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Abstract

The Sichuan Basin was a part of the Yangtze Carbonate Platform (YCP) during the Cambrian–
Ordovician, and marine carbonates were deposited in the basin during this interval. Although
previous studies have evaluated the paleogeography, paleoclimate and paleoecology of this
basin, they have primarily focused on the paleoecology and biological evolution in the basin;
however, analysis of paleogeography and paleoclimate is lacking. This study integrated outcrop
sedimentological and magnetic fabric data to document sedimentary differentiation and
anisotropy of magnetic susceptibility (AMS) within the YCP. The aims of this study were to
infer paleowind directions during each epoch of the Cambrian–Ordovician and to constrain
the paleogeographic location of the YCP. The northwestern, central and southeastern sides
of the YCP were characterized by high-energy deposition (e.g. sub-angular to rounded intra-
clasts), medium-energy deposition (e.g. sub-angular to sub-rounded intraclasts) and low-
energy deposition (e.g. angular to sub-angular intraclasts), respectively. The centroid
D-Kmax values for the Early, Middle and Late Cambrian were 116° ± 52°, 145° ± 57° and
159° ± 62° from the present north, respectively; corresponding values for the Early, Middle
and Late Ordovician were 169° ± 70°, 139° ± 73° and 91° ± 68° from the present north, respec-
tively. Sedimentary differentiation and AMS results indicated that the prevailing wind direc-
tions during the Early Cambrian, Middle Cambrian, Late Cambrian, Early Ordovician,
Middle Ordovician and Late Ordovician were 296° ± 52°, 325° ± 57°, 339° ± 62°,
349° ± 70°, 319° ± 73° and 271° ± 68° from the present north, respectively. The present study
provides evidence for the location of the YCP during the Cambrian–Ordovician via the corre-
spondence between the paleowind directions over the YCP and the trade winds in the Northern
and Southern hemispheres. The novelty of this study lies in the following aspects: (1) it inte-
gratesmicrofacies andAMS analyses to establish paleowind patterns; (2) it constrains the paleo-
hemispheric location of the YCP during the Cambrian–Ordovician; and (3) it provides a refer-
ence for further studies of the paleoclimate and paleogeography of the YCP during the
Cambrian–Ordovician.

1. Introduction

Carbonate platform sediments undergo sedimentary differentiation under the action of long-
term prevailing winds (Han et al. 2020; Hu et al. 2020a, 2020b; Hu et al. 2022). Anisotropy of
magnetic susceptibility (AMS) has been widely used as an indicator of paleowind or paleocur-
rent directions (Lagroix & Banerjee, 2002; Nawrocki et al. 2018; Hu et al. 2020a, 2020b).
Hydrodynamic experiments have demonstrated the influence of wind or water motion on grain
orientation (Rees & Woodall, 1975; Tarling & Hrouda, 1993; Hu et al. 2017; Zhang-YF et al.
2017; Zhang-YF et al. 2018). Under calm conditions, the maximum AMS axes are randomly
distributed. Under a strong unidirectional flow, oblate particles tend to produce an imbricate
fabric in the direction of the flow and elongated particles are aligned parallel to the direction of
transport. Under bidirectional flow, elongated grains may align perpendicular to the directions
of fluid movement (Rees &Woodall, 1975; Tarling & Hrouda, 1993; Hu et al. 2017). This study
reconstructed paleowind directions during each epoch of the Cambrian–Ordovician the
Yangtze Carbonate Platform (YCP) using sedimentary differentiation and AMS analysis.

The YCP was located in the low-latitude trade winds belt during the Cambrian–Ordovician,
andmarine carbonates were deposited there (Li et al. 2015; Zhang et al. 2019; Cheng et al. 2020).
Like other platforms, the YCP was subjected to extensive global transgression during the
Cambrian (Dalziel, 2014; Chang et al. 2018; Zhai et al. 2018; Wu et al. 2021). The water in
the ocean was warm and conducive to the growth and development of marine organisms
(Peters & Gaines, 2012; Karlstrom et al. 2018; Wood et al. 2019). Numerous organisms began
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to emerge during this time, and some primitive invertebrates
gradually evolved into invertebrates with hard shells; this phe-
nomenon is known as the ‘Cambrian Explosion’ (Jin et al. 2016;
Aria & Caron, 2019; Hoyal Cuthill et al. 2020). As part of the most
extensive transgression in the Early Paleozoic, conditions during
the Ordovician favoured the further development of invertebrates
(Kröger, 2018; Stigall et al. 2019; Fang et al. 2020; Harper et al.
2021). The paleoecology and biological evolution of the YCP dur-
ing the Cambrian–Ordovician have been extensively investigated
(e.g. Li et al. 2015; Lee & Riding, 2018; Zheng et al. 2020), but stud-
ies on its paleogeography and paleoclimate are scarce (e.g. Torsvik
& Cocks, 2013; Zhang et al. 2016; Cocks & Torsvik, 2021). The
paleogeography and paleoclimate influence paleoecology and bio-
logical evolution in a region, and therefore, it is necessary to com-
prehensively understand these aspects.

