K. McCann and K.S. Williams
(received November 18, 1966)

If $f(x)$ is a polynomial with integral coefficients then the integer r is said to be a residue of $f(x)$ modulo an integer m if the congruence

$$
f(x) \equiv r(\bmod m)
$$

is soluble for x ; otherwise r is termed a non-residue. When m is a prime p , Mordell [4] has shown that the least nonnegative residue ℓ of $f(x)$ (mod p) satisfies

$$
\ell \leq \mathrm{d}^{1 / 2} \log \mathrm{p},
$$

where d is the degree of $f(x)$. When $f(x)$ is a cubic he has also shown that the least non-negative non-residue k of $f(x)$ $(\bmod p)$ is $0\left(p^{1 / 2} \log p\right)$. It is the purpose of this note to discuss the distribution of the residues of the cubic $f(x)(\bmod p)$ in greater detail. To keep the notation simple we take $f(x)$ in the form $x^{3}+a x ;$ no real loss of generality is involved, everything we do for $\mathrm{x}^{3}+\mathrm{ax}$ can be done for $\mathrm{Ax}^{3}+\mathrm{Bx}^{2}+\mathrm{Cx}+\mathrm{D}$ but at the cost of complicating the notation. When $a \equiv 0(\bmod p)$, $f(x)=x^{3}$ and our results are well-known in this case. Henceforth we assume that $a \not \equiv 0(\bmod p)$. Let

$$
\begin{equation*}
n_{i}=\sum_{\substack{\mathrm{r}=1 \\ \mathrm{~N}_{\mathrm{r}}=\mathrm{i}}}^{\mathrm{p}} 1, \quad(i=0,1,2,3) \tag{1}
\end{equation*}
$$

* Unless otherwise stated all constants implied by 0 -symbols are absolute.

Canad. Math. Bull. vol. 10, no. 1, 1967
where N_{r} denotes the number of solutions x of

$$
\begin{equation*}
x^{3}+a x \equiv r(\bmod p) \tag{2}
\end{equation*}
$$

It is well-known that for $p>3$

$$
\begin{equation*}
n_{1}=\frac{1}{2}\left\{p+\left(\frac{-3}{p}\right)-\left(\frac{-3 a}{p}\right)-1\right\} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
n_{2}=\left(\frac{-3 a}{p}\right)+1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{3}=\frac{1}{6}\left\{p-\left(\frac{-3}{p}\right)-3\left(\frac{-3 a}{p}\right)-3\right\} \tag{5}
\end{equation*}
$$

Hence the number of residues of $x^{3}+\operatorname{ax}(\bmod p)$, which is just $n_{1}+n_{2}+n_{3}$, is
(6)

$$
\frac{1}{3}\left\{2 p+\left(\frac{-3}{p}\right)\right\}=\frac{2}{3} p+0(1), \quad \text { as } p \rightarrow \infty .
$$

This tells us that, for large p, approximately two-thirds of the integers

$$
\begin{equation*}
1,2,3, \ldots, p \tag{7}
\end{equation*}
$$

are residues of $x^{3}+a x$. We show that this is also true for

$$
\begin{equation*}
1,2,3, \ldots, h \tag{8}
\end{equation*}
$$

provided h is sufficiently large. More precisely we show that the number of residues of $x^{3}+a x$ in (8) is

$$
\begin{equation*}
\frac{2}{3} h+0\left(p^{1 / 2} \log p\right) \tag{9}
\end{equation*}
$$

A consequence of this is Mordell's estimate for k. In addition, as $\frac{2}{3}>\frac{1}{2}$, it shows that the least pair of consecutive positive
residues is also $0\left(p^{1 / 2} \log p\right)$.
In the proof of (9) (and later) we use Vinogradov's method for incomplete character and exponential sums. This requires the familiar Polya-Vinogradov inequality, namely,

$$
\begin{equation*}
\sum_{y=1}^{p-1}\left|\sum_{x=1}^{h} e(y x)\right| \leq p \log p \tag{10}
\end{equation*}
$$

for $p \geq 61$, where $e(t)$ denotes $\exp \left(2 \pi i t p^{-1}\right)$. For the complete sums involved we appeal to the general estimates of Perel'muter [5]. These include the estimate of Carlitz and Uchiyama [2], used by Mordell in [4], namely

