239-913 0.32
Paraffin oil (PP) 0.016-0.191  0.09 0.082 518 ~ 247-851 13
Water ~ 8901-30 630 0.2

Table 1. Experimental parameters and corresponding dimensionless groups of the two conducted sets of
experiments.

maxima along the vertical half-axis. In contrast, the inner slope maxima of the overdamped
cases disappear progressively with increasing wave modes, leaving only two twisted outer
slope maxima close to the sidewall.

The regime classification presented in §2 was used as the basis for planning two
sets of experiments, one in which paraffin oil (paraffinum perliquidum, PP) was layered
onto silicone o0il (AK 35), and another in which we stratified PP on top of water. Both
sets are specified in table 1. From I3, =1, see (A2), we find the first theoretical
eigenfrequencies at (w11, w12, w13, w14) = (34.6, 80, 111, 138) r.p.m. for PPIwater and at
(w11, w12, w13, w14) = (33.5,70, 94, 117) r.p.m. for PPIAK 35 such that the measured
shaking frequency ranges 34-117 r.p.m. (PPlwater) and 32-122 r.p.m. (PPIAK 35) are
expected to cover the first three and four eigenfrequencies, respectively. Generally, spirals
are predicted to form for high Bond numbers Bo > 107, sufficiently high damping rates
and shallow liquid layers H < 0.4. All these requirements are met by both the PPIAK
35 (0.3 < S < 0.5 in the range 32-122 r.p.m.) and PPlwater (0.11 < S < 0.15 in the
range 34-117 r.p.m.) systems, whereby the more viscous PPIAK 35 stratification (/Ga; &
Vv Gaz ~ 2000) was expected to encompass the overdamped spiral regime as well, which
is not reflected by the spiral parameter S. In principle, it would be possible to reconstruct
S from the BOS measurement in order to quantitatively assess the predicted regime
boundaries. However, the complicated environment in two-layer experiments renders
direct comparisons very difficult. The PPlwater system suffers from a partially fixed
contact line, whereas PPIAK 35 is subject to partial mixing. Both effects cause shifts in
the eigenfrequencies (Horstmann ef al. 2019) and can affect the damping rates. For this
reason, here we restrict ourselves to proving the existence of the spiral wave regimes and
their characteristic patterns; precise measurements of S are planned for future studies.

Figure 6 shows eight normalised displacement fields ||(§3c|| = |I6x|| /max(||6x]|)
from both sets of experiments. In addition, we provide two supplementary movies,
which encompass all measured displacement fields in sequence, thereby highlighting the
progressively increasing spiral arm formation with increasing shaking frequencies. All
measured displacement fields accurately reflect the theoretically predicted double-armed
spiral patterns and therefore confirm their existence. As expected, spirals are not visible for
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78 r.p.m. 90 r.p.m. 103 r.p.m. 117 r.p.m.
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1.0
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0.6
57 r.p.m. 72 r.p.m. 92 r.p.m. 122 r.p.m.

PRO0!

Figure 6. Normalised displacement fields ||8x|| for different chosen excitation frequencies in the range
w11 S f < wia measured in PPlwater (a) and PPIAK 35 (D).

the lowest frequencies, since the first mode only involves one nodal cycle. From the second
eigenfrequency on, the PPlwater system forms coherent spirals. The PPIAK 35 system
encompasses further the transition into the overdamped regime. With frequencies above
f 2 75 r.p.m. the inner structures start to vanish until the predicted overdamped patterns
arise in the third and fourth mode. This is remarkable insofar as these cases already fall
outside the low damping limit Re; >> 1 of the irrotational theory.

5. Conclusion

Building on our recent formulation of damped interfacial waves in orbitally shaken upright
circular cylinders (Horstmann et al. 2020), we explain the emergence of novel spiral wave
patterns resulting from the linear superposition of phase-shifted eigenmodes. We develop
an analytic criterion quantifying the degree of spiralisation that allows us to classify
the transitions from the classical inviscid wave modes to coherent spiral waves. The
criterion reveals that spiral waves preferentially form in shallow layers and for high Bond
numbers under the effect of sufficient damping. So as to be able to verify the existence
of the predicted spiral wave regimes experimentally, we supplemented our existing
multilayer orbital sloshing experiment (Horstmann et al. 2019) by the BOS measurement
technique. This technique permits, in an easy way, submillimetre-resolution measurements
of interfacial gradient fields, which are directly reflected in local displacements of a
random dot pattern installed below the observation vessel. We performed two sets of
experiments. By stratifying paraffin oil above water, the formation of coherent spirals
could be confirmed for the second and third wave mode. Combining paraffin oil with
a more viscous silicone oil instead, we further observed the formation of overdamped
spirals in the third and fourth mode. These results confirm the existence of this novel
class of linear spirals and substantiate the applicability of potential flow approaches also
for damped wave mechanics. The spiralisation discussed here is a particular response to
orbital excitation. For future studies, it would therefore be interesting to explore the linear
and nonlinear wave patterns evolving under arbitrary (harmonic) excitations due to the
same symmetry breaking that is a universal characteristic of higher-mode sloshing.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.686.
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Appendix A. Dimensionless frequencies and damping ratios

Eigenfrequencies:
2 1/2
24ep, [ 1412
Oln E Bo
Iy, =—=1— . (A1)
2 Fr[(1 — A) coth(e1,H) + (1 4+ A) coth(ey,H2)]

Damping ratios for interfacial waves:

2L
Aln :2/11n
2
_Z 1 (—-DA+A+2-D(1-A)
2=\ 2Re; [[(1= ) coth(er,H) + (1 + A) coth(erHy)]
2
o €7 +1
X | (€1, — H;) sinh 2(elnH,-) 4+ ;"—1 coth(e,H;)
In —

N €1n |: [coth(e1,H1) + coth(ey, Hp)]? ]
V2Rei  /2Re; \ (1 — A)coth(ej,Hy) + (1 +A) coth(ey,H2)
<(1 —-A) +A))
1+4A) (1-A)7r0+4) (1—A)

coth(ey,Hy) — —— coth(e,,H
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