Most scholars hold that the YCP was located in low-latitude
area of the Northern and Southern hemispheres during the
Cambrian–Ordovician. Some scholars hold that the YCP drifted
from the Southern Hemisphere (~12°S) to the Northern
Hemisphere (~11°N), then back to the Southern Hemisphere
(~49°S), and finally drifted to the Northern Hemisphere (~7°N)
from the Middle Cambrian to the Middle Ordovician (e.g.
Huang et al. 2000). Other scholars believe that the platform first
drifted southward across the equator from the Northern
Hemisphere (~13°N) to the Southern Hemisphere (~28°S) and
then drifted northward to a location near the equator from the
Early Cambrian to the Late Ordovician (e.g. Torsvik & Cocks,
2013; Cocks & Torsvik, 2021). The paleogeographic constraints
(paleomagnetic or otherwise) are testable based on the expected
paleoclimate conditions, especially the paleowind directions. The
paleo-coordinate framework during the Cambrian–Ordovician
in the trade wind belt indicates that the prevailing winds in the
Northern and Southern hemispheres at the time were from north-
east and from southeast, respectively (Kajtar et al. 2018; Helfer
et al. 2020, 2021). On the whole, there is no consensus regarding
the specific paleogeographic site and orientation of the YCP
(Huang et al. 2000; Popov et al. 2009; Nardin et al. 2011;
Torsvik & Cocks, 2013; Cocks & Torsvik, 2021; Harper et al.
2021). These conflicting proposals emphasize the need to recon-
struct paleowind directions.

The present study conducted an integrated analysis of bed- to
platform-scale variations in sediments based on outcrop data to
quantitatively reconstruct paleowind directions. One novel feature
of the present study is the inclusion of quantitative measurements
of sediment properties potentially influenced by the wind and
wind-generated currents, such as bedding thickness and grain size
and sorting, across the YCP. The aims of the present study were to
(1) quantitatively reconstruct paleowind directions over the YCP
during the Cambrian–Ordovician and (2) constrain the paleogeo-
graphic location of the YCP. The results of the present study can
serve as a reference for the integrated use of sedimentological and
AMS data for the recognition of paleowind directions over ancient
carbonate platforms.

2. Geological setting

The Sichuan Basin is a gas-bearing superimposed basin (with com-
plex structure due to vertical stacking of different structural layers)
that occupies an area of ~1.9 × 105 km2. It is mainly distributed in
Sichuan Province and Chongqing City, the southern part of
Shaanxi, eastern portion of Guizhou and western part of Hubei.

The basin is bounded by the Micang and Daba mountains in
the north, the Daliang and Loushan mountains in the south, the
Longmen Mountains in the west and Qiyao Mountain in the east
(Liu et al. 2021; Cheng et al. 2022; Dong et al. 2022). The Sichuan
Basin is situated on a basement of pre-Sinian metamorphic and
igneous rocks and contains marine and continental strata with
the thickness of 6–12 km (Shi et al. 2020; Zhao et al. 2020;
Miao et al. 2022). This study primarily focused on marine carbon-
ate deposits in the YCP region, where the Sichuan Basin was
located during the Cambrian–Ordovician (Figs. 1, 2).

2.a. Tectonic setting

The Sichuan Basin was in an extensional tectonic setting from the
Late Sinian to the Early Cambrian, during which time the Tongwan
tectonic event established the paleogeomorphic framework of this
basin (Wang et al. 2014; Che et al. 2019; Zhou et al. 2020). This
tectonic event caused the episodic uplift of the crust, and each por-
tion of this basin underwent varying degrees of uplift and sub-
sidence; furthermore, the platform region underwent several
episodes of denudation, which occurred in varying degrees.
Moreover, under the influence of the extensional regime, the
Deyang-Anyue Rift Tough developed in the western area, and
the region as a whole exhibited a north–south-oriented uplift
and depression pattern (Liu et al. 2017; Jin et al. 2020; Li et al.
2020). The Deyang-Anyue Rift Trough formed due to the early tec-
tonic event and entered a stage of compensatory deposition. The
basin was filled with a set of thick-bedded deposits dominated
by shales whose sedimentary provenance indicated that they origi-
nated from the west and north (Liu et al. 2020; Zhao et al. 2020;
Wang et al. 2021).

During the deposition of the Canglangpu Formation, the ampli-
tude of vertical tectonic event decreased considerably, the uplift
and depression pattern began to disappear, and the basin paleogeo-
morphology gradually transformed from the pattern of alternating
uplift and depression to that of a shelf with a gentle slope fromwest
to east. The Canglangpu Formation, which consists of sandy shale
mixed with limestone and dolostone, was deposited in this envi-
ronment. During the Middle-Late Cambrian, this area was charac-
terized by semi-restricted and restricted lagoon; the seawater
receded and the paleo-uplift further developed during this time.
From the Douposi Formation, the depositional environment
gradually changed to a carbonate platform (Figs. 1, 2; Fu et al.
2020; Li et al. 2021; Zhang et al. 2022).

The Sichuan Basin is dominated by carbonate deposits; it was
covered by a wide epicontinental sea from the Early to the Late
Ordovician (Zhu et al. 2018; He et al. 2019; Yang et al. 2022).
Owing to the Guangxi tectonic event, the convergence of the block
intensified, and the Yangtze Block was subducted and compressed
by the Cathaysia Block in the southeast (Ge et al. 2019; Wang et al.
2019; Huang et al. 2020). The surrounding paleo-lands of the
Sichuan Basin were uplifted. The Qianzhong Paleo-land was con-
nected with Xuefeng Paleo-land. The Kangdian and Chuanzhong
paleo-lands were expanded. At this juncture, the passive
continental margin began to transform into a foreland basin,
low-energy and undercompensated depositional basins enclosed
by uplifts began to form within the plate (Wang et al. 2019;
Men et al. 2020; Lu et al. 2021). Lithofacies analysis indicated that
the carbonate deposits were replaced by terrigenous clastic depos-
its. The early limestone deposits of the Baota and Linxiang forma-
tions were overlain by the black shale deposits of the Wufeng and
Longmaxi formations from the Late Ordovician to the Early
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Silurian (Figs. 1, 2; Chen et al. 2004; Liang et al. 2012; Huang
et al. 2020).