$$
\begin{equation*}
\left|\sum_{x=1}^{p} e(f(x))\right| \leq(d-1) p^{1 / 2}, \tag{11}
\end{equation*}
$$

where d denotes the degree of the polynomial f, and Weil's estimate [6] for the Kloosterman sum, i.e.,

$$
\begin{equation*}
\left|\sum_{x=1}^{p-1} e\left(a x+b x^{-1}\right)\right| \leq 2 p^{1 / 2} \tag{12}
\end{equation*}
$$

where x^{-1} denotes the inverse of $x(\bmod p)$ and $a, b \neq 0$ (mod p). All these estimates are consequences of Weil's proof of the Riemann hypothesis for algebraic function fields over a finite field.

Analogous to (1) we set

$$
\begin{equation*}
m_{i}=\sum_{\substack{\mathrm{r}=1 \\ N_{r}=i}}^{\mathrm{h}} 1 \quad(i=0,1,2,3) \tag{13}
\end{equation*}
$$

so that we require $m_{1}+m_{2}+m_{3}$. From [4] we have

$$
\begin{equation*}
m_{2}=0(1) \tag{14}
\end{equation*}
$$

and from Mordell's paper [4]

$$
\begin{equation*}
m_{1}+2 m_{2}+3 m_{3}=h+0\left(p^{1 / 2} \log p\right) \tag{15}
\end{equation*}
$$

so that it suffices to determine m_{1}. Now (2) has one solution if and only if

$$
\left(\frac{-4 a^{3}-27 r^{2}}{p}\right)=-1
$$

so

$$
m_{1}=\frac{1}{2} \sum_{r=1}^{h}\left\{1-\left(\frac{-4 a^{3}-27 r^{2}}{p}\right)\right\}+0(1)
$$

Applying Vinogradov's method and appealing to Perel'muter's results [5] (or to Weil's estimate (12) for the Kloosterman sum) we have

$$
\sum_{r=1}^{h}\left(\frac{-4 a^{3}-27 r^{2}}{p}\right)=0\left(p^{1 / 2} \log p\right)
$$

so that

$$
\begin{equation*}
m_{1}=\frac{1}{2} h+0\left(p^{1 / 2} \log p\right) . \tag{16}
\end{equation*}
$$

We now consider pairs of consecutive residues of $x^{3}+a x(\bmod p)$. Define $n_{i j}(0 \leq i, j \leq 3)$ by

$$
\begin{equation*}
n_{i j}=\sum_{N_{r=1}^{p}=i, \quad N_{r+1}=j} 1 \tag{17}
\end{equation*}
$$

so that the number of such pairs is just

$$
\begin{equation*}
\sum_{1 \leq i, j \leq 3} n_{i j} \tag{18}
\end{equation*}
$$

From (4) $n_{i 2}, n_{2 j}=0(1)$ for $0 \leq i, j \leq 3$. Also it is easy to
show that $n_{13}=n_{31}$ so it súffices to evaluate n_{11}, n_{13} and n_{33}. We begin by showing that

$$
\begin{equation*}
n_{11}=\frac{p}{4}+0\left(p^{1 / 2}\right) \tag{19}
\end{equation*}
$$

We have

$$
\begin{aligned}
n_{11}= & \sum_{r=1}^{p} 1 \\
& \left(\frac{-4 a^{3}-27 r^{2}}{p}\right)=-1,\left(\frac{-4 a^{3}-27(r+1)^{2}}{p}\right)=-1 \\
= & \frac{1}{4} \sum_{r=1}^{p}\left\{1-\left(\frac{-4 a^{3}-27 r^{2}}{p}\right)\right\}\left\{1-\left(\frac{-4 a^{3}-27(r+1)^{2}}{p}\right)\right\}+0(1) \\
= & \frac{p}{4}-\frac{1}{4} \sum_{r=1}^{p}\left(\frac{-4 a^{3}-27 r^{2}}{p}\right)-\frac{1}{4} \sum_{r=1}^{p}\left(\frac{-4 a^{3}-27(r+1)^{2}}{p}\right) \\
& +\frac{1}{4} \sum_{r=1}^{p}\left(\frac{\left(-4 a^{3}-27 r^{2}\right)\left(-4 a^{3}-27(r+1)^{2}\right)}{p}\right)+0(1) .
\end{aligned}
$$

The first two character sums are $0(1)$ and the last one by Perel'muter's results is $\leq 3 p^{1 / 2}$ in absolute value, since $\left(-4 a^{3}-27 r^{2}\right)\left(-4 a^{3}-27(r+1)^{2}\right)$ is not identically $(\bmod p) a$ square in r.

