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On the Structure of the Spreading Models
of a Banach Space

G. Androulakis, E. Odell, Th. Schlumprecht, and
N. Tomczak-Jaegermann

Abstract. We study some questions concerning the structure of the set of spreading models of a sep-

arable infinite-dimensional Banach space X. In particular we give an example of a reflexive X so that

all spreading models of X contain ℓ1 but none of them is isomorphic to ℓ1. We also prove that for any

countable set C of spreading models generated by weakly null sequences there is a spreading model

generated by a weakly null sequence which dominates each element of C . In certain cases this ensures

that X admits, for each α < ω1, a spreading model (x̃(α)
i )i such that if α < β then (x̃(α)

i )i is dom-

inated by (and not equivalent to) (x̃
(β)
i )i . Some applications of these ideas are used to give sufficient

conditions on a Banach space for the existence of a subspace and an operator defined on the subspace,

which is not a compact perturbation of a multiple of the inclusion map.

1 Introduction

It is known that for every seminormalized basic sequence (yi) in a Banach space and

for every εn ց 0 there exists a subsequence (xi) and a seminormalized basic sequence
(x̃i) such that: for all n ∈ N, (ai)

n
i=1 ∈ [−1, 1]n and n ≤ k1 < · · · < kn,

(1)
∣∣∣
∥∥

n∑

i=1

aixki

∥∥ −
∥∥

n∑

i=1

ai x̃i

∥∥
∣∣∣ < εn.

The sequence (x̃i) is called the spreading model of (xi) and it is a suppression-1 uncon-
ditional basic sequence if (yi) is weakly null (see [4, 5]; see also [3, I.3. Proposition 2]
and [21] for more about spreading models). This, in conjunction with Rosenthal’s
ℓ1 theorem [26], yields that every separable infinite dimensional Banach space X ad-

mits a suppression 1-unconditional spreading model (x̃i). In fact one can always find
a 1-unconditional spreading model [27]. It is natural to ask if one can always say
more. What types of spreading models must always exist? Sometimes we refer to
the closed linear span of (x̃i), as the spreading model of (xi). By James’ well known

theorem [12], every such X thus admits a spreading model X̃ which is either reflex-
ive or contains an isomorph of c0 or ℓ1. It was once speculated that for all such X

some spreading model (x̃i) must be equivalent to the unit vector basis of c0 or ℓp for

some 1 ≤ p < ∞, but this was proved to be false [22]. A replacement conjecture
was brought to our attention by V. D. Milman: Must every separable space X admit a

Received by the editors May 14, 2003; revised August 2, 2004.
This research was supported by NSF, NSERC and the Pacific Institute for the Mathematical Sciences.

In addition, the fourth author holds the Canada Research Chair in Mathematics.
AMS subject classification: 46B03.
c©Canadian Mathematical Society 2005.

673

https://doi.org/10.4153/CJM-2005-027-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-027-9


674 G. Androulakis, E. Odell, Th. Schlumprecht, and N. Tomczak-Jaegermann

spreading model which is either isomorphic to c0 or ℓ1 or is reflexive? In Section 2 we
show this to be false by constructing a space X so that for all spreading models X̃ of

X, X̃ contains ℓ1 but X̃ is never isomorphic to ℓ1. The example borrows some of the
intuition behind the example of [22]. That space had the property that amongst the
ℓp and c0 spaces only ℓ1 could be block finitely representable in any spreading model
(x̃i), yet no spreading model could contain ℓ1.

The motivation behind our example comes from the “Schreierized” version S(dw,1)
of the Lorentz space dw,1. Let 1 = w1 > w2 > · · · with wn → 0 and

∑∞
n=

wn = ∞.
Then dw,1 is the sequence space whose norm is given by

‖x‖ =

∑

n

wnx∗n ,

where x is the sequence (xn) and (x∗n ) is the decreasing rearrangement of (|xn|). One
could then define the sequence space S(dw,1) as the completion of c00 (the linear span
of finitely supported sequences of reals) under

‖x‖ = sup
n∈N

n≤k1<k2<···<kn

n∑

i=1

wix
∗
ki
.

In this case the unit vector basis (ei) has a spreading model, namely the unit vector
basis of dw,1, which is not an ℓ1 basis but whose span is hereditarily ℓ1. Since S(dw,1)
is hereditarily c0, it does not solve Milman’s question. In order to avoid c0 one may
also define the “Tsirelsonized” version T(dw,1) of dw,1. Let T(dw,1) be the completion

of c00 under the implicit equation

‖x‖ = max
(
‖x‖∞, sup

n∑

i=1

wi‖Eix‖∗
)
,

where the supremum is taken over all integers n, and all admissible sets (Ei)
n
i=1 i.e.,

n ≤ E1 < · · · < En (this means n ≤ min E1 ≤ max E1 < min E2 ≤ · · · ) and Eix

is the restriction of x to the set Ei . It may well be that T(dw,1) has the properties we
desire but we were unable to show this. Thus we were forced to “layer” the norm in a
certain sense (see Section 2 below).

In Section 3 we consider in a wider context SPω(X), the partially ordered set of

all spreading models (x̃i) generated by weakly null sequences in X. The partial or-
der is defined by domination: we write (x̃i) ≥ (ỹi) if for some C < ∞ we have
C‖∑

ai x̃i‖ ≥ ‖∑
ai ỹi‖ for all scalars (ai). We identify (x̃i) and (ỹi) in SPω(X) if

(x̃i) ≥ (ỹi) ≥ (x̃i). We prove (in Proposition 3.2) that if C ⊆ SPω(X) is countable,
then there exists (x̃i) ∈ SPω(X) which dominates all members of C . This enables us
to prove that in certain cases one can produce an uncountable chain {(x̃(α)

i )i}α<ω1

with (x̃(α)
i )i < (x̃

(β)
i )i if α < β < ω1. This yields a solution to a uniformity question

raised by H. Rosenthal. The question (and a dual version) are as follows: let a separa-
ble Banach space Z have the property that for all spreading models (x̃i) of normalized
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basic sequences

lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥
/

n = 0
(

respectively, lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥ = ∞
)
.

Does there exist (λn) with limn λn/n = 0 (respectively limn λn = ∞) such that for

all spreading models (x̃i) of normalized basic sequences in Z

lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥
/

λn = 0
(

respectively, lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥
/

λn = ∞
)

?

We give negative answers to these questions. The example that solves the first ques-
tion is the space X of Section 2. Moreover every subspace of X fails to admit such a
sequence (λn). We do not know of a hereditary solution to the second question.

In Section 5 we consider the problem: if |SPω(X)| = 1, i.e., if X has a unique
spreading model up to equivalence, must this spreading model be equivalent to the
unit vector basis in c0 or ℓp for some 1 ≤ p < ∞? The question was asked of us

by S. A. Argyros. It is easy to see that the answer is positive if the spreading models
are uniformly isomorphic. We show that the answer is positive if 1 belongs to the
“Krivine set” of some spreading model.

Definition 1.1 Let (xi) be a 1-spreading basic sequence (see (2)). The Krivine set

of (xi) is the set of p’s (1 ≤ p ≤ ∞) with the following property: for all ε > 0 and
n ∈ N there exist m ∈ N and (λk)m

k=1 ⊂ R, such that for all (ai)
n
1 ⊆ R,

1

1 + ε
‖(ai)

n
i=1‖p ≤

∥∥∥
n∑

i=1

ai yi

∥∥∥ ≤ (1 + ε)‖(ai)
n
i=1‖p

where yi =

∑m
k=1 λkx(i−1)m+k for i = 1, . . . , n, and ‖ · ‖p denotes the norm of the

space ℓp.

The proof of Krivine’s theorem [14] as modified by H. Lemberg [15]) (see also

[9, Remark II.5.14] and [19]), shows that for every 1-spreading basic sequence (xi)
the Krivine set of (xi) is non-empty. It is important to note that our definition of a
Krivine p requires not merely that ℓp be block finitely representable in [xi : i ∈ N]
but each ℓn

p unit vector basis is obtainable by means of an identically distributed block

basis.

An immediate consequence of the fact that the Krivine set of a spreading model is
non-empty is the following:

Remark 1.2 Assume that (xi) is a seminormalized basic sequence in a Banach space
X which has a spreading model (x̃i). We can assume that for some decreasing to zero
sequence (εi) (1) is satisfied. Then there is a p ∈ [1,∞] such that for all n and all
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ε > 0 there exists a finite sequence (λi)
m
i=1 ⊂ R so that any block (yi) of (xi) of the

form

yi =

m∑

j=1

λ jxn(i, j),

with n(1, 1) < n(1, 2) < · · · < n(1, m) < n(2, 1) < · · · n(2, m) < n(3, 1) · · ·

has a spreading model (ỹi) which is isometric to the sequence (
∑m

j=1 λ j x̃(i−1)m+ j)i∈N

and has the property that its first n elements are (1 + ε)-equivalent to the unit vector
basis of ℓn

p. For i0 ∈ N large enough (or passing to an appropriate subsequence of
(xi)) we also observe that (yk j

)n
j=1 is (1 + 2ε)-equivalent to the ℓn

p unit basis whenever
i0 < k1 < · · · kn.

In Section 6 we give sufficient conditions on a Banach space X for the existence
of a subspace Y of X and an operator T : Y → X which is not a compact perturba-

tion of the inclusion map. W. T. Gowers [9] proved that there exists a subspace Y

of the Gowers–Maurey space GM (constructed in [10]) and there exists an operator
T : Y → GM which is not a compact perturbation of the inclusion map. Here we
extend the work of Gowers to a more general setting. For example, suppose that X

admits a spreading model (x̃i) which is not equivalent to the unit vector basis in ℓ1

but such that 1 is in the Krivine set of (x̃i). Then (Theorem 6.1) there exists a sub-
space W of X and a bounded operator T : W → W such that p(T) is not a compact
perturbation of the identity, for any polynomial p.

Our terminology is standard as may be found in [16, 17]. All our Banach spaces
will be considered spaces over the real field R. If A ⊂ X, where X is a Banach space,
then span(A) is the linear span of A and [A] = span(A) is the closed linear span of A.
If S is a set, c00(S) denotes the vector space of finitely supported real valued functions

on S. If S = N we write c00 = c00(N). SX is the unit sphere of X and BX is the unit
ball of X. A basic sequence (xi) is block finitely represented in (yi) if for all ε > 0 and
n ∈ N there exists a block basis (zi)

n
i=1 of (yi) satisfying

(1 + ε)−1
∥∥∥

n∑

1

aixi

∥∥∥ ≤
∥∥∥

n∑

1

aizi

∥∥∥ ≤ (1 + ε)
∥∥∥

n∑

1

aixi

∥∥∥

for all (ai)
n
1 ⊆ R. We say ℓp is block finitely represented in (yi) if the unit vector basis

of ℓp is block finitely represented in (yi).

Let (xi) be a basic sequence and C ≥ 1. Then (xi) is called C-spreading if for all
(ai) ∈ c00 and all choices of n1 < n2 < · · · in N,

(2)
1

C

∥∥∥
∞∑

i=1

aixi

∥∥∥ ≤
∥∥∥

∞∑

i=1

aixni

∥∥∥ ≤ C
∥∥∥

∞∑

i=1

aixi

∥∥∥ ,

and (xi) is called C-suppression unconditional if for all (ai) ∈ c00 and A ⊂ N.

∥∥∥
∞∑

i∈A

aixi

∥∥∥ ≤ C
∥∥∥

∞∑

i=1

aixi

∥∥∥ .
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We say that (xi) is C-subsymmetric if it is C-spreading and C-suppression uncon-
ditional. Here we slightly deviate from the notions in [16, 17], where C-subsymmetric

is defined to be C-spreading and C-unconditional (with respect to changes of signs).
We say that (xi) is spreading, unconditional, or subsymmetric, if for some C ≥ 1, (xi)
is C-spreading, C-unconditional, or C-subsymmetric, respectively.