2.b. Stratigraphy

TheCambrian–Ordovician strata in the Sichuan Basin and its adja-
cent areas differ greatly in different regions. The Cambrian strata
are dominated by terrigenous clastic deposits in the west and
marine carbonate deposits in the east (Wang et al. 2013; Zhang
et al. 2019; Xi et al. 2022). The thickness of the Cambrian succes-
sion is ~100–1500 m, whereas the strata in the western part of the
basin are thinner (~100–500 m) because of the later denudation.
The strata in the central part of the basin have a medium thickness
of ~500–1200 m. The strata in the eastern part of the basin are
thicker, reaching ~1500 m (Liu et al. 2018; Li et al. 2022; Wang
et al. 2022). The western area contains the Lower Cambrian
Dengying, Qiongzhusi, Canglangpu and Longwangmiao forma-
tions, the Middle Cambrian Gaotai Formation and the Upper
Cambrian Xixiangchi Formation from bottom to top. Thick layers
of shale, clastic rock and various carbonate rocks have been depos-
ited (Yang et al. 2012; Gu et al. 2015; Gao et al. 2021).

The Ordovician strata have inherited the characteristics of the
Cambrian succession, with the depositional basement being high
in the west and low in the east, and the sediments being coarse
in the west and fine in the east. The stratigraphic thickness of
the Ordovician succession is less than that of the Cambrian succes-
sion. The stratigraphic thickness of the Ordovician succession is
~0–800 m; the Ordovician strata have undergone denudation,
especially in the western part of the basin (Wang et al. 2016;
Zhu et al. 2018; Yang et al. 2022). The western area contains the
Lower Ordovician Tongzi and Honghuayuan formations, the
Middle Ordovician Meitan and Shizipu formations and the
Upper Ordovician Baota, Linxiang and Wufeng formations from
bottom to top. A succession of carbonate rocks, mixtites and shales
has been deposited here (Figs. 1, 2; Yang et al. 2012; Zhu et al. 2021;
Miao et al. 2022).

2.c. Carbonate microfacies and depositional environments

Several depositional environments, such as restricted platform,
open platform and platform margin, are seen in the Cambrian–
Ordovician system (Yang et al. 2012; Li et al. 2013; Zhang et al.

Fig. 1. (Colour online) Regional index map showing the study area. (a) Simplified map of China showing the location of the YCP (after Chen et al. 2004). (b) Paleogeographic map
of the YCP during the Late Ordovician, showing the outcrop locations used in the present study (after Chen et al. 2004). Detailed information of the nine outcrops (LJ, FD, YK, YS, NY,
YJ, HH, JF, NS and YH) is provided in Table S1.
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2016; Zeng et al. 2018). The restricted platform can be divided into
three subtypes (tidal flat, lagoon and intraplatform shoal); it is
mainly developed in the Lower Cambrian Longwangmiao
Formation, the Middle Cambrian Gaotai Formation and the
Upper Cambrian Xixiangchi Formation. The rocks of this deposi-
tional environment primarily consist of light grey-dark grey
micritic dolomite, sandy dolomite and argillaceous dolomite, along
with doloarenite, dolorudite, oolitic dolomite and gypsum dolo-
mite (Li et al. 2012; Liu et al. 2018; Wang et al. 2022).

The open platform, which is developed in the Cambrian–
Ordovician system, can be divided into the intraplatform shoal
and intershoal marine subtypes. The deposits consist of
medium-thick stratified light grey and grey micritic limestone,
oolitic limestone, argillaceous limestone and intraclastic and

bioclastic limestone. The intraplatform shoal subtypes can be
divided into sand shoals, oolitic shoals and bioclastic shoals. The
intershoal marine subtypes is a relatively low-energy region
between intraplatform shoals of the open platform. The sedimen-
tary rocks are dominated by grey and dark grey thin to medium-
thick stratified micritic limestone, along with argillaceous
limestone, mud-bearing limestone and bioclastic micritic lime-
stone. Moreover, horizontal bedding is developed and foramini-
fers, bivalves, gastropods and other biogenic fossils are seen
(Yang et al. 2012; Li et al. 2019; Ren et al. 2019).

The platformmargin ismainly developed in theOrdovician and
is distributed along the eastern margin of the Sichuan Basin. The
beds are thicker than those of other belts, and the deposits in this
region primarily consist of oolitic limestone, oolitic dolomite,

Fig. 2. (Colour online) Cambrian–Ordovician stratigraphy in the Sichuan Basin area of the YCP (after Yang et al. 2012).
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micrite dolomite, arenaceous limestone and small amounts of
micritic limestone. The platform margin shoal often shows a con-
vex up shape in the vertical plane because of its rapid growth
(Figs. 1, 2; Zhao et al. 2014; Zhao et al. 2017; Gu et al. 2021).