We next prove that

$$
\begin{equation*}
n_{13}=\frac{p}{12}+0\left(p^{1 / 2}\right) \tag{20}
\end{equation*}
$$

We do this by showing that

$$
\begin{equation*}
n_{11}+2 n_{12}+3 n_{13}=\frac{p}{2}+0\left(p^{1 / 2}\right) \tag{21}
\end{equation*}
$$

(20) follows since we know n_{11} and n_{12}. We have

$$
\begin{aligned}
& \begin{array}{c}
\sum_{j=0}^{3} j n_{l j}=\sum_{j=0}^{3} \sum_{\substack{r=1 \\
N_{r}=1}}^{N_{r+1}=j} . \\
\sum_{r=1}^{p} N_{r+1} \\
N_{r}=1
\end{array} \\
& \begin{array}{c}
\sum_{r=1}^{p} \\
\left(\frac{-4 a^{3}-27 r^{2}}{p}\right)=-1
\end{array} \sum_{x=1}^{p} 1 \\
& =\frac{1}{2} \sum_{x=1}^{p}\left\{1-\left(\frac{-4 a^{3}-27\left(x^{3}+a x-1\right)^{2}}{p}\right)\right\}+0(1) \\
& =\frac{p}{2}-\frac{1}{2} \sum_{x=1}^{p}\left(\frac{-4 a^{3}-27\left(x^{3}+a x-1\right)^{2}}{p}\right)+0(1) .
\end{aligned}
$$

Now $27^{2}\left(x^{3}+a x-1\right)^{2}+108 a^{3}$ is not identically (mod p) a square in x as a $\neq 0(\bmod p)$. Hence Perel'muter's work tells us that the character sum is $0\left(p^{1 / 2}\right)$. This proves (21).
Finally consider

$$
n_{11}+2\left(n_{12}+n_{21}\right)+3\left(n_{13}+n_{31}\right)+4 n_{22}+6\left(n_{23}+n_{32}\right)+9 n_{33} .
$$

This is just the number of solutions (x, y) of

$$
\left(x^{3}+a x\right)-\left(y^{3}+a y\right)-1 \equiv 0 \quad(\bmod p)
$$

By a result of Lang and Weil [3] this number is

$$
p+0\left(p^{1 / 2}\right)
$$

Hence

$$
\begin{equation*}
n_{33}=\frac{p}{36}+0\left(p^{1 / 2}\right) \tag{22}
\end{equation*}
$$

Thus the number of pairs of consecutive residues is

$$
\begin{equation*}
\frac{4}{9} p+0\left(p^{1 / 2}\right) \tag{23}
\end{equation*}
$$

We conclude by calculating the number of pairs of residues of $x^{3}+a x(\bmod p)$ in (8). We define $m_{i j}(0 \leq i, j \leq 3)$ by (24)

$$
m_{i j}=\sum_{N_{r=1}^{p}=i, N_{r+1}=j}^{p} 1
$$

From (4) we have $m_{i 2}, m_{2 j}=0(1)(0 \leq i, j \leq 3)$ and, much as before, we can show that

$$
\begin{equation*}
m_{11}=\frac{h}{4}+0\left(p^{1 / 2} \log p\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{13}=m_{31}=\frac{h}{12}+0\left(p^{1 / 2} \log p\right) \tag{26}
\end{equation*}
$$

The only difficulty is the estimation of m_{33}. We find it necessary to appeal to a recent deep estimate of Bombieri and Davenport [1] for an exponential sum of the type

$$
\phi(\mathrm{x}, \mathrm{y}) \stackrel{\sum_{\mathrm{x}, \mathrm{y}=1}^{\mathrm{p}} 0(\bmod \mathrm{p})}{ } \mathrm{e}(\mathrm{f}(\mathrm{x}))
$$

where $\emptyset(x, y)$ is absolutely irreducible (mod p). We have

$$
m_{11}+2\left(m_{12}+m_{21}\right)+3\left(m_{13}+m_{31}\right)+4 m_{22}+6\left(m_{23}+m_{32}\right)+9 m_{33}
$$