2 Spreading Models Containing ℓ1 Which Are Not ℓ1

Let us start with an observation which will be used several times through out the

paper.

Proposition 2.1 Assume that ( fi) is a normalized subsymmetric basic sequence. The

following conditions are equivalent.

(a) ( fi) is equivalent to the unit vector basis of ℓ1.

(b) There is an r > 0 so that
∥∥∑n

i=1 fi

∥∥ ≥ rn, for all n ∈ N.

(c) There is a C > 0 such that for all ρ > 0 there exists an (a
(ρ)
i ) ∈ c00 ∩ [−ρ, ρ]N, so

that
∥∥∥

∞∑

i=1

a
(ρ)
i fi

∥∥∥ = 1 and

∞∑

i=1

|a(ρ)
i | ≤ C.

Proof Clearly (a)⇒(b)⇒(c). To prove the converse, we first assume, without loss of
generality, that ( fi) is 1-subsymmetric. Let f ∗i , i ∈ N, be the coordinate functionals.

Since ( f ∗i ) is also a 1-subsymmetric basic sequence, we only need to show that the
partial sums (

∑n
i=1 f ∗i )n are bounded in the dual norm.

Let ρ > 0 be arbitrary but fixed. Choose x∗ρ =

∑
b

(ρ)
i f ∗i ∈ Sspan( f ∗i :i∈N) so that

x∗ρ

(∑
a

(ρ)
i fi

)
=

∑
b

(ρ)
i a

(ρ)
i = 1.

By unconditionality we can assume that sign(b
(ρ)
i ) = sign(a

(ρ)
i ) = +, for i = 1, 2, . . .

and deduce that

ρ ·
∣∣∣
{

i : b
(ρ)
i ≥ 1

2C

}∣∣∣ ≥
∑

i∈N

b
(ρ)

i >1/(2C)

a
(ρ)
i b

(ρ)
i = 1 −

∑

i∈N

b
(ρ)

i ≤1/(2C)

a
(ρ)
i b

(ρ)
i ≥ 1

2
.

This implies, again by the fact that ( f ∗i ) is 1-subsymmetric that

∥∥∥
⌊ 1

2ρ ⌋∑

i=1

1

2C
f ∗i

∥∥∥ ≤
∥∥∥

∑

i∈N

b
(ρ)

i ≥1/(2C)

b
(ρ)
i f ∗i

∥∥∥ ≤ ‖x∗ρ‖ = 1,

and finishes the proof, if we let ρ → 0.
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Theorem 2.2 There exists a reflexive Banach space X with an unconditional basis

such that the spreading model of any normalized basic sequence in X is not isomorphic

to c0 or ℓ1 and is not reflexive.

For x = (xi)i ∈ c00 we write supp x = {i : xi 6= 0}. For x, y ∈ c00 and an integer k

we say that x < y if max supp x < min supp y, and we write k < x if k < min supp x.
Let (ei) denote the unit vector basis of c00.

In order to prove Theorem 2.2 we will construct a space X which has certain prop-
erties as stated in the following result, which will easily imply Theorem 2.2.

Theorem 2.3 There is a space X with the following properties:

(a) X has a normalized 1-unconditional basis (ei).

(b) For any normalized block basis of (ei) having a spreading model (x̃i) we have that

(x̃i) is not equivalent to the unit vector basis of ℓ1.

(c) For any normalized block basis of (ei) having a spreading model (x̃i) we have that

ℓ1 embeds into span({x̃i : i ∈ N}).

Proof of Theorem 2.2 Let X be chosen as in Theorem 2.3. Since X has an uncon-
ditional basis and does not contain a subspace isomorphic to ℓ1 or c0 (otherwise a
block basis of (ei) would be equivalent to either the unit vector basis of ℓ1 or c0, both

of which are excluded by (b) and (c)), X must be reflexive.

Since X is reflexive, every normalized basic sequence in X has a subsequence which
is equivalent to a block basis of (ei). Therefore (b) and (c), and the fact that ℓ1 has a
unique subsymmetric basis, imply that all the spreading models of normalized basic

sequences in X are neither reflexive nor isomorphic to c0 or ℓ1.

Construction of the space X: First we choose an increasing sequence of integers (ni)

such that

(3)
1

(n1 + n2 + · · · + nk)1/p

k∑

i=1

ni

3i
−−−→
k→∞

∞ for all p > 1.

In order to choose a sequence (ni) satisfying (3), first choose a sequence (pk)k with
pk ց 1 and then inductively on k ∈ N pick (nk) to satisfy

1

(n1 + n2 + · · · + nk)1/pk

k∑

i=1

ni

3i
> k

for all k ∈ N. Now we choose a norm ‖ · ‖ on c00 to satisfy the following Tsirelson
type equation (see [24]):

‖x‖ = ‖x‖∞ ∨ sup
k∈N

k≤E(i)
1 <E(i)

2 <···<E(i)
ni

,

for i ≤ k

k∑

i=1

1

3i

ni∑

j=1

‖E(i)
j x‖.
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Note that we do not require that E(s)
j ∩ E(t)

j ′ = ∅ if s 6= t . Henceforth in this section X

will denote the completion of c00 under this norm. It is easy to see that the unit vector

basis (ei) is a normalized 1-unconditional basis for X. It will be useful to introduce
the sequence of equivalent norms ‖ · ‖i , for i ∈ N, as follows:

‖x‖i = sup
E1<E2<···<Eni

ni∑

j=1

‖E jx‖.

Note that we have

‖x‖ = ‖x‖∞ ∨ sup
k∈N

k∑

i=1

1

3i
‖[k,∞)x‖i .

Proof of Theorem 2.3 (a) is immediate.
(b) We need the following auxiliary results. We postpone the proofs.

Lemma 2.4 For any normalized block basis (yi) of (ei) and for any ε > 0 there exists

a subsequence (xi) and i0 ∈ N such that for any N ∈ N and integers k, j1, . . . , jN with

i0 ≤ k ≤ j1 < j2 < · · · < jN we have that

(4)

k∑

i=i0

1

3i

∥∥∥ [k,∞)
( 1

N

N∑

s=1

x js

)∥∥∥
i
< ε.

Lemma 2.5 Let (yi) be a normalized block basis of (ei) in X which has a spreading

model (ỹi) and suppose that N ∈ N satisfies

(5) 0.99 ≤
∥∥∥

1

2N
(ỹ1 + · · · + ỹ2N )

∥∥∥ .

Then there exists k ∈ N and a subsequence (xi) of (yi) such that for all j1 < j2 < · · · <
jN ,

(6) 0.96 <

k∑

i=1

1

3i

∥∥∥ [k,∞)
( 1

N

N∑

s=1

x js

)∥∥∥
i
.

For the proof of (b) assume to the contrary that there exists a normalized block

basis (yi) of (ei) whose spreading model (ỹi) is equivalent to the unit vector basis
of ℓ1. Without loss of generality [3, Proposition 4 in Ch. II §2], we can assume
that (5) is valid for all N ∈ N. For ε = 0.01 choose i0 ∈ N and a subsequence of (yi)
which satisfies the conclusion of Lemma 2.4. Choose N ∈ N with

2

N

i0−1∑

i=1

ni < 0.01.

Since (5) is valid, by Lemma 2.5 there exists k ∈ N and a further subsequence (xi)
which satisfies (6). Now let j1 < j2 < · · · < jN with k ≤ j1 and let x =
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(1/N)
∑N

s=1 x js
. We will first estimate for i ∈ N the value of ‖x‖i . Choose E1 <

E2 < · · · < Eni
so that

‖x‖i =

ni∑

i=1

‖E j(x)‖.

Since (e j) is 1-unconditional, we can assume that the E j ’s are intervals in N, that

min E1 = 1, and that max E j = min E j+1 − 1, for j = 1, . . . , ni − 1.
For ℓ = 1, 2, . . . , ni put Iℓ = {s ≤ N : supp(x js

) ⊂ Eℓ} and I0 = {1, 2, . . . , N} \⋃ni

ℓ=1 Iℓ and note that I0 =

{
s ≤ N : ∃ℓ1, ℓ2 ≤ ni , ℓ1 6= ℓ2, supp(x js

) ∩ Eℓt
6= ∅, t =

1, 2
}

, and that
∑

ℓ≤ni
|Iℓ| ≤ N . Moreover note that each Eℓ can only have a non

empty intersection with the support of at most two x js
’s, s ∈ I0. Therefore we deduce

(7) ‖x‖i =

ni∑

ℓ=1

‖Eℓ(x)‖ ≤ 1

N

ni∑

ℓ=1

[∑

s∈Iℓ

‖xs‖ +
∥∥∥Eℓ

( ∑

s∈I0

xs

)∥∥∥
]
≤ 1 +

2ni

N
.

By Lemma 2.5 we have (the second term below on the right disappears if k < i0)

0.96 <

i0−1∑

i=1

1

3i
‖[k,∞)x‖i +

k∑

i=i0

1

3i
‖[k,∞)x‖i

≤
i0−1∑

i=1

1

3i
‖x‖i + 0.01 (by (4) since k ≤ j1)

≤
i0−1∑

i=1

1

3i

2ni + N

N
+ 0.01 < 0.01 + 0.5 + 0.01 = 0.52 (by (7))

which is a contradiction.
(c) Here we need the following result whose proof is again postponed:

Lemma 2.6 Let (zi) be a normalized block basis of (ei) with spreading model (z̃i).

Then for every K1 ∈ N there exists a K2 > K1 and (wi), an identically distributed block

basis of (zi), which has a spreading model (w̃i) (which is a block basis of (z̃i)) such that

for all ℓ ∈ N : 0.98 ≤ ‖wℓ‖ ≤ 1 and

(8)

K2∑

i=K1+1

1

3i
‖[K2,∞)wℓ‖i > 0.4 .

Let (zi) be a normalized block basis of (ei) having a spreading model (z̃i). By
passing to a subsequence if necessary we can assume that (1) is satisfied for some
sequence (εn) which converges to 0. By applying Lemma 2.6 repeatedly, there exists
an increasing sequence of integers (Kn), (K1 = 0), and for every n ∈ N there exists

an identically distributed block basis (w(n)
i )i of (zi) having spreading model (w̃(n)

i )i ,

which is also a block basis of (z̃i), such that for all n, ℓ ∈ N, 0.98 ≤ ‖w(n)
ℓ ‖ ≤ 1 and

(9)

Kn+1∑

i=Kn+1

1

3i
‖[Kn+1,∞)w(n)

ℓ ‖i > 0.4.
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Choose a sequence (mi) of integers such that (w̃(i)
mi

) is a block sequence of (z̃i)i . We

claim that (w̃(i)
mi

) is equivalent to the unit vector basis of ℓ1. We show that for N ∈ N

and (ai)
N
i=1 ⊆ R,

∥∥∥
N∑

i=1

aiw̃
(i)
mi

∥∥∥ > 0.4
N∑

i=1

|ai |.

Let j1 < j2 < · · · be such that w(1)
j1

< w(2)
j2

< · · · < w(N)
jN

< w(1)
jN+1

< w(2)
jN+2

< · · · <

w(N)
j2N

< w(1)
j2N+1

< · · · . Then, since (zi) satisfies (1), it follows that

∥∥∥
N∑

i=1

aiw̃
(i)
mi

∥∥∥ = lim
ℓ

∥∥∥
N∑

n=1

anw(n)
j(ℓ−1)N+n

∥∥∥ .

If we choose ℓ such that
∑N

n=1 w(n)
j(ℓ−1)N+n

is supported on [KN+1,∞) then

(10)
∥∥∥

N∑

n=1

anw(n)
j(ℓ−1)N+n

∥∥∥ ≥
KN+1∑

i=1

1

3i

∥∥∥ [KN+1,∞)

N∑

n=1

anw(n)
j(ℓ−1)N+n

∥∥∥
i

≥
N∑

n=1

|an|
Kn+1∑

i=Kn+1

1

3i
‖[Kn+1,∞)w(n)

j(ℓ−1)N+n
‖i

> 0.4

N∑

n=1

|an| (by (9)).