3. Sampling and methods

3.a. Field methods and sample collection

A total of nine field sites in the Sichuan Basin [the Liujiachang
(LJ), Fandian (FD), Yankong (YK), Yangsiqiao (YS),
Yangjiaping (YJ), Honghuayuan (HH), Jinfoshan (JF),
Nanshanping (NS) and Yanhe (YH) outcrops] were investigated
(Fig, 1b). A total of 390 samples were collected at ~17 m
intervals through the 1130 m thick Shuijingtuo-Linxiang forma-
tions at the LJ site, the 650 m thick Qiongzhusi-Xixiangchi for-
mations at the FD site, the 820 m thick Niutitang-Maotianba
formations at the YK site, the 270 m thick Shuijingtuo-
Sanyoudong formations at the YS site, the 2330 m thick
Niutitang-Maotianba formations at the YJ site, the 440 m thick
Tongzi-Wufeng formations at the HH site, the 300 m
thick Tongzi-Wufeng formations at the JF site, the 520 m thick
Tongzi-Baota formations at the NS site and the 170 m thick
Tongzi-Wufeng formations at the YH site (Fig. 2). Detailed field
descriptions were made at each site, and numerous measure-
ments and outcrop photographs were obtained. Thin sections
of the samples collected at each site were prepared for petro-
graphic analysis (Table S1).

3.b. Microfacies analysis

A total of 390 outcrop samples were prepared for thin-section
analysis and examined on a standard petrographic microscope
(Carl Zeiss Axio Scope A1) using transmitted light microscopy
(Table S1). The samples were impregnated with blue resin to high-
light porosity and stained with Alizarin Red S for carbonate min-
eral determination. Mineral identification procedures followed the
Rock Thin-Section Identification Standard SY/T 5368-2016 (Luo
et al. 2016). Grain content was calculated by point counting using
a 20 × 30 grid (n= 600 observations per sample). For particulate
sediments (i.e. grainstones), sediment properties such as grain size,
roundness and sorting were quantified (Tables S2–S5; Zhou et al.
2018; Hu et al. 2021; Tang et al. 2022; Hu et al. 2023b). Samples
were evaluated using standard descriptive and interpretative crite-
ria (Wilson et al. 1990; Wright, 1992; Tucker & Wright, 2009;
Flügel, 2013). Sedimentary differentiation analysis conducted in
the present study was based on observations of lithology, bedding,
sedimentary textures and grain types (including size, roundness
and sorting properties) in outcrops and thin sections.

3.c. Magnetic fabric analysis

A total of 1399 fresh samples for magnetic fabric analysis were col-
lected at ~5 m intervals using a portable mini-core drill (D026-C)
and an insertable magnetic compass. Magnetic samples were taken
from all nine field sites (LJ= 274, FD= 140, YK= 149, YS= 133,
YJ = 137, HH= 139, JF= 144, NS= 135 and YH= 148) (Fig. 1b;
Table S1). Each core sample had a diameter of 25 mm and was
trimmed to a length of 22 mm to maintain a uniform sample vol-
ume. After preparation, the magnetic susceptibility of each sample
was measured using a magnetic susceptibility metre [HKB-1
(High-accuracy Kappa Bridge-1); field strength: 300 A/m; field fre-
quency: 920 Hz; power: AC, 220 V/110 V, 50/60 Hz and 15 W;

sensitivity: 2 × 10−12 m3] with an automated sample handling sys-
tem. Each sample was measured three times along orthogonal
planes.

AMS analyses are used to study variations in the magnetic sus-
ceptibility field of a sample within a three-dimensional (3D)
orthogonal framework (Lagroix & Banerjee, 2004; Zhang et al.
2010; Zhao et al. 2023). The AMS of a sample is typically reported
in terms of Kmax, Kint and Kmin values, representing the lengths of
the maximum, intermediate and minimum principal axes of the
3D AMS ellipsoid, respectively; D-Kmax, D-Kint and D-Kmin values,
representing their respective declinations; and I-Kmax, I-Kint and I-
Kmin values, representing their respective inclinations.
Superposition of ferromagnetic, paramagnetic and diamagnetic
grain properties yields the total AMS signal (Zhu et al. 2004;
Nawrocki et al. 2018).

The values of Kmax, Kint and Kmin can be combined in various
ways to describe the ellipsoid shape and features of the magnetic
fabric of a sample (Jelinek, 1981; Lagroix & Banerjee, 2004;
Gong et al. 2015). Themagnetic parameters developed for this pur-
pose are as follows:

Lineation Lð Þ ¼ Kmax=Kint (1)

Foliation Fð Þ ¼ Kint=Kmin (2)

Degree of anisotropy Pð Þ ¼ Kmax=Kmin (3)

Shape factor Tð Þ ¼ ð2η2� η1� η3Þ=ðη1� η3Þ (4)

where η1, η2 and η3 are ln (Kmax), ln (Kint) and ln (Kmin),
respectively.

The parameters F12 and F23, which are used to evaluate the stat-
istical significance of the lineation and the foliation, were deter-
mined following the technique of Lagroix and Banerjee (2004)
using (1) epsilon ϵ12, the half-angle uncertainty of Kmax in the plane
joining Kmax and Kint, and (2) epsilon ϵ23, the half-angle uncer-
tainty of Kint in the plane joining Kint and Kmin. All of the above
parameters were calculated using the Safyr and Anisoft software
packages (Constable & Tauxe, 1990).