$$
=\sum_{r=1}^{h} N_{r} N_{r+1}
$$

$$
\begin{aligned}
& =\frac{1}{p} \sum_{r=1}^{p} \sum_{s=1}^{h} \sum_{t=1}^{p} N_{r} N_{r+1} e(t(r-s)) \\
& =\frac{h}{p} \sum_{r=1}^{p} N_{r} N_{r+1}+\frac{1}{p} \sum_{t=1}^{p-1}\left\{\sum_{r=1}^{p} N_{r} N_{r+1} e(t r)\right\}\left\{\sum_{s=1}^{h} e(-s t)\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left|m_{11}+2\left(m_{12}+m_{21}\right)+\ldots+9 m_{33}-\frac{h}{p}\left(p+0\left(p^{1 / 2}\right)\right)\right| \\
& \quad \leq \max _{1 \leq t \leq p-1}\left|\sum_{r=1}^{p} N_{r} N_{r+1} e(\operatorname{tr})\right| \log p .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sum_{r=1}^{p} N_{r} N_{r+1} e(t r) \\
& =\frac{1}{p^{2}} \sum_{r=1}^{p} \sum_{x=1}^{p} \sum_{u=1}^{p} e\{u(f(x)-r)\} \sum_{y=1}^{p} \sum_{v=1}^{p} e\{v(f(y)-r-1)\} e(t r) \\
& =\frac{1}{p^{2}} \sum_{x, y, u, v=1}^{p} e\{u f(x)+v f(y)-v\} \sum_{r=1}^{p} e\{(t-u-v) r\} \\
& =\frac{1}{p} \underset{x, y, v=1}{p} e\{(t-v) f(x)+v f(y)-v\} \\
& =\frac{1}{p} \sum_{x, y=1}^{p} e\{t f(x)\} \sum_{y=1}^{p} e\{v(f(y)-f(x)-1)\} \\
& =\sum^{p} \quad e(t f(x)) \text {. } \\
& \mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{x})-1 \equiv 0
\end{aligned}
$$

As $f(y)-f(x)-1$ is absolutely irreducible ($\bmod p$), by the mentioned result of Davenport and Bombieri, this sum in absolute value is less than $18 p^{1 / 2}+9$. Hence

$$
\begin{equation*}
m_{33}=\frac{h}{36}+0\left(p^{1 / 2} \log p\right) \tag{27}
\end{equation*}
$$

and the number of pairs of consecutive residues in (8) is

$$
\begin{equation*}
\frac{4 h}{9}+0\left(p^{1 / 2} \log p\right) \tag{28}
\end{equation*}
$$

This implies that the least triple of consecutive positive residues of $x^{3}+a x(\bmod p)$ is also $0\left(p^{1 / 2} \log p\right)$.

In conclusion we would like to say that a number of modifications of this work are possible; for example the results obtained can be extended to arbitrary arithmetic progressions without difficulty and also to quartic polynomials. Finally we offer the following

CONJECTURE: For a fixed positive integer k the number $N_{k}(a)$ of blocks of k consecutive residues of $x^{3}+a x(\bmod p)$ satisfies

$$
\lim _{p \rightarrow \infty} \frac{N_{k}(a)}{p}=\left(\frac{2}{3}\right)^{k}
$$

for each k, uniformly in $a \neq 0(\bmod p)$.
This has been verified for $k=1$ and 2 .

REFERENCES

1. E. Bombieri and H. Davenport, On Two Problems of Mordell. Amer. Jour. Math., 88 (1966), pages 61-70.
2. L. Carlitz and S. Uchiyama, Bounds for Exponential Sums. Duke Math. Jour., 24 (1957), pages 37-41.
3. S. Lang and A. Weil, Number of Points of Varieties in Finite Fields. Amer. Jour. Math., 76 (1954), pages 819-827.
4. L. J. Mordell, On the Least Residue and Non-residue of a Polynomial. Jour. Lond. Math. Soc., 38 (1963), pages 451-453.
5. G.I. Perel'muter, On Certain Sums of Characters. Uspektii Maternaticheskikh Nauk., 18 (1963), pages 145-149.
6. A. Weil, On Some Exponential Sums. Proc. Nat. Acad. Sci. (U.S.A.), 34 (1948), pages 204-207.

Manchester University Manchester, England

Carleton University
Ottawa, Canada