Proof of Lemma 2.4 Since for all i and j we have 1 ≤ ‖y j‖i ≤ ni , by a simple
compactness and diagonalization argument there exists a subsequence (xi) of (yi)

such that

(11)
∣∣‖xi‖i − ‖x j‖i

∣∣ ≤ 1 for all i ≤ j.

Now we claim that

(12)

∞∑

i=1

1

3i
‖xi‖i ≤

3

2
.

Indeed, otherwise there exists k ∈ N such that

(13)

k∑

i=1

1

3i
‖xi‖i >

3

2
.
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Choose j ≥ k such that x j is supported on [k,∞). Then

‖x j‖ ≥
k∑

i=1

1

3i
‖[k,∞)x j‖i

=

k∑

i=1

1

3i
‖x j‖i (since x j is supported on [k,∞))

≥
k∑

i=1

1

3i
(‖xi‖i − 1) (by (11), since j ≥ k)

>
3

2
−

k∑

i=1

1

3i
> 1 (by (13))

which is a contradiction. Thus (12) is established. Now choose i0 ∈ N such that

(14)

∞∑

i=i0

1

3i
‖xi‖i +

∞∑

i=i0

1

3i
< ε.

Let k, j1, . . . , jN ∈ N with i0 ≤ k ≤ j1 < j2 < · · · < jN . We have

k∑

i=i0

1

3i

∥∥∥ [k,∞)

N∑

s=1

x js

∥∥∥
i
≤

N∑

s=1

k∑

i=i0

1

3i
‖x js

‖i

≤
N∑

s=1

k∑

i=i0

1

3i
(‖xi‖i + 1) (by (11), since k ≤ j1)

< Nε (by (14)).

Proof of Lemma 2.5 From (5) there exists a subsequence (zi) of (yi) such that

(15) 0.98 <
∥∥ 1

2N
(z1 + z2 + · · · + zN + z j1

+ z j2
+ · · · + z jN

)
∥∥

for all N < j1 < j2 < · · · < jN . Let K be the maximum element in the support
of zN . Now for j1 < j2 < · · · < jN let u = (z1 + · · ·+ zN )/N , v = (z j1

+ · · ·+ z jN
)/N

and w = (u + v)/2. By the definition of the norm of X there exists k ′ ∈ N, which
depends on j1, . . . , jN , such that

‖w‖ =

k ′∑

i=1

1

3i
‖[k ′,∞)w‖i .
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By (15) we have that 0.98 < ‖w‖ and thus k ′ ≤ K. By the triangle inequality we
obtain

0.98 <
1

2

k ′∑

i=1

1

3i
‖[k ′,∞)u‖i +

1

2

k ′∑

i=1

1

3i
‖[k ′,∞)v‖i

≤ 1

2
‖u‖ +

1

2

k ′∑

i=1

1

3i
‖[k ′,∞)v‖i ≤ 0.5 +

1

2

k ′∑

i=1

1

3i
‖[k ′,∞)v‖i .

Thus

0.96 <
k ′∑

i=1

1

3i
‖[k ′,∞)v‖i .

Now by Ramsey’s theorem [25] (see also [21]) there exists a subsequence (xi) of

(zi)i≥N and k ≤ K such that k ′( j1, j2, . . . , jN) = k for all choices of j1 < j2 <
· · · < jN , and, thus (6) is valid for all j1 < j2 < · · · < jN .

Proof of Lemma 2.6 Let us first note that neither ℓp, p > 1, nor c0 are finitely block

represented in X. Indeed, if (xi) for i = 1, . . . , n1 + · · · + nk (for some k ∈ N) is a
normalized block basis of (ei) which is 2-equivalent to the first n1 + · · ·+ nk unit basic
vectors of ℓp for some p > 1, then if supp x1 > k, it follows that

2(n1 + · · · + nk)1/p ≥
∥∥∥

n1+···+nk∑

i=1

xi

∥∥∥

≥
k∑

i=1

1

3i

ni∑

j=1

‖x j‖ (by definition of the norm)

=

k∑

i=1

1

3i
ni

which contradicts (3). Similarly the case p = ∞ is excluded and thus the conclusions
of Remark 1.2 hold only for p = 1.

Let (zi) be a normalized block sequence in X having a spreading model (z̃i), and
let K1 ∈ N. Choose N ∈ N such that

(16)
2

N

K1∑

i=1

ni < 0.01.

By Remark 1.2 there exists an identically distributed block basis (yi) of (zi) having
spreading model (ỹi) which satisfies (5) and (ỹℓ) is a block basis of (z̃i). Thus by
Lemma 2.5 there exists K2 ∈ N and a subsequence (xi) of (yi) such that (6) is satisfied
for k = K2 and for all j1 < j2 < · · · < jN . Let

wℓ =

1

N

N∑

j=1

xN(ℓ−1)+ j for ℓ ∈ N.
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Since (5) is satisfied, by passing to a subsequence we can assume that 0.98 ≤ ‖wℓ‖ ≤
1 for all ℓ. Let (w̃i) be the spreading model of (wi). Then for all ℓ ∈ N,

w̃ℓ =

1

N

N∑

j=1

ỹN(ℓ−1)+ j .

Thus (w̃ℓ) is a block basis of (z̃i) and

(17) 0.96 <

K2∑

i=1

1

3i
‖[K2,∞)wℓ‖i.

Note also that by with the same argument as in the proof of (7),

K1−1∑

i=1

1

3i
‖[K2,∞)wℓ‖i ≤

K1−1∑

i=1

1

3i

2ni + N

N
< 0.01 + 0.5 = 0.51. (by (16))(18)

Now (17) and (18) immediately give (8).

3 The Set of Spreading Models of X

We recall the standard

Definition 3.1 Let (xi) and (yi) be basic sequences and C ≥ 1. We say that (xi)
C-dominates (yi), if C‖∑

i aixi‖ ≥ ‖∑
ai yi‖ for all (ai) ∈ c00. We say that (xi)

dominates (yi), denoted by (xi) ≥ (yi), if (xi) C-dominates (yi) for some C ≥ 1. We

write (xi) > (yi), if (xi) ≥ (yi) and (yi) � (xi). If B is a set of basic sequences and
(zi) is a basic sequence, then we say that (zi) uniformly dominates B if there exists
C ≥ 1 such that (zi) C-dominates every element of B.

The set SP(X) of all spreading models generated by normalized basic sequences in
X is partially ordered by domination, provided that we identify equivalent spreading

models. SPω(X) denotes the subset of those spreading models generated by weakly
null sequences.

Our first result in this section shows that every countable subset of SPω(X) admits

an upper bound in SPω(X).

Proposition 3.2 Let (Cn) ⊂ (0, +∞) be such that
∑

C−1
n < ∞, and for n ∈ N let

(x(n)
i )i be a normalized weakly null sequence in some Banach space X having spreading

model (x̃(n)
i )i .

Then there exists a seminormalized weakly null basic sequence (yi) in X with a

spreading model (ỹi) having the following properties.

(a) (ỹi) Cn-dominates (x̃(n)
i )i for all n ∈ N.

(b) If for no n ∈ N, (x̃(n)
i )i is equivalent to the unit vector basis of ℓ1, then (ỹi) is not

equivalent to the unit vector basis of ℓ1.
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(c) If (zi) is a basic sequence which uniformly dominates (x̃(n)
i )i for all n ∈ N, then (zi)

dominates (ỹi).

In order to prove Proposition 3.2 we first need to generalize the fact that spreading
models of normalized weakly null sequences exist and are suppression 1-uncondi-

tional.

Lemma 3.3 is actually a special case of a more general situation [11]. The results
could also be phrased in terms of countably branching trees of order mn and proved
much like the arguments in [13].

Lemma 3.3 Let n, m ∈ N and ε > 0. Let (x(1)
i )i , (x(2)

i )i , . . . , (x(n)
i )i be normalized

weakly null sequences in a Banach space X. Then there exists a subsequence L of N so

that for all families of integers (k(i)
j )

n,m
i=1, j=1 and (ℓ(i)

j )
n,m
i=1, j=1 in L, with k(1)

1 < k(2)
1 <

· · · < k(n)
1 < k(1)

2 < · · · < k(n)
2 < · · · < k(1)

m < · · · < k(n)
m and ℓ(1)

1 < ℓ(2)
1 < · · · <

ℓ(n)
1 < ℓ(1)

2 < · · · < ℓ(n)
m , and (a

( j)
i )

m,n
i=1, j=1 ⊆ [−1, 1] we have

∣∣∣
∥∥

m∑

i=1

n∑

j=1

a
( j)
i x

( j)

ℓ
( j)

i

∥∥ −
∥∥

m∑

i=1

n∑

j=1

a
( j)
i x

( j)

k
( j)

i

∥∥
∣∣∣ ≤ ε.

Proof This follows easily by Ramsey’s theorem. Let (a
( j)
i )

m,n
i=1, j=1 ⊆ [−1, 1]. Par-

tition [0, mn] into finitely many intervals of length less than ε/2. Partition the se-

quences of length mn, k(1)
1 < k(2)

1 < · · · < k(n)
1 < k(1)

2 < · · · < k(n)
m of N, according

to which interval ‖∑m
i=1

∑n
j=1 a

( j)
i x( j)

k
( j)
i

‖ belongs. Thus by Ramsey’s theorem for

some infinite subsequence L of N these expressions belong to the same interval, if
k

( j)
i ∈ L for i = 1, . . . , m and j = 1, . . . , n. We repeat this for a finite ε/4-net of

[−1, 1]mn endowed with the ℓmn
1 norm.

Lemma 3.4 Let n, m ∈ N, ε > 0 and (x(1)
i )i , . . . , (x(n)

i )i be normalized weakly null

sequences in a Banach space X. Then there exists a subsequence L of N so that for all

integers in L, k(1)
1 < k(2)

1 < · · · < k(n)
1 < k(1)

2 < · · · < k(n)
2 < · · · < k(1)

m < · · · < k(n)
m ,

the vectors (x
( j)

k
( j)
i

)
m,n
i=1, j=1 form a suppression (1 + ε)-unconditional basic sequence.

Proof By passing to subsequences, if necessary, we may assume that the sequence

(x
( j)
i )

n,∞
j=1,i=1 satisfies the conclusion of Lemma 3.3 for ε replaced by ε/2 and L = N.

Let δ = ε/(2nm). We claim that for every j0 ≤ n and i0 ∈ N there exists i1 > i0 such

that for every functional f ∈ X∗ of norm 1 there exists i ∈ [i0, i1] with | f (x
( j0)
i )| < δ.

Indeed, assume that such an i1 > i0 did not exist. Then we could find for each i1 > i0

an f ∗i1
∈ SX∗ such that | f ∗i1

(x
( j0)
i )| ≥ δ for all i ∈ {i0, i0 + 1, . . . i1}. Let f ∗ be a

w∗-accumulation point of the set { f ∗i1
: i1 ≥ i0}. It follows that | f ∗(x

( j0)
i )| ≥ δ for all

i ≥ i0, which contradicts the assumption that (x
( j0)
i ) is weakly null, and proves the

claim.
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Iterating this claim we can pass to an infinite subsequence L of N with the follow-
ing property: for k(1)

1 < k(2)
1 < · · · < k(n)

1 < k(1)
2 < · · · < k(n)

m in L,

F ⊆ {k(1)
1 , k(2)

1 , . . . , k(n)
1 , k(1)

2 , . . . , k(n)
m },

and f ∈ X∗ of norm 1, there exist ℓ(1)
1 < ℓ(2)

1 < · · · < ℓ(n)
1 < ℓ(1)

2 < · · · < ℓ(n)
m

in N with ℓ
( j)
i = k

( j)
i if k

( j)
i ∈ F and | f (x

( j)

ℓ
( j)
i

| < δ if k
( j)
i /∈ F. Let k(1)

1 < k(2)
1 <

· · · < k(n)
1 < k(1)

2 < · · · < k(n)
m in L, F ⊆ {k(1)

1 , k(2)
1 , . . . , k(n)

1 , k(1)
2 , . . . , k(n)

m }, and

(a
( j)
i )

m,n
i=1, j=1 ⊆ [−1, 1] with ‖

∑m
i=1

∑n
j=1 a

( j)
i x

( j)

k
( j)
i

‖ = 1. There exists f ∈ X∗ of

norm 1 such that

∥∥∥
∑

{(i, j):k
( j)
i ∈F}

a
( j)
i x

( j)

k
( j)
i

∥∥∥ = f
( ∑

{(i, j):ki∈F}

a
( j)
i x

( j)

k
( j)
i

)
, and choosing (ℓ

( j)
i ) as above,

≤ f
( m∑

i=1

n∑

j=1

a
( j)
i x

( j)

ℓ
( j)
i

)
+ δnm

≤
∥∥∥

m∑

i=1

n∑

j=1

a
( j)
i x

( j)

ℓ
( j)

i

∥∥∥ +
ε

2
≤ (1 +

ε

2
) +

ε

2
= 1 + ε.