The geographic orientations of the principal AMS axes were
plotted on stereonets for visualization. The sample set was then
screened to isolate the most significant Kmax declination using
the technique of Lagroix and Banerjee (2004) and Zhu et al.
(2004). All D-Kmax with F12 < 4 and ϵ12 > 22.5° were rejected
to eliminate noise. Rejection of samples with F12 < 4 yielded a
confidence ratio of 1.0 for the intermediate and minimum sus-
ceptibility axes of the lineation axis, and rejection of samples
with ϵ12 > 22.5° yielded a confidence ratio of 1.0 for the maxi-
mum and intermediate susceptibility axes in the foliation plane.
I-Kmin was another parameter used in screening AMS data; val-
ues of I-Kmin > 70° generally correspond to undisturbed (low
degree of reworking) sediments with an oblate magnetic fabric
(Lagroix & Banerjee, 2004; Nawrocki et al. 2018; Hu et al.
2020a, 2020b).

4. Results

4.a. Sedimentary differentiation

Previous studies reported on the general microfacies analysis of
Cambrian–Ordovician carbonate facies in the YCP (e.g. Zou
et al. 2017; Tan et al. 2018; Zhang-SC et al. 2018; Zhai et al.
2019; Fu et al. 2020; Gao et al. 2021). The present study focused
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on oolitic and intraclastic grainstones with the aim of identify-
ing sedimentary differentiation due to prevailing wind
directions.

4.a.1. Oolitic grainstone
The northwestern, central and southeastern portions of the YCP
exhibited differences in the thicknesses of oolitic grainstone beds
as well as in the size and sorting of ooids (Fig. 3; Tables S2, S3).
The northwestern margin is characterized by moderately sorted
to well-sorted ooids that accumulated in a northwest-facing wind-
ward environment. In contrast, the southeastern margin shows
poorly to moderately sorted sediments (Table 1; Fig. 3). The energy
levels at the northwestern margin were relatively high, whereas
those at the southeastern margin were relatively low. The
southeastern margin has greater bedding thicknesses and ooid
grain diameters, and it is inferred to have possessed the optimal
growth environment for ooids (Zhang-YY et al. 2017; Hu
et al. 2020a).

4.a.2. Intraclastic grainstone
Quantitative measurements of intraclastic grainstone samples
from the Cambrian–Ordovician indicated differences in the
thickness of intraclastic grainstone beds, as well as in the size,
roundness and sorting of intraclasts among the northwestern,
central and southeastern regions of the YCP (Fig. 4; Tables
S4, S5). The northwestern margin is characterized by moder-
ately sorted to well-sorted and sub-angular to rounded intra-
clasts that accumulated in a northwest-facing windward
environment. In contrast, the southeastern margin shows
poorly to moderately sorted sediments with angular to sub-
rounded grains (Table 1; Fig. 4). The energy levels at the
northwestern margin were relatively high, whereas those at
the southeastern margin were relatively low (Hu et al. 2020a,
2020b; Hu et al. 2023a).

4.b. AMS

Most of the samples collected at all locales in the present study
exhibited an oblate magnetic fabric (Fig. 5a, b, Figures S2–S3;
Lagroix & Banerjee, 2004; Hu et al. 2020a, 2020b). The observed
ratio of the degree of anisotropy (P) to foliation (F) was consistent
with a subordinate role for lineation (L) (Fig. 5c, Figure S4). These
features are typical of sediments deposited by wind or water cur-
rents (Lagroix & Banerjee, 2004; Nawrocki et al. 2018). Inverse
relationships were observed between ϵ12 and L (Fig. 5d, Figure
S5) and between ϵ23 and F (Fig. 5e, Figure S6), which resulted
from increased measurement errors for weak lineations and foli-
ations, respectively. In contrast, the absence of a correlation
between ϵ12 and F suggested that the lineation and foliation sub-
fabrics were probably defined by the orientations of different
minerals (Fig. 5f, g, Figures S7–S8).

4.b.1. AMS for each Cambrian series
The robustness of statistical calculations was increased by limiting
calculations to Cambrian samples, for which F12> 4, ϵ12< 22.5°
and I-Kmin> 70° (Table 2; Fig. 6, Figure S9). The screened sample
sets of each Cambrian series yielded Kmax values with different pre-
ferred orientations for each of the five target outcrops (Table 3;
Fig. 6, Figure S9). A centroid statistical approach was applied in
the Safyr and Anisoft software to assess the distribution of Kmax

values for the screened sample set of each outcrop. This approach
was used to determine the dominant orientations. When the incli-
nation is not considered, the centroid statistical diagram only mag-
nifies variations in Kmax declinations. The centroid D-Kmax values
of the Lower Cambrian samples were 116° at LJ, 119° at FD, 117° at
YK, 115° at YS and 113° at YJ. The centroid D-Kmax values of the
Middle Cambrian samples were 141° at LJ, 146° at FD, 143° at YK,
149° at YS and 146° at YJ. The centroid D-Kmax values of the Upper
Cambrian samples were 158° at LJ, 159° at FD, 160° at YK, 161° at
YS and 157° at YJ (modern coordinates; Table 3; Fig. 6, Figure S9).

Fig. 3. (Colour online) Diagram summarizing the variations in the approximate bedding thickness (a), ooid size (b) and sorting (c) of Cambrian–Ordovician oolitic grainstone.
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4.b.2. AMS for each Ordovician series
Statistical robustness was ensured in the present study by limiting
calculations to samples of the Ordovician, for which F12> 4,
ϵ12< 22.5° and I-Kmin> 70° (Table 4; Fig. 7, Figure S10). The
screened sample sets of each Ordovician series yielded Kmax values
with different preferred orientations for each of the five target out-
crops (Table 5; Fig. 7, Figure S10). The centroid D-Kmax values of

the Lower Ordovician samples were 169° at LJ, 168° at HH, 170° at
JF, 171° at NS and 167° at YH. The centroid D-Kmax values of the
Middle Ordovician samples were 136° at LJ, 139° at HH, 138° at JF,
140° at NS and 142° at YH. The centroid D-Kmax values of the
Upper Ordovician samples were 90° at LJ, 89° at HH, 88° at JF,
93° at NS and 95° at YH (modern coordinates; Table 5; Fig. 7,
Figure S10).

Table 1. Comparison of the main sedimentary characteristics for different Cambrian–Ordovician sites

Sites Microfacies

Main sedimentary features

Cambrian Ordovician

Northwestern
YCP

Oolitic
grainstone

Bed thickness = 1.5 ± 1.1 m; moderate to well-sorted
ooids; ooid size= 0.8 ± 0.7 mm

Bed thickness = 1.4 ± 0.9 m; moderate to well-sorted
ooids; ooid size= 0.7 ± 0.5 mm

Intraclastic
grainstone

Bed thickness = 1.7 ± 1.3 m; moderate to well-sorted and
sub-angular to rounded intraclasts; intraclast
size= 2.5 ± 1.7 cm

Bed thickness = 1.8 ± 1.4 m; moderate to well-sorted and
sub-angular to rounded intraclasts; intraclast
size= 2.5 ± 1.5 cm

Central YCP Oolitic
grainstone

Bed thickness = 0.7 ± 0.5 m; poorly to moderate sorted
ooids; ooid size= 0.6 ± 0.6 mm

Bed thickness = 0.6 ± 0.4 m; poorly to moderate sorted
ooids; ooid size= 0.6 ± 0.5 mm

Intraclastic
grainstone

Bed thickness = 1.2 ± 0.9 m; moderate sorted and sub-
angular to sub-rounded intraclasts; intraclast
size= 1.7 ± 1.1 cm

Bed thickness = 1.3 ± 0.8 m; moderate sorted and sub-
angular to sub-rounded intraclasts; intraclast
size= 1.5 ± 0.9 cm

Southeastern
YCP

Oolitic
grainstone

Bed thickness = 2.2 ± 1.1 m; moderate sorted ooids; ooid
size= 1.0 ± 0.9 mm

Bed thickness = 2.1 ± 1.2 m; moderate sorted ooids; ooid
size= 0.9 ± 0.8 mm

Intraclastic
grainstone

Bed thickness = 0.6 ± 0.5 m; poorly to moderate sorted
and angular to sub-rounded intraclasts; intraclast
size= 0.8 ± 0.7 cm

Bed thickness = 0.7 ± 0.5 m; poorly to moderate sorted
and angular to sub-rounded intraclasts; intraclast
size= 0.7 ± 0.6 cm

Fig. 4. (Colour online) Diagram summarizing the variations in approximate bedding thickness (a), intraclast size (b), roundness (c) and sorting (d) of the Cambrian–Ordovician
intraclastic grainstone.
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5. Discussion

5.a. Qualitative reconstruction of paleowind directions

Carbonate platform sediments undergo sedimentary differentia-
tion under the action of long-term prevailing winds. Patterns of
wind-related facies have been studied in several modern marine
systems, among which the best-studied are the those in the
Bahamas and Florida Keys (Kindler & Strasser, 2000; Rankey
et al. 2006; Rankey & Reeder, 2011). The dominant winds in the
Bahamas are the northeasterly trade winds, and coral reefs form
on the margins of the northeast-facing windward platform (e.g.
eastern side of Andros Island). In contrast, oolitic shoals accumu-
late on the southwest-facing leeward margins (Principaud et al.
2015; Dravis & Wanless, 2017). Patterns of wind-related facies
have also been studied in ancient carbonate platforms. For exam-
ple, paleowind analysis was conducted on the Cambrian–
Ordovician Shanganning Carbonate Platform of the North
China Craton (Hu et al. 2020a, 2020b). The study utilized a
combination of microfacies analysis and AMS data to evaluate
wind-related controls and documented metazoan reefs consisting
of corals, stromatoporoids and sponges on the windward platform
margin and oolitic grainstones and microbial reefs on the leeward
margin (Hu et al. 2020a, 2020b).

The sedimentary differentiation of oolitic and intraclastic
grainstones described above qualitatively indicates the general
wind direction in the present study (Table 1; Figs. 3, 4). The spa-
tial distribution of specific microfacies and sediment types
shows a polarity across the YCP, which helps distinguish
between the windward and leeward margins of the platform.
Oolitic sands dominate the leeward margins of platforms, and

water in these areas originates from the platform interior and
is relatively warm and partially degassed (Principaud et al.
2015; Dravis & Wanless, 2017; Zhang-YY et al. 2017; Hu
et al. 2020a, 2020b; Hu et al. 2023a). Therefore, the observed
polarity of facies across the YCP is consistent with strong paleo-
winds, presumably the trade winds, which originate from the
northwest (modern coordinates).