Proof of Proposition 3.2 Using Lemma 3.4, a diagonal argument and relabelling,
we can assume that for all ℓ and all choices of ℓ ≤ k(1)

1 < k(2)
1 < · · · < k(ℓ)

1 < k(1)
2 <

· · · < k(ℓ)
ℓ the vectors (x

( j)

k
( j)
i

)1 ≤ i, j ≤ ℓ are suppression 2-unconditional.

Let m1 = 0 and for i ∈ N let mi+1 = mi + i. Let (Ci) ⊂ (0,∞) such that∑
C−1

i < ∞. By passing to the same subsequences of (x(n)
i )i , for each n ∈ N, we can

assume in addition that the seminormalized sequence (y j), where

y j =

j∑

i=1

16 C−1
i x(i)

m j +i for all j ∈ N,

has a spreading model (ỹ j). It is easy to check that (y j) is weakly null since each

(x(n)
i )∞i=1 is weakly null for each n ∈ N.

Let i0, m ∈ N and (a j)
m
j=1 ⊂ R. Let n ∈ N such that max(m, i0) ≤ n and

8

m∑

j=1

|a j |
∞∑

i=n+1

C−1
i ≤ C−1

i0

∥∥∥
m∑

j=1

a j x̃
(i0)
j

∥∥∥ .

In addition choose n so that 1
2
‖∑m

j=1 a jx
(i0)
ℓ j

‖ ≤ ‖∑m
j=1 a j x̃

(i0)
j ‖ ≤ 2‖∑m

j=1 a jx
(i0)
ℓ j

‖
and 1

2
‖∑m

j=1 a j yℓ j
‖ ≤ ‖∑m

j=1 a j ỹ j‖ ≤ 2‖∑m
j=1 a j yℓ j

‖ for all choices of n ≤ ℓ1 <
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ℓ2 < · · · < ℓm. If n ≤ k1 < k2 < · · · < km, we have from Lemma 3.4 and our
inequalities,

(19)
∥∥∥

m∑

j=1

a j ỹ j

∥∥∥ ≥ 1

2

∥∥∥
m∑

j=1

a j yk j

∥∥∥

=

1

2

∥∥∥
m∑

j=1

k j∑

i=1

a j16C−1
i x(i)

mk j
+i

∥∥∥

≥ 1

2

∥∥∥
m∑

j=1

n∑

i=1

a j16C−1
i x(i)

mk j
+i

∥∥∥ − 1

2

m∑

j=1

k j∑

i=n+1

|a j |16C−1
i

≥ 1

4

∥∥∥
m∑

j=1

a j16C−1
i0

x(i0)
mk j

+i0

∥∥∥ −C−1
i0

∥∥∥
m∑

j=1

a j x̃
(i0)
j

∥∥∥

≥ 1

8

∥∥∥
m∑

j=1

a j16C−1
i0

x̃(i0)
j

∥∥∥ −C−1
i0

∥∥∥
m∑

j=1

a j x̃
(i0)
j

∥∥∥

= C−1
i0

∥∥∥
m∑

j=1

a j x̃
(i0)
j

∥∥∥ .

This proves part (a) of the proposition.

In order to show the remaining parts let m ∈ N and (a j)
m
j=1 ⊆ R, and first note

that

(20)
∥∥∥

m∑

j=1

a j ỹ j

∥∥∥ = lim
j1→∞

· · · lim
jm→∞

∥∥∥
m∑

s=1

as y js

∥∥∥

= lim
j1→∞

· · · lim
jm→∞

∥∥∥
m∑

s=1

as

js∑

i=1

16C−1
i x(i)

m js +i

∥∥∥

≤ lim sup
j1→∞

· · · lim sup
jm→∞

∞∑

i=1

16 C−1
i

∥∥∥
m∑

s=1

asx
(i)
m js +i

∥∥∥

=

∞∑

i=1

16 C−1
i

∥∥∥
m∑

s=1

asx̃
(i)
s

∥∥∥ .

Part (c) now follows from (20) and the assumption that (C−1
i ) is summable. In order

to show part (b), assume that for any n ∈ N (x̃(n))i is not equivalent to ℓ1 and let
δ > 0. First choose i0 so that 16

∑∞
i=i0+1 C−1

i < δ/2. Then choose N large enough so

that 1
N
‖

∑N
j=1 x̃(i)

j ‖ ≤ δ/(2i0), for i = 1, . . . , i0 (using Proposition 2.1), and finally

apply (20) for m = N , a j =
1
N

, to obtain 1
N
‖

∑N
j=1 ỹ j‖ < δ.
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Remark 3.5 Using a similar argument we can prove the following:

(a) Let C = {(x̃(n)
i )i}n∈N be a strictly increasing chain in SPω(X). Suppose that

(z̃i)i ∈ SPω(X) is an upper bound for C . Then there exists an upper bound
(x̃i)i ∈ SPω(X) for which (x̃i)i < (z̃i)i .

(b) If (x̃(n)
i )i ∈ SPω(X) for n ≤ m ∈ N then there exists (x̃i)i ∈ SPω(X) which is

equivalent to the norm given by

‖(ai)‖ = max
n≤m

∥∥∥
∑

i

ai x̃
(n)
i

∥∥∥ .

An analogous result for asymptotic structure of spaces with a shrinking basis is
obtained in [20, Proposition 5.1].

Proposition 3.6 Suppose that (xi) is a normalized weakly null sequence in a Banach

space X which has a spreading model (x̃i) which is not equivalent to the unit vector basis

of ℓ1. Assume that 1 belongs to the Krivine set of (x̃i). Then for all sequences (λn) ⊂ R,

with λn ր ∞ and limn n/λn = ∞, there is a normalized block sequence (yn) of (xn)
having a spreading model (ỹn) which satisfies:

lim sup
n

n∥∥∑n
i=1 ỹi

∥∥ = lim sup
n

∥∥∑n
i=1 ỹi

∥∥
λn

= ∞.

Moreover, the set of all spreading models in X which are not equivalent to the unit vector

basis of ℓ1, and are generated by weakly null sequences, has no maximal element (with

respect to domination).

Note that the space X constructed in Section 2 is reflexive and satisfies the hypoth-
esis of the proposition (as does every subspace of X).

Proof Using lim n/λn = ∞, choose a subsequence (nk) of N such that nk/λnk
≥

2k+1k for all k. Since 1 belongs to the Krivine set of (x̃i), for every n ∈ N there exists a
block sequence (x(n)

i )i of (xi) which is identically distributed with respect to (xi) and
it has a normalized spreading model (x̃(n)

i )i as given in Remark 1.2 (for p = 1 and
ε = 1) satisfying

nk

2
≤

∥∥∥
nk∑

i=1

x̃(k)
i

∥∥∥ .

Since (xi) is weakly null and (x̃i) not equivalent to the unit vector basis of ℓ1, we have
that for all n ∈ N, (x(n)

i )i is weakly null and (x̃(n)
i )i is not equivalent to the unit vector

basis of ℓ1. We can also assume without loss of generality that (x(n)
i )i is normalized.

Let (yi) be the sequence which is provided by Proposition 3.2 for Ck = 2−k. By
Proposition 3.2(b) we have that (ỹi) is not equivalent to the unit vector basis of ℓ1

thus

lim sup
n

n∥∥∑n
i=1 ỹi

∥∥ = ∞
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by Proposition 2.1. Also, by Proposition 3.2 we have that

2k
∥∥∥

nk∑

j=1

ỹ j

∥∥∥ ≥
∥∥∥

nk∑

j=1

x̃(k)
i

∥∥∥ ≥ nk

2
.

Thus for all k ∈ N, ∥∥∑nk

j=1 ỹ j

∥∥
λnk

≥ nk

2k+1λnk

≥ k,

which shows that

lim sup
n

∥∥∑n
j=1 ỹ j

∥∥
λn

= ∞,

and finishes the proof of the first part of Proposition 3.6 once we normalize (yn).

To prove the “moreover” part, given a spreading model (z̃i) ∈ SPω(X) not equiv-
alent to the unit vector basis of ℓ1 use the first part of the Proposition to get (ỹi) with

(choose λk = ‖
∑n

i=1 z̃i‖, for k ∈ N)

lim sup
n

‖
∑n

i=1 ỹi‖
‖

∑n
i=1 z̃i‖

= ∞.

Therefore (z̃i) is not maximal.

In some circumstances we will be able to conclude that SPω(X) admits a transfinite
strictly increasing chain. The logical part of the argument is a simple proposition.

Proposition 3.7 Let X be a separable infinite dimensional Banach space. Let C ⊆
SPω(X) be a non-empty set satisfying the following two conditions:

(i) C does not have a maximal element with respect to domination;

(ii) for every (X̃n)n∈N ⊆ C there exists X̃ ∈ C such that X̃n ≤ X̃ for every n ∈ N.

Then for all α < ω1 there exists X̃(α) ∈ C such that if α < β < ω1 then X̃(α) < X̃(β).

Proof We use transfinite induction. Suppose that X̃(α) have been constructed for
α < β < ω1. Then X̃(β) is chosen using (i) and (ii) if β is a successor ordinal and (ii)

if β is a limit ordinal.

Remark 3.8 (1) The set C = SPω(X) satisfies condition (ii) by virtue of Propo-

sition 3.2. Hence if SPω(X) does not have a maximal element, then it contains an
uncountable increasing chain.

(2) Suppose SPω(X) contains (x̃i) such that 1 is in the Krivine set of (x̃i) but (x̃i)
is not equivalent to the unit vector basis of ℓ1. Let C be the set of all elements of

SPω(X) which are not equivalent to the unit vector basis in ℓ1. Then it satisfies (ii)
by Proposition 3.2 and (i) by Proposition 3.6. Therefore C contains an uncountable
increasing chain. Examples of such a space X are the space constructed in Section 2,
Gowers–Maurey space GM [10] and Schlumprecht’s space S [28].
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The following result is a strengthening of Proposition 3.6. First recall that if (xi)
n
i=1

and (yi)
n
i=1 (n ∈ N) are two basic sequences then the basis-distance between them is

defined by

db((xi)
n
i=1, (yi)

n
i=1) = sup

{ ‖∑n
i=1 aixi‖

‖
∑n

i=1 bixi‖
:
∥∥∥

n∑

i=1

ai yi

∥∥∥ =

∥∥∥
n∑

i=1

bi yi

∥∥∥ = 1

}
.

Proposition 3.9 Let (zi) be a normalized basis and C < ∞. Let X be an infinite

dimensional Banach space. Assume that for all n ∈ N there exists a normalized weakly

null sequence (xn
i )i in X with spreading model (x̃(n)

i )i such that (x̃(n)
i )n

i=1 C-dominates

(zi)
n
i=1 for all n ∈ N. Assume also that (zi) C-dominates (x̃(n)

i ) for each n ∈ N. Then for

every λn ր ∞ there exists a normalized weakly null sequence (yi) in X with spreading

model (ỹi) so that

lim inf
n

db

(
(ỹi)

n
i=1, (zi)

n
i=1

)

λn

= 0.