5.b. Quantitative reconstruction of paleowind directions

AMS can be used to determine the prevailing paleowind directions
(Zhang et al. 2010; Nawrocki et al. 2018; Hu et al. 2020a, 2020b; Hu
et al. 2022; Hu et al. 2023a). Examples in previous studies include
the reconstruction of the route of the paleomonsoon along a west-
to-east transect in the Chinese Loess Plateau using AMS (Zhang
et al. 2010), and reconstruction of paleowind directions and
sources of detrital material archived in the Roxolany loess section,
southern Ukraine (Nawrocki et al. 2018). The AMS orientations of
the study samples could be explained based on a model of strong
unidirectional flow (Fig. S1B; Tarling & Hrouda, 1993; Hu et al.
2020a, 2020b), which demonstrated the greatest agreement with
the distribution of data in the current study (Figs. 6, 7). Most grains
in this model were oriented parallel to the unidirectional flow (Fig.
S1B; Tarling & Hrouda, 1993; Hu et al. 2020a, 2020b). However,
paleocurrent directions antipodal to (i.e. 180° away from) the esti-
mated current vectors cannot be excluded given the shallowness of
the observed AMS Kmax inclinations (< 20°; Figs. 6, 7; Hu et al.
2020a, 2020b; Hu et al. 2023a).

Two opposite paleowind directions can be roughly determined
based on the AMS results obtained herein. The paleomagnetic

Fig. 5. (Colour online) Relationships between the AMS parameters of (a) P and T, (b) F and L, (c) P and F, (d) L and ϵ12, (e) F and ϵ23, (f) F and ϵ12, and (g) ϵ12 and F12 for the
Ordovician units at the YH outcrop (n= 148). The results for other outcrops (i.e. LJ, FD, YK, YS, YJ, HH, JF and NS) are provided in Figures S2–S8.
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Table 2. The robustness of statistical calculations was increased by limiting calculations to Cambrian samples, for which F12> 4, ϵ12< 22.5°
and I-Kmin> 70°. Detailed information is provided in Figs. 6, S9

Outcrops Lower Cambrian Middle Cambrian Upper Cambrian

LJ (26/42)62% (26/48)54% (35/46)76%

FD (21/49)43% (29/45)64% (23/46)50%

YK (27/53)51% (31/51)61% (29/45)64%

YS (37/48)77% (30/43)70% (24/42)57%

YJ (31/49)63% (31/45)69% (20/43)47%

Fig. 6. (Colour online) Equal-area projections (modern coordinates) of AMS principal axes of selected samples (according to criteria for which F12> 4, ϵ12 < 22.5°, and
I-Kmin> 70°) for each Cambrian series from the five outcrops. (a) Lower Cambrian at the LJ outcrop (n= 26). (b) Lower Cambrian at the FD outcrop (n= 21). (c) Lower
Cambrian at the YK outcrop (n= 27). (d) Lower Cambrian at the YS outcrop (n= 37). (e) Lower Cambrian at the YJ outcrop (n= 31). (f) Middle Cambrian at the LJ outcrop
(n= 26). (g) Middle Cambrian at the FD outcrop (n= 29). (h) Middle Cambrian at the YK outcrop (n= 31). (i) Middle Cambrian at the YS outcrop (n= 30). (j) Middle Cambrian
at the YJ outcrop (n= 31). (k) Upper Cambrian at the LJ outcrop (n= 35). (l) Upper Cambrian at the FD outcrop (n= 23). (m) Upper Cambrian at the YK outcrop (n= 29).
(n) Upper Cambrian at the YS outcrop (n= 24). (o) Upper Cambrian at the YJ outcrop (n= 20). Kmax =maximum principal axes of the 3D AMS ellipsoid; Kmin =minimum principal
axes of the 3D AMS ellipsoid; and D-Kmax = declination of the maximum principal axes of the 3D AMS ellipsoid.
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results of the Early, Middle and Late Cambrian were 116° ± 52°,
145° ± 57° and 159° ± 62°, respectively (Table 3; Fig. 6), with paleo-
wind directions of 116° ± 52°, 145° ± 57° and 159° ± 62°, respec-
tively, or 296° ± 52°, 325° ± 57° and 339° ± 62°, respectively
(modern coordinates; Fig. 8a–c). The paleomagnetic results of
the Early, Middle and Late Ordovician were 169° ± 70°,
139° ± 73° and 91° ± 68°, respectively (Table 5; Fig. 7), with paleo-
wind directions of 169° ± 70°, 139° ± 73° and 91° ± 68°, respec-
tively, or 349° ± 70°, 319° ± 73° and 271° ± 68°, respectively
(modern coordinates; Fig. 8d–f). The final quantitative prevailing
paleowind directions can be determined by combining informa-
tion on the sedimentary differentiation (see section 5.a). The paleo-
wind directions of the Early, Middle and Late Cambrian were
296° ± 52°, 325° ± 57° and 339° ± 62°, respectively (modern coor-
dinates; Fig .8a–c). The paleowind directions of the Early, Middle
and Late Ordovician were 349° ± 70°, 319° ± 73° and 271° ± 68°,
respectively (modern coordinates; Fig. 8d–f).

Marine carbonate platforms are generally located within the
trade winds belt at low latitudes (such as The Bahamas, Great
Barrier Reef and Shanganning Carbonate Platform). These areas
were affected by the prevailing paleowind direction throughout
the year, with sedimentary differentiation following a specific trend
(Orpin & Ridd, 2012; Puga-Bernabéu et al. 2013; Principaud et al.
2015; Dravis & Wanless, 2017; Hu et al. 2020a, 2020b). Although
sedimentary differentiation cannot be used to quantitatively recon-
struct the paleowind directions, it can be used to determine the
approximate orientation. Although AMS cannot be used to deter-
mine the general orientation of paleowind direction, its quantita-
tive ability can compensate for the non-quantification of
sedimentary differentiation. The complementarity of sedimentary
differentiation and AMS allows for the quantitative determination
of the prevailing paleowind directions, thereby providing a theo-
retical basis for the study of Cambrian–Ordovician paleoclimate
in this area.