Proof Since λn ր ∞, we can choose a sequence (nk) of integers such that k2k ≤ λnk

for all k. Apply Proposition 3.2 to obtain a seminormalized weakly null sequence (yi)
in X with a spreading model (ỹi) such that (ỹi) 2k-dominates (x̃nk

i ), for all k ∈ N.
By part (c) of Proposition 3.2 we also have that there exists C ′ < ∞ such that (zi)

C ′-dominates (ỹi). Let k ∈ N and (bi)
nk

i=1 be a sequence of scalars. Then

∥∥∥
nk∑

i=1

bi ỹi

∥∥∥ ≥ 2−k
∥∥∥

nk∑

i=1

bi x̃
nk

i

∥∥∥ ≥ 2−kC−1
∥∥∥

nk∑

i=1

bizi

∥∥∥ .

Thus for k ∈ N, if (ai)
nk

i=1 and (bi)
nk

i=1 are finite sequences of scalars satisfying

∥∥∥
nk∑

i=1

aizi

∥∥∥ =

∥∥∥
nk∑

i=1

bizi

∥∥∥ = 1,

then
‖

∑nk

i=1 ai ỹi‖
‖∑nk

i=1 bi ỹi‖
≤ C ′

2−kC−1
= CC ′2k ≤ λnk

k
CC ′.

Hence db

(
(ỹi)

nk

i=1, (zi)
nk

i=1

)
/λnk

≤ k−1CC ′ which tends to zero. The result follows by
normalizing (yi).

Propositions 3.6 and 3.9 motivate the following:

Question 3.10 Which normalized subsymmetric bases (yi) (if any) have the fol-
lowing property: If X is a separable infinite dimensional Banach space so that no
spreading model of X is equivalent to (yi) then there exists λn ր ∞ and a subspace
Y of X such that for all spreading models (x̃i) of normalized basic sequences in Y ,

lim inf
j

db

(
(x̃i)

j
i=1, (yi)

j
i=1

)
/λ j > 0.
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This question is a generalization of the following problem raised by Rosenthal
(which is solved by Proposition 3.6).

Question 3.11 Let Z be a separable infinite dimensional Banach space so that
whenever (x̃i) is the spreading model of a normalized basic sequence in Z then

lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥
/

n = 0.

(i.e., by Proposition 2.1, no spreading model in Z is equivalent to the unit vector
basis of ℓ1). Does there exist λn ր ∞ such that limn λn/n = 0 and for all spreading
models (x̃i) of normalized basic sequences in Z

lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥
/

λn = 0?

The question asks whether all spreading models of Z must be uniformly distancing

themselves from ℓ1 for large enough dimensions.
Question 3.11 just asks if one could take (yi) in Question 3.10 to be the unit vector

basis of ℓ1. Proposition 3.6 shows that this is not true, even hereditarily.
The version of Question 3.10 for the unit vector basis of c0 is the following ques-

tion. We will give an answer in the next section.

Question 3.12 Let Z be a separable infinite dimensional Banach space so that
whenever (x̃i) is a spreading model of a normalized basic sequence in Z then

lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥ = ∞.

Does there exist a sequence (λn) with λn ր ∞ such that for all spreading models
(x̃i) of normalized basic sequences in Z

lim
n

∥∥∥
n∑

i=1

x̃i

∥∥∥
/

λn = ∞?

The hypothesis of this question is equivalent to: no spreading model of Z is iso-
morphic to c0. Indeed, suppose (x̃i) is a spreading model of a normalized basic se-

quence (xi) with lim infn ‖
∑n

i=1 x̃i‖ < ∞. We then obtain, since (x̃i) is basic, that
supn ‖

∑n
i=1 x̃i‖ ≤ K for some K < ∞. In particular, (xi) must be weakly null and

hence (x̃i) is unconditional. Thus (x̃i) is equivalent to the unit vector basis of c0.
Conversely, if some spreading model (x̃i) is a basis for c0, then

(
x̃2i+1 − x̃2i

‖x̃2i+1 − x̃2i‖

)

is equivalent to the unit vector basis of c0 and is a spreading model of
(

x2i+1 − x2i

‖x2i+1 − x2i‖

)
.
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4 A Space Having Spreading Models Close to c0

In this section we give an example which solves Question 3.12 negatively.

Theorem 4.1 There is a Banach space X with a normalized basis (en) so that:

(a) For every sequence (λn) ⊂ (0,∞), with limn→∞ λn = ∞ there is a subsequence

(enk
) of (en) which has a spreading model (x̃k) for which

lim
m→∞

∥∥∥
m∑

i=1

x̃i

∥∥∥/λm = 0.

(b) For every spreading model (x̃n) of a normalized block basis (xn) of (en)

lim
n→∞

∥∥∥
n∑

i=1

x̃i

∥∥∥ = ∞.

Before defining X we need some notation. Let D =

⋃∞
n=0{0, 1}n be the dyadic

tree ordered by extension: s = (si)
m
1 � t = (ti)

n
1 iff m ≤ n and si = ti for i ≤ m.

If s = (si)
m
1 ∈ D we set |s| = m, |∅| = 0 and if s � t , [s, t] denotes the segment

{α ∈ D : s � α � t}. A branch β in D is a maximal linearly ordered subset.
If (βi)

∞
i=1 ∈ {0, 1}N we write β = (βi) to denote the branch (βn)∞n=1 where βn

=

(βi)
n
i=1.

Lemma 4.2 Let (tn)∞n=1 be distinct elements of D. Then there exists a subsequence

(t ′n) of (tn) and a sequence (sn) in D so that s1 ≺ s2 ≺ · · · and ([sn, t ′n])∞n=1 are disjoint

segments.

Proof By passing to a subsequence (e.g., using Ramsey’s theorem) we may assume
that either t1 ≺ t2 ≺ · · · , in which case we take si = ti for all i, or ti and t j are
incomparable for all i 6= j. In the latter case we let s1 = ∅, t ′1 = t1 and choose s2

with |s2| = |t ′1| so that {ti : s2 ≺ ti} is infinite. We let t ′2 be one of these ti ’s and select

s3 with |s3| = |t ′2| so that {ti : s3 ≺ ti} is infinite and proceed in this fashion.

Proof of Theorem 4.1 For each s ∈ D we shall define a decreasing sequence Vs =

(Vs(i))∞i=1 in (0, 1]. If s = ∅, Vs(i) = 1 for all i. If s = (εi)
m
i=1 let {n : εn = 1,

n ≤ m} = (ni)
k
i=1 written in increasing order. If εi = 0 for i ≤ m we let Vs(i) = 1

for all i. Otherwise for i ≤ n1, Vs(i) = 1/n1. If n j < i ≤ n j+1, set Vs(i) =

Vs(n j)∧1/(n j+1−n j). If i > nk set Vs(i) = Vs(nk). If β = (βi)
∞
1 is a branch, naturally

identified as a sequence of 0’s and 1’s, Vβ is defined similarly. Clearly
∑∞

i=1 Vβ(i) =

∞ for all branches β.
If x ∈ c00(D) we set

‖x‖ = sup

n∑

i=1

Vsi
(i)|x(ti )|

where the sup is taken over all n ∈ N, and disjoint segments [s1, t1], . . . , [sn, tn] such
that |s1| ≤ |s2| ≤ · · · ≤ |sn|. Then ‖x‖ ≥ ‖x‖∞ follows by considering [∅, t]. The

https://doi.org/10.4153/CJM-2005-027-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-027-9


On the Structure of the Spreading Models of a Banach Space 693

motivation for defining the norm in this manner comes from Lemma 4.2 and Case 1
below.

The unit vector basis (eα)α∈D forms a normalized 1-unconditional basis for X,
the completion of (c00(D), ‖ · ‖). We verify (a). Let λ j ↑ ∞ and choose integers

n1 < n2 < · · · so that

λn j
> j2(21)

1

n j+1 − n j

<
1

n j − n j−1

for all j(22)

(with n0 = 0).

Let βn j
= 1 for all j, βi = 0 if i /∈ {n1, n2, . . . } and β = (βi). Let βi

= (β j)
i
j=1

and let xi = eβi for i ∈ N. Let m ∈ N. We will prove that if m ∈ (n j0−1, n j0
] and

n j0
< k1 < · · · < km then

(23)
∥∥∥

m∑

i=1

xki

∥∥∥ ≤ j0 + 1 .

Thus if (x̃i) is any spreading model of a subsequence of (xi), by (21),

‖
∑m

i=1 x̃i‖
λm

<
j0 + 1

( j0 − 1)2

and this yields (a).

Let [s1, t1], . . . , [sn, tn] be disjoint segments with |s1| ≤ |s2| ≤ · · · ≤ |sn| such that

for x =

∑m
i=1 xki

,

‖x‖ =

n∑

i=1

Vsi
(i)|x(ti )| .

Since each Vs is a decreasing sequence, we may assume that x(ti) 6= 0 for all i ≤ n

and hence n ≤ m. Also each ti is the support of some xkℓ
and so the segments must

lie all on β. In particular while |s1| < k1 is possible, |si | ≥ k1 for i ≥ 2. Note that
n ≤ m ≤ n j0

. Hence by (22) for i ≥ 2 the first n elements of Vsi
are the first n

elements of the sequence

( 1

n1

χ[1,n1],
1

n2 − n1

χ(n1,n2], . . . ,
1

n j0
− n j0−1

χ(n j0−1,n j0
]

)
.

Thus ‖
∑m

i=1 xki
‖ ≤ 1 +

∑ j0

j=1 1 = j0 + 1, and (23) is proved.

To see (b), let (x̃n) be the spreading model of a normalized block basis (xn) of (eα).
By passing to a subsequence of (xn) we have two cases.

Case 1 There exists ε > 0 so that ‖xn‖∞ ≥ ε for all n.
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In this case let |xi(ti)| ≥ ε for some sequence (ti) ⊆ D. Passing to a subsequence,
using Lemma 4.2, we may assume that there exist s1 ≺ s2 ≺ · · · with ([si , ti])∞i=1

being disjoint segments. It follows that for k1 < · · · < km

∥∥∥
m∑

i=1

xki

∥∥∥ ≥
m∑

i=1

Vski
(i)|xki

(ti)| ≥ ε
m∑

i=1

Vski
(i).

Let β be the branch determined by (si)
∞
i=1. Now

∑∞
i=1 Vβ(i) = ∞ by our construc-

tion and there exists k0 so that if k0 ≤ k then Vsk
(i) = Vβ(i) for i ≤ m. It follows

that ∥∥∥
m∑

i=1

x̃i

∥∥∥ ≥ ε

m∑

i=1

Vβ(i)

and (b) holds.

Case 2 ‖xn‖∞ → 0.

First note that there is a function δ(m), with δ(m) → 0 as m → ∞ such that

the following holds: for an arbitrary x ∈ c00(D) with ‖x‖ = 1, consider disjoint
segments [s1, t1], [s2, t2], . . . , [sk, tk] with |s1| ≤ |s2| ≤ · · · ≤ |sk|, such that

‖x‖ =

k∑

j=1

Vs j
( j)|x(t j )|.

Then, whenever ‖x‖∞ ≤ δ(m) for some m, then there exists 1 ≤ k ′ ≤ k such that
|sk ′ | > m, k ′ > m and

k∑

j=k ′

Vs j
( j)|x(t j )| ≥ 1/2.

Using this fact, since ‖xi‖ = 1 for all i, and ‖xi‖∞ → 0, we can construct induc-
tively a subsequence (xni

) of (xi) (with n1 = 1), and for all i, disjoint segments
[si

1, t i
1], [si

2, t i
2], . . . , [si

ki
, t i

ki
] with |si

1| ≤ |si
2| ≤ · · · ≤ |si

ki
|, and integers k ′

i such that

|s1
1| ≤ · · · ≤ |s1

k1
| ≤ |t1

k1
| < |sn2

1 | ≤ · · · ≤ |sni−1

ki−1
| ≤ |tni−1

ki−1
|

< |sni

1 | ≤ |sni

2 | ≤ · · · ≤ |sni

ki
| ≤ |tni

ki
|

and

(24) 1 = ‖xni
‖ ≥

ki∑

j=1

Vsi
j
(k ′

i + j)|xni
(t i

j)| ≥ 1/2

and such that the sequence k ′
1, k ′

1 + 1, . . . , k ′
1 + k1, k ′

2, k ′
2 + 1, . . . , k ′

2 + k2, . . . is in-
creasing. Let i1 < · · · < im be an increasing sequence. Applying (24) for each il,
1 ≤ l ≤ m and using the fact that the sequences Vs(i), i ∈ N are increasing, we get

m∑

l=1

kil∑

j=1

V
s
il
j

(ki1
+ · · · + kil−1

+ j)|xnil
(t il

j )| ≥ m/2.
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Since all segments [sil

j , t il

j ] are disjoint, we deduce 1
2
m < ‖∑m

l=1 xnil
‖. Hence the

spreading model (x̃n)n must be equivalent to the unit vector basis of ℓ1. This com-

pletes the proof of (b).

For all n ∈ N it is easy to construct a space X for which the cardinality |SP(X)| =

|SPω(X)| = n. Indeed, X = (
∑n

i=1 ℓpi
)2 suffices, where the pi ’s are distinct ele-

ments of (1,∞). Also if 2 < p1 < p2 < · · · , then it is not hard to show that
|SPω

((∑∞
i=1 ℓpi

)2)| = ω. In this case one obtains an infinite decreasing chain of
spreading models.

But we do not know what happens hereditarily. Let us mention some questions

(among many) concerning the “hereditary structure of spreading models”.

Question 4.3 Does there exist a Banach space such that in every infinite dimen-

sional subspace there exist normalized basic sequences having spreading models
equivalent to the unit vector bases of ℓ1 and ℓ2? If such a space exists, must it con-
tain more (perhaps uncountably many) mutually non-equivalent spreading models?
More generally, does there exist X so that for all subspaces Y of X and 1 ≤ p < ∞,

the unit vector basis of ℓp (and of c0) is equivalent to a spreading model of Y ? Is the
space constructed in [22] or [24] such a space?

In order to answer Question 4.3, the answer to the following question may be

useful:

Question 4.4 Can we always isomorphically (or isometrically) stabilize the set of

spreading models by passing to appropriate subspaces? That is, for every Banach
space X does there exist a subspace Y such that for every normalized basic sequence
(yi) in Y having spreading model (ỹi) and for every further subspace Z of Y , there
exists a normalized basic sequence (zi) in Z having spreading model (z̃i) such that (z̃i)

is equivalent (respectively, isometric) to (ỹi)? Is the space X constructed in Section 2
a counterexample?

Question 4.5 Let n ∈ N. Does there exist a Banach space so that every subspace has

exactly n (isomorphically or isometrically) different spreading models? Does there
exist a Banach space so that every subspace has countably infinitely many (isomor-
phically or isometrically) different spreading models?

Many problems are open concerning the structure of the partially ordered set
SPω(X) (in the sense of Definition 3.1). We state a few of these.

Question 4.6 What are the realizable isomorphic structures of the partially ordered
set (SPω(X),≤)? In particular, for every finite partially ordered set (P,≤) such that
any two elements admit a least upper bound, does there exist X such that SPω(X) is

isomorphic to (P,≤)?

We note that by Proposition 3.2 and Remark 3.5, if SPω(X) is infinite, then one
can construct sequences (ỹn

i )∞i=1 and (w̃n
i )∞i=1 in SPω(X) so that

(ỹ1
i ) < (ỹ2

i ) < · · · < (w̃2
i ) < (w̃1

i ) .
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Question 4.7 Suppose SPω(X) is finite (or even countable). What can be said about
X? Must some spreading model be equivalent to the unit vector basis in c0 or ℓp

(1 ≤ p < ∞)? We address the case |SPω(X)| = 1 in Section 5.

5 Spaces with a Unique Spreading Model

The following question was posed to us by Argyros.

Question 5.1 Let X be an infinite dimensional Banach space so that |SP(X)| = 1.
Must the unique spreading model of X be equivalent to the unit vector basis of ℓp for
some 1 ≤ p < ∞, or c0?

One could also raise similar questions by restricting either to those spreading
models generated by normalized weakly null basic sequences or, in the case that X

has a basis, to those generated by normalized block bases.

We give some partial answers to these questions using our techniques above.

Proposition 5.2 Let X be an infinite dimensional Banach space so that all spreading

models of normalized basic sequences in X are equivalent.

(a) If all the spreading models are uniformly equivalent, i.e., if there exists D ∈ R so

that the spreading models of all normalized basic sequences in X are D-equivalent,

then all spreading models of X are equivalent to the unit vector basis of ℓp for some

1 ≤ p < ∞ or c0.

(b) Let (zi) be a normalized basic sequence which dominates a (hence every) spreading

model of X. Then there exists C < ∞ so that (zi) C-dominates any spreading model

of a normalized basic sequence (xi) in X.

(c) If p belongs to the Krivine set of the spreading model (x̃i) of some normalized basic

sequence (xi) of X, then (x̃i) dominates the unit vector basis of ℓp.

(d) If 1 belongs to the Krivine set of some spreading model in X, then all spreading

models are equivalent to the unit vector basis of ℓ1.

Proof If X is not reflexive, then there exists a normalized basic sequence (xn) in
X which dominates the summing basis [12]. By [26], (xn) has a subsequence (xnk

)
which is either equivalent to the unit vector basis of ℓ1 or it is weak-Cauchy. In the
later case (xn2k+1

− xn2k
)k is weakly null and thus by passing to a subsequence we can

assume that it has an unconditional spreading model which dominates the summing
basis and hence must be equivalent to the unit vector basis of ℓ1. Therefore in either
case there exists a spreading model in X equivalent to the unit vector basis of ℓ1, and
it is easy to see that (a)–(d) hold. Thus for the proof of (a)–(d) we may assume that

X is reflexive.

(a) Let (x̃i) be a spreading model of X and let p in the Krivine set of (x̃i). By
Remark 1.2 for every n ∈ N there exists a spreading model (x̃(n)

i )i of X such that

(x̃(n)
i )n

i=1 is 2-equivalent to the unit vector basis of ℓn
p. Also (x̃i)

n
i=1 is D-equivalent to

(x̃(n)
i )n

i=1, thus 2D-equivalent to the unit vector basis of ℓn
p.
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(b) Let (zi) be a normalized basic sequence which dominates all spreading models
of X. Assume that the statement is false. Then for every n ∈ N there exists a nor-

malized weakly null basic sequence (x(n)
i ) in X, having spreading model (x̃(n)

i ), and

there exist scalars (a(n)
i )i , such that ‖∑

i a(n)
i x̃(n)

i ‖ = 22n and ‖∑
i a(n)

i zi‖ = 1. By
Proposition 3.2 there exists a seminormalized weakly null sequence (yi) in X, having

spreading model (ỹi) such that (ỹi) 2n-dominates (x̃(n)
i ) for all n. Thus ‖

∑
i a(n)

i ỹi‖ ≥
2−n‖

∑
i a(n)

i x̃(n)
i ‖ = 2n. Hence (zi) does not dominate (ỹi), which is a contradiction.

(c) This follows from (b) and Remark 1.2.

(d) This follows from (c).

Remark 5.3 If X has a basis (ei) and the hypothesis of Proposition 5.2 is changed to
“all spreading models of normalized block bases are equivalent” then one obtains a
similar theorem, while the conclusions are restricted to spreading models generated
by normalized block bases. The “X is not reflexive” part of the proof is replaced by

“(ei) is not shrinking”. If the hypothesis is changed to “all spreading models gen-
erated by normalized weakly null basic sequences are equivalent” then one has two
cases: Either X is a Schur space, hence X is hereditarily ℓ1 [26], or X does admit such
a spreading model. And the proposition holds in the latter case with the obvious

modifications.

If X is a Banach space for which all elements of SP(X) are isometrically isomor-

phic to each other it follows from Proposition 5.2 that they must all be isometrically
isomorphic to ℓp, for some 1 ≤ p < ∞, or to c0. In the case that p = 1 or in the c0

case, it was shown in [23] that X must contain a copy of ℓ1 or c0 respectively. But the
following question is still open.

Question 5.4 Let 1 < p < ∞ and assume that all elements of SP(X) are isometri-
cally isomorphic to the unit vector basis of ℓp. Does X contain a copy of ℓp?

A problem closely related to 4.1 has been considered by V. Ferenczi, A. M. Pelczar
and C. Rosendal in [6]: Suppose that X has a basis (ei) for which every normalized
block basis has a subsequence equivalent to (ei). Must (ei) be equivalent to the unit
vector basis of c0 or some ℓp? The authors obtain results analogous to those in Propo-

sition 5.2.

Many additional questions remain about the structure of the spreading models of
a Banach space X.

6 Existence of Non-Trivial Operators on Subspaces of Certain Banach
Spaces

In this section we give sufficient conditions on a Banach space X for the existence of
a subspace Y of X and an operator T : Y → X which is not a compact perturbation

of a multiple of the inclusion map. This property is related to the long standing open
problem of whether there exists a Banach space (of infinite dimension) on which
every operator is a compact perturbation of a multiple of the identity. Notice that
if a Banach space X contains an unconditional basic sequence, then there exists a
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subspace Y of X and an operator T : Y → Y such that P(T) is not a compact per-
turbation of a multiple of the identity for all non-constant polynomials P. Indeed Y

can be taken to be the closed linear span of the unconditional basic sequence, and
T a diagonal operator with infinitely many different eigenvalues, each of of infinite
multiplicity. Gowers [9] proved that there exists a subspace Y of the Gowers–Maurey
space GM (as defined in [10]), and an operator T : Y → GM which is not a compact

perturbation of a multiple of the inclusion. In [1] it is shown that there exists an
operator on GM which is not a compact perturbation of a multiple of the identity. It
is also known that some of the asymptotic ℓ1 and hereditary indecomposable spaces
constructed by Argyros and I. Deliyanni [2] admit subspaces on which a non trivial

operator can be constructed (unpublished work of Argyros and R. Wagner, see also
[7, 8]). Our approach generalizes the idea of [9].

Theorem 6.1 Let X be a Banach space. Assume that there exists a normalized weakly

null basic sequence (xi) in X having spreading model (x̃i) which is not equivalent to

the unit vector basis of ℓ1, yet 1 belongs to the Krivine set of (x̃i). Then there exists a

subspace W of X and a continuous linear operator T : W → W such that p(T) is not a

compact perturbation of a multiple of the identity operator on W , for every non-constant

polynomial p.

The proof uses a convenient auxiliary notation. Let F ⊆ [N]<∞ be a family of

finite subsets of positive integers. For (ai) ∈ c00 we set

‖(ai)‖ℓ1(F) = sup
{∑

i∈F

|ai| : F ∈ F

}
.

Proof of Theorem 6.1 The main part of the proof is the following:

Claim 1 For every ℓ ∈ N ∪ {0} there exists (w(ℓ)
i )i a seminormalized sequence in

X, an increasing sequence (M(ℓ+1)
i )i of positive integers and a sequence (δ(ℓ+1)

i )i of

positive numbers with
∑

i δ
(ℓ+1)
i < ∞, such that w(0)

1 , w(1)
1 , w(0)

2 , w(2)
1 , w(1)

2 , w(0)
3 , . . . is

a basic sequence in X, and for every (a(ℓ)
j )ℓ∈N∪{0}, j∈N ∈ c00((N ∪ {0}) × N) we have

(25) max
1≤ℓ<∞

‖(a(ℓ)
j ) j‖ℓ ≤

∥∥∥
∞∑

ℓ=0

∞∑

j=1

a(ℓ)
j w(ℓ)

j

∥∥∥ ≤
∞∑

ℓ=0

‖(a(ℓ)
j ) j‖ℓ+1,

where for ℓ ∈ N and (a j) j ∈ c00 we define

(26) ‖(a j) j‖ℓ = sup
i∈N

δ(ℓ)
i ‖(a j) j‖ℓ1(G(ℓ)

i )
= sup

i∈N

sup
E∈G

(ℓ)

i

δ(ℓ)
i

∑

j∈E

|a j |,

and where for ℓ, i ∈ N we set G
(ℓ)
i = {F ⊂ N : |F| ≤ M(ℓ)

i }.

Once Claim 1 is established, let W̃ = span{w(ℓ)
j : ℓ ∈ N ∪ {0}, j ∈ N} and define

a linear map T : W̃ → W̃ by

T(w(0)
j ) = 0 and T(w(ℓ+1)

j ) =

1

2ℓ+1
w(ℓ)

j for all ℓ ∈ N ∪ {0} and j ∈ N.
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Since (w(n)
i )n∈N∪{0},i∈N is a basic sequence in X, T is well defined. Let

(a(ℓ)
j )ℓ∈N∪{0}, j∈N ∈ c00((N ∪ {0}) × N)

and x =

∑∞
ℓ=0

∑∞
j=1 a(ℓ)

j w(ℓ)
j ∈ W̃ . We have

‖Tx‖ = ‖
∞∑

ℓ=1

∞∑

j=1

a(ℓ)
j

1

2ℓ
w(ℓ−1)

j ‖ ≤
∞∑

ℓ=1

1

2ℓ
‖(a(ℓ)

j ) j‖ℓ (by (25))

≤ max
1≤ℓ<∞

‖(aℓ
j) j‖ℓ ≤ ‖x‖ (by (25)).

Thus if W denotes the closure of W̃ then T extends to a bounded operator on W .

Let p(t) = antn + an−1tn−1 + · · · + a1t + a0 be a non-constant polynomial. We
show that p(T) is not a compact perturbation of a multiple of the identity operator I

on W . Indeed, for any i ∈ {1, 2, . . . , n} and j ∈ N we have

T iw(n)
j = T i−1 1

2n
w(n−1)

j = T i−2 1

2n

1

2n−1
w(n−2)

j = · · · =

n∏

k=n−i+1

1

2k
w(n−i)

j .

Thus for every scalar λ and j ∈ N we have

(p(T)−λI)w(n)
j =

( n∑

i=1

aiT
i −λI

)
w(n)

j =

n∑

i=1

ai

( n∏

k=n−i+1

1

2k

)
w(n−i)

j + (a0 −λ)w(n)
j .

Since w(0)
1 , w(1)

1 , w(0)
2 , w(2)

1 , w(1)
2 , w(0)

3 , · · · is a seminormalized basic sequence in X,

there exist j1 < j2 < · · · in N such that
(∑n

i=1 ai(
∏n

k=n−i+1
1
2k )w(n−i)

js
+ (a0 −

λ)w(n)
js

)
s

is a seminormalized block sequence of w(0)
1 , w(1)

1 , w(0)
2 , w(2)

1 , w(1)
2 , w(0)

3 , · · ·
which proves that p(T) − λI is not a compact operator.

Claim 1 follows from:

Claim 2 There exists a subspace Y of X with a basis and for every ℓ ∈ N ∪ {0}
there exists a seminormalized weakly null basic sequence (u(ℓ)

i )i in Y , an increasing

sequence (M(ℓ+1)
i )i of positive integers, and a sequence (δ(ℓ+1)

i )i of positive numbers

with
∑

i δ
(ℓ+1)
i < ∞, such that the vectors u(n)

i for n ∈ N ∪ {0} and i ∈ N are
disjointly supported with respect to the basis in Y , and for every ℓ ∈ N ∪ {0} and

(a(m)
j )m∈{0,1,...,ℓ}, j∈N ∈ c00({0, 1, . . . , ℓ} × N) we have that

(27) 2 max
1≤m≤ℓ

‖(a(m)
j ) j‖m ≤

∥∥∥
ℓ∑

m=0

∞∑

j=1

a(m)
j u(m)

j

∥∥∥ ≤ (1/2)

ℓ∑

m=0

‖(a(m)
j ) j‖m+1

(recall that ‖ · ‖m was defined in (26)).
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Once Claim 2 is established, passing for every n ∈ N to a subsequence of (u(n)
i )i

(which does not affect the estimates in (27)), and making small perturbations if nec-

essary, we get (w(n)
i )i such that

w(0)
1 , w(1)

1 , w(0)
2 , w(2)

1 , w(1)
2 , w(0)

3 , · · ·

forms a block basis in Y and for all (a(ℓ)
j )ℓ∈N∪{0}, j∈N ∈ c00((N ∪ {0}) × N) we have

(28)
1

2

∥∥∥
∞∑

ℓ=0

∞∑

j=1

a(ℓ)
j u(ℓ)

j

∥∥∥ ≤
∥∥∥

∞∑

ℓ=0

∞∑

j=1

a(ℓ)
j w(ℓ)

j

∥∥∥ ≤ 2
∥∥∥

∞∑

ℓ=0

∞∑

j=1

a(ℓ)
j u(ℓ)

j

∥∥∥ .

Obviously (27) and (28) imply (25) and thus Claim 1 follows.

Now we prove Claim 2. We construct the space Y and inductively on ℓ ∈ N ∪ {0}
we construct the sequences (u(ℓ)

i )i , (M(ℓ+1)
i )i and (δ(ℓ+1)

i ) which satisfy (27). The up-
per and lower estimates are based on the following two lemmas, of independent in-
terest, whose proofs we postpone until the end of the section.

Lemma 6.2 Let X be a Banach space and (xi)i be a normalized weakly null basic

sequence in X which has a spreading model (x̃i) not equivalent to the unit vector basis

of ℓ1. Then for every (δn)n≥2 ⊂ (0, 1) there exists a subsequence (xmi
) of (xi) and an

increasing sequence M1 < M2 < · · · of integers, such that for all (ai)i ∈ c00 we have

(put δ1 = 12)

(29)
∥∥∥

∑
aixmi

∥∥∥ ≤ sup
n∈N

sup
F⊂N,|F|≤Mn

δn

∑

i∈F

|ai|.

Lemma 6.3 Let X be a Banach space and (zi)i be a normalized weakly null basic

sequence in X which has spreading model (z̃i)i such that 1 belongs to the Krivine set of

(z̃i)i . There exists a subsequence (z ′i )i of (zi)i with the following property.

Given any infinite subset J ⊆ N, any subsequence (Mn)n of N, and (δn)n ⊂ (0,∞)
with

∑∞
n=1 δn < ∞, there exists a seminormalized weakly null basic sequence (yi)i in

the span of (z ′j ) j∈ J which is disjointly supported with respect to (z ′j ) j∈ J , such that for all

(ai) ∈ c00 and all y in the span of (z ′j ) j 6∈ J we have

(30) sup
n∈N

δn‖(ai)‖ℓ1(Gn) ≤ ‖y +
∑

ai yi‖.

with Gn := {A ⊂ N : |G| ≤ Mn} for n ∈ N.

Furthermore, if (z̃i) is not equivalent to the unit vector basis of ℓ1 then no spreading

model of (yi) is equivalent to the unit vector basis of ℓ1.

We now return to the proof of Claim 2.
Since 1 belongs to the Krivine set of (x̃i), we can use Lemma 6.3 and assume

without loss of generality that (xi) satifies the conclusion of Lemma 6.3, as stated
for (z ′i ).
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Let K0, K1, K2, · · · be disjoint infinite sets of positive integers. For all ℓ ∈ N ∪
{0} we will construct disjointly supported u(ℓ)

i ∈ span{x j : j ∈ Kℓ}, (δ(ℓ)
i )i∈N and

(M(ℓ)
i )i∈N (satisfying the conditions as stated in Claim 2) so that for all

(a(m)
j )m∈{0,1,...,ℓ}, j∈N ∈ c00({0, 1, . . . , ℓ} × N)

and y ∈ span(xi : i ∈ ⋃
s>ℓ Ks) we have that

∥∥∥
ℓ∑

m=0

∞∑

j=1

a(m)
j u(m)

j

∥∥∥ ≤ (1/2)

ℓ∑

m=0

‖(a(m)
j ) j‖m+1(31)

2 max
1≤m≤ℓ

‖(a(m)
j ) j‖m ≤

∥∥ y +

ℓ∑

m=0

∞∑

j=1

a(m)
j um

j

∥∥(32)

(which yields (27) if we put y = 0).

Construction of (u(0)
i )i , (δ(1)

i )i∈N and (M(1)
i )i∈N: Let (δ(1)

i )i≥2 ⊂ (0, 1) such that

∑

i≥2

δ(1)
i < ∞.

Since (x̃i)i is a spreading model of (x j) j∈K0
which is not equivalent to the unit vector

basis of ℓ1 we may apply Lemma 6.2 to obtain a subsequence (xmi
) of (x j) j∈K0

, an

increasing sequence (M(1)
i )i∈N of positive integers, and δ(1)

1 > 0 such that for all

(ai) ∈ c00 we have

(33)
∥∥∥

∑
aixmi

∥∥∥ ≤ 1

2
‖(ai)‖1 :=

1

2
sup
n∈N

δ(1)
n ‖(ai)‖ℓ1(G(1)

n )
,

where G(1)
n = {G ⊂ N : |G| ≤ M(1)

n }. This yields (31) for ℓ = 0 while (32) is vacuous.

The inductive step — construction of (u(ℓ)
i )i , (δ(ℓ+1)

i )i and (M(ℓ+1)
i ): Assume that we

have constructed (um
i )i , (M(m+1)

i )i and (δ(m+1)
i ) for m = 0, 1, . . . , ℓ − 1 so that (31)

and (32) are satisfied when ℓ is replaced by ℓ − 1. Apply Lemma 6.3 for J = Kℓ,

(Mi)i = (M(ℓ)
i )i and (δi)i = (2δ(ℓ)

i )i to obtain a disjointly supported seminormalized

weakly null basic sequence (u(ℓ)
i )i in span{x j : j ∈ Kℓ} satisfying for all (ai) ∈ c00,

and y ∈ span{x j : j 6∈ Kℓ} that

(34) 2 sup
n∈N

δ(ℓ)
n ‖(ai)‖ℓ1(G(ℓ)

n )
≤ ‖y +

∑
aiu

(ℓ)
i ‖,

where G(ℓ)
n = {G ⊂ N : |G| ≤ M(ℓ)

n } for n ∈ N. By passing to a subsequence of (u(ℓ)
i )i

and relabelling we can assume that (u(ℓi ))i has a spreading model (ũ(ℓ)
i ). By the “fur-

thermore” part of Lemma 6.3 we have that (ũ(ℓ)
i ) is not equivalent to the unit vector

basis of ℓ1. Let (δ(ℓ+1)
i )i≥2 ⊂ (0, 1) such that

∑
i≥2 δ(ℓ+1)

i < ∞. Apply Lemma 6.2
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to obtain a subsequence of (u(ℓ)
i )i (which we still call (u(ℓ)

i )i) , an increasing sequence

(M(ℓ+1)
i )i∈N of positive integers, and δ(ℓ+1)

1 > 0 such that for all (ai) ∈ c00 we have

(35)
∥∥∥

∑
aiu

(ℓ)
i

∥∥∥ ≤ 1

2
‖(ai)‖ℓ+1 :=

1

2
sup
n∈N

δ(ℓ+1)
n ‖(ai)‖ℓ1(Gℓ+1

n ),

where G(ℓ+1)
n = {G ⊂ N : |G| ≤ M(ℓ+1)

n } for n ∈ N.
We now show that (31) and (32) are satisfied. Let

(a(m)
j )m∈{0,1,...,ℓ} j∈N ∈ c00({0, 1, . . . , ℓ} × N)

and y ∈ span(yi : i ∈
⋃

s>ℓ Ks).
From (35) and the induction hypothesis it follows that

∥∥∥
ℓ−1∑

m=0

∞∑

j=1

a(m)
j u(m)

j +

∞∑

j=1

a(ℓ)
j u(ℓ)

j

∥∥∥ ≤
∥∥∥

ℓ−1∑

m=0

∞∑

j=1

a(m)
j u(m)

j

∥∥∥ +
∥∥∥

∞∑

j=1

a(ℓ)
j u(ℓ)

j

∥∥∥

≤ 1

2

ℓ∑

m=0

‖(a(m)
j ) j‖m+1,

which yields (31). By the inductive hypothesis for y replaced by y +
∑∞

j=1 a(ℓ)
j u(ℓ)

j we

can estimate ‖y +
∑ℓ

m=0

∑∞
j=1 a(m)

j u(m)
j ‖ as follows:

2 max
1≤m≤ℓ−1

‖(a(m)
j ) j‖m ≤ ‖y +

∞∑

j=1

a(ℓ)
j u(ℓ)

j +

ℓ−1∑

m=0

∞∑

j=1

a(m)
j u(m)

j ‖,

which, together with (34), implies (32).

If we are interested only in the construction of an operator on a subspace which
is not a compact perturbation of a multiple of the inclusion map, then the spreading
model assumptions of Theorem 6.1 can be significantly relaxed and the argument
would be essentially simpler.

Theorem 6.4 Let X be a Banach space. Assume that there exist normalized weakly

null basic sequences (xi), (zi) in X such that (xi) has spreading model (x̃i) which is not

equivalent to the unit vector basis of ℓ1, and (zi) has spreading model (z̃i) such that 1

belongs to the Krivine set of (z̃i). Then there exists a subspace Y of X and an operator

T : Y → X which is not a compact perturbation of a multiple of the inclusion map.

Sketch of proof Let (δn)n≥2 ⊂ (0, 1) such that
∑∞

n=2 δn < ∞. Using Lemma 6.2
we obtain a subsequence (xmi

)i of (xi), an increasing sequence M1 < M2 < · · · of
integers and δ1 > 0 such that for all (ai) ∈ c00 we have

∥∥∥
∑

aixmi

∥∥∥ ≤ sup
n∈N

δn‖(ai)i‖ℓ1(Gn),
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where Gn = {G ⊂ N : |G| ≤ Mn} for n ∈ N. Then by Lemma 6.3 we obtain a
seminormalized weakly null basic sequence (yi) in the span of (zi) such that for all

(ai) ∈ c00 and k1 < k2 < · · · in N,

∥∥∥
∑

ai yki

∥∥∥ ≥ sup
n∈N

δn‖(ai)‖ℓ1(Gn).

Thus for every (ai) ∈ c00 we have ‖
∑

aixmi
‖ ≤ ‖

∑
ai yi‖, and passing to subse-

quences if necessary we may also assume that xm1
, y1, xm2

, y2, · · · is a (seminormal-
ized weakly null) basic sequence. Thus the operator T defined on span{yi : i ∈ N},

the closed linear span of (yi), by T(yi) = xmi
for all i, is a continuous operator. Also

for any scalar λ the operator T − λI (where I denotes the inclusion operator from
span{yi : i ∈ N} to X) is non-compact, since (T − λI)(yi) = xmi

− λyi which is a
seminormalized weakly null sequence.

We now give the proofs of Lemmas 6.2 and 6.3.

Proof of Lemma 6.2 (xn) is weakly null and thus has a subsequence which can be

renormed with a 3-equivalent norm to make it bimonotone basic. Therefore if we
proved the claim for δ ′

1 = 4 and δ ′
n = δn/3, for n ≥ 2, assuming that (xn) is bimono-

tone basic, the general claim would follow for δ1 = 12 and (δn)n≥2.

Secondly, we can assume that for every ρ > 0 there is an M = M(ρ), so that for
all x =

∑∞
i=1 aixi of norm 1,

(36) |{i ∈ N : |ai | ≥ ρ}| ≤ M .

Otherwise we prove the claim for the sequence (x ′
n) (which dominates (xn)) defined

by
∥∥∥

∞∑

n=1

anx ′
n

∥∥∥ = max
([ ∞∑

n=1

a2
n

] 1/2

,
∥∥∥

∞∑

n=1

anxn

∥∥∥
)

for (ai) ∈ c00.

Thus assume that (xn) is bimonotone basic and satisfies (36), and let δ1 = 4.

We choose a sequence (ε j)
∞
j=1 ⊂ (0, 1] so that

(37)

∞∑

j=2

ε j−1

δ j

≤ 1

8
.

By Proposition 2.1 we may choose a decreasing sequence (ρ j) ⊂ (0, 1], with∑
j

√
ρ j( j + 1) ≤ 1/4 such that

(38)
∥∥∥

∑
ai x̃i

∥∥∥

≤ ε j

∑
|a j |, for (ai) ∈ [−√

ρ j ,
√

ρ j]
N ∩ c00 with

∑
ai x̃i ∈ Sspan{x̃i :i∈N}.

Finally let M j = M(ρ j) satisfy (36).
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Using the definition of spreading models, we also can assume that for all F ⊂ N,
with j ≤ F and |F| ≤ M j and all (ai) ∈ c00 it follows that

(39)
1

2

∥∥∥
∑

i∈F

aixi

∥∥∥ ≤
∥∥∥

∑

i∈F

ai x̃i

∥∥∥ ≤ 2
∥∥∥

∑

i∈F

aixi

∥∥∥ .

Let (ai) ∈ c00, with ‖
∑

aixi‖ = 1, and let j ∈ N, j ≥ 2, and consider the vector
ỹ =

∑
i> j,ρ j<|ai |≤ρ j−1

ai x̃i . If ‖ ỹ‖ ≥ √
ρ j−1 we can apply (38) to the normalized

vector ỹ/‖ ỹ‖ to obtain

‖ ỹ‖ = ‖ ỹ‖ ·
∥∥∥

ỹ

‖ ỹ‖
∥∥∥ ≤ ‖ ỹ‖ε j−1

∑

i> j
ρ j<|ai |≤ρ j−1

|ai|
‖ ỹ‖ = ε j−1

∑

i> j
ρ j<|ai |≤ρ j−1

|ai|.

Thus, we get, in general (i.e., without the condition ‖ ỹ‖ ≥ √
ρ j−1)

(40) ‖ ỹ‖ ≤ √
ρ j−1 + ε j−1

∑

i> j
ρ j<|ai |≤ρ j−1

|ai |.

Therefore we deduce that (letting ρ0 = 1)

1 =

∥∥∥
∑

aixi

∥∥∥

≤
∞∑

j=1

∥∥∥
∑

i
ρ j<|ai |≤ρ j−1

aixi

∥∥∥

≤
∥∥∥

∑

i
ρ1<|ai |≤1

aixi

∥∥∥ +

∞∑

j=2

∥∥∥
∑

i≤ j
ρ j<|ai |≤ρ j−1

aixi

∥∥∥ +

∞∑

j=2

∥∥∥
∑

i> j
ρ j<|ai |≤ρ j−1

aixi

∥∥∥

≤ sup
F⊂N

|F|≤M1

∑

i∈F

|ai | +

∞∑

j=2

ρ j−1 j + 2

∞∑

j=2

∥∥∥
∑

i> j
ρ j<|ai |≤ρ j−1

ai x̃i

∥∥∥ (by (39))

≤ sup
F⊂N

|F|≤M1

∑

i∈F

|ai | +
1

4
+ 2

∞∑

j=2

√
ρ j−1 + 2

∞∑

j=2

ε j−1

∑

i> j
ρ j<|ai |≤ρ j−1

|ai| (by (40))

≤ 1

2
+ sup

F⊂N

|F|≤M1

∑

i∈F

|ai| +

∞∑

j=2

2
ε j−1

δ j
δ j

∑

i> j
ρ j<|ai |≤ρ j−1

|ai|

≤ 1

2
+

1

2
sup
j∈N

sup
F⊂N

|F|≤M j

δ j

∑

i∈F

|ai| (by (37)),

which implies the claim.
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Proof of Lemma 6.3 Since 1 belongs to the Krivine set of (z̃i), we can use Remark
1.2 and pick for every n ∈ N a normalized block sequence consisting of identically

distributed vectors (w̃(n)
j ) j ⊂ [z̃i : i ∈ N], for j = 1, 2, . . . , such that for any subset

E ⊆ N with |E| = n, (w̃(n)
j ) j∈E is 2 equivalent to the unit vector basis of ℓn

1 . We denote
the common length of their support by Kn.

Using the Schreier unconditionality theorem ([18], also [3, 21]) we may pass to a
subsequence (z ′i ) of (zi) such that for any finite subset F ⊆ N such that |F| ≤ nKn

and n < min F, for some n ∈ N, we have

(41)
∥∥∥

∑

i∈F

aiz
′
i

∥∥∥ ≤ 3
∥∥∥

∑

i∈N

aiz
′
i

∥∥∥ , for any scalars (ai).

Fix J, (Mn) and (δn) as in the assumptions. For any n ∈ N, let (w(n)
j ) be equidis-

tributed vectors in the span of (z ′i )i∈ J with the same distribution as the elements of

(w̃(n)
j ), and supported after z ′n. We may also assume that for any subset E ⊆ N with

|E| = n, the sequence (w(n)
j ) j∈E is 3 equivalent to the unit vector basis of ℓn

1 . We may

additionally chose the w(n)
j ’s so that w(1)

1 , w(2)
1 , w(1)

2 , w(3)
1 , . . . form a block basis with

respect to (z ′i )i∈ J and ‖w(n)
j ‖ is uniformly close to 1.

For j=1, 2, . . . , set

y j =

∑

n

δnw(Mn)
j .

From (41) we have 1
4

maxn δn ≤ ‖y j‖ ≤ 2
∑

n δn, for all j. Also (y j) is clearly weakly

null from its construction since
∑

δn < ∞ and each (w(Mn)
j ) j is weakly null.

To prove (30), pick (ai) ∈ c00 and a vector y supported outside of J. Fix n ∈ N and
G ⊆ N with |G| ≤ Mn. Noting that the supports of w j

(Mn)’s with respect to (z ′i ) have

cardinality KMn
, by Schreier unconditionality (41) we can isolate the w(Mn)

j ’s from

the expression for y j to get (note that the support of the vector
∑

j∈G a jδnw j
(Mn)

with respect to (z ′i ) has not more than MnKMn
elements and starts after the Mn-th

element)

∥∥∥ y +
∑

j

a j y j

∥∥∥ ≥ (1/3)
∥∥∥

∑

j∈G

a jδnw(Mn)
j

∥∥∥ ≥ (1/9)δn

∑

j∈G

|a j |.

Taking into account the definition of Gn and of the norm ‖ · ‖ℓ1(Gn) this completes the

proof if we replace the original δn’s by 9δn.

To see the “furthermore” statement, note that if (z̃i) is not equivalent to the unit

vector basis of ℓ1 then the same is true for the spreading model (w̃(n)
i ) of (w(n)

i ) for
n ∈ N. Using this, Proposition 2.1 and the definition of (y j), it is easy to verify that
(b) holds in Proposition 2.1 for any spreading model of (yi).

It is proved in [1] that the spreading model of the unit vector basis of the Gowers–
Maurey space GM as defined in [10], is isometric to the unit vector basis of Schlump-
recht’s space S as defined in [28]. Thus Theorem 6.1 immediately gives the following:
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Corollary 6.5 There is a subspace Y of GM and an operator T on Y such that p(T)
is not a compact perturbation of a multiple of the identity, for any non-constant polyno-

mial p.
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