5.c. Significance of paleowind directions for paleogeography

The prevailing paleowind direction acted to regulate sedimentary
differentiation in the three zones of the YCP, which had important
paleogeographic implications. The YCP was located in the low lat-
itudes during the Cambrian–Ordovician (Huang et al. 2000; Popov
et al. 2009; Nardin et al. 2011; Torsvik & Cocks, 2013; Cocks &
Torsvik, 2021; Harper et al. 2021). However, its exact position
remains a matter of debate due to the lack of sufficient palaeomag-
netic data. The determination of the position of the YCP would
refine the current knowledge of the prevailing wind direction by
as much as 90°, since trade winds in the Northern Hemisphere
blow from northeast to southwest, whereas those in the
Southern Hemisphere blow from southeast to northwest (Kajtar
et al. 2018; Helfer et al. 2020, 2021). The present geographic ori-
entation of the Yangtze Block indicates that the prevailing paleo-
wind directions were from the northwest, north and west (Tables 3,
5; Fig. 8). Therefore, the Yangtze Block has rotated after the
Ordovician.

The prevailing wind directions of the trade winds belt change
slightly for different positions. The prevailing wind direction is
nearly south (155°–180°) when positioned far from the Equator
in the Southern Hemisphere and nearly east (90°–115°) when near
the Equator in the Southern Hemisphere (Kajtar et al. 2018; Helfer
et al. 2020, 2021). The YCPwas located at latitudes of ~24°S, ~28°S,
~21°S during the Late Cambrian, Early Ordovician and Middle
Ordovician, respectively (Torsvik & Cocks, 2013; Cocks &
Torsvik, 2021). The relevant paleowind directions are ~170°,
~177° and ~165°; all directions are approximate values, but all
are slightly less than 180° (paleo-coordinates). This study provides
evidence for the paleogeography of the YCP during the Cambrian–
Ordovician in terms of the prevailing paleowind directions over
the YCP and the trade winds in the Northern and Southern
hemispheres (southeast wind in the Southern Hemisphere and
northeast wind in the Northern Hemisphere). For the Early
Cambrian, the samples collected for this study were concentrated
in the upper part of the Lower Cambrian, so the measurement
results only correspond to the late stage of the Early Cambrian.
For the Late Ordovician, the samples collected for this study were
concentrated in the lower part of the Upper Ordovician, so the
measurement results only correspond to the early stage of the
Late Ordovician.

The current position of the YCP would indicate that its paleo-
wind directions were 296° ± 52° during the Early Cambrian,
325° ± 57° during the Middle Cambrian, 339° ± 62° during the
Late Cambrian, 349° ± 70° during the Early Ordovician,
319° ± 73° during the Middle Ordovician and 271° ± 68° during
the Late Ordovician (Tables 3, 5; Fig. 8). This conclusion is

Table 3. Maximum AMS axis (Kmax) with different preferred orientations and centroid D-Kmax values for each of the five study outcrops for each Cambrian series.
Detailed information is provided in Fig. 6

Outcrops Lower Cambrian Middle Cambrian Upper Cambrian

LJ 78°–152° (centroid 116°) 98°–186° (centroid 141°) 98°–221° (centroid 158°)

FD 70°–161° (centroid 119°) 96°–202° (centroid 146°) 98°–220° (centroid 159°)

YK 72°–164° (centroid 117°) 99°–194°(centroid 143°) 105°–219° (centroid 160°)

YS 69°–157° (centroid 115°) 100°–197° (centroid 149°) 114°–218° (centroid 161°)

YJ 64°–156° (centroid 113°) 104°–194° (centroid 146°) 111°–212° (centroid 157°)

Mean 116° ± 52° 145° ± 57° 159° ± 62°

Table 4. The robustness of statistical calculations was increased by limiting
calculations to Ordovician samples, for which F12> 4, ϵ12< 22.5° and
I-Kmin> 70°. Detailed information is provided in Figs. 7, S10

Outcrops
Lower

Ordovician
Middle

Ordovician
Upper

Ordovician

LJ (24/48)50% (30/43)70% (24/47)51%

HH (23/51)45% (36/50)72% (28/38)74%

JF (22/53)42% (40/51)78% (30/40)75%

NS (30/49)61% (24/45)53% (31/41)76%

YH (32/55)58% (23/52)44% (18/41)44%
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consistent with the most recent knowledge of paleogeography (e.g.
Torsvik & Cocks, 2013; Cocks & Torsvik, 2021): (1) the YCP was
located in the Southern Hemisphere (~14°S), and the prevailing
paleowind direction was ~133° (paleo-coordinates) during the
Early Cambrian. The plate has rotated ~197° counterclockwise
since the Early Cambrian, so the paleowind direction was ~296°
in modern coordinates; (2) the YCP was located at ~18°S, and
the prevailing paleowind direction was ~156° (paleo-coordinates)

during theMiddle Cambrian. The plate has rotated ~191° counter-
clockwise since the Middle Cambrian, so the paleowind direction
was ~325° inmodern coordinates; (3) the YCPwas located at ~24°S
and the prevailing paleowind direction was ~168° (paleo-coordi-
nates) during the Late Cambrian. The plate has rotated ~189°
counterclockwise since the Late Cambrian, so the paleowind direc-
tion was ~339° in modern coordinates; (4) the YCP was located at
~28°S and the prevailing paleowind direction was ~173°

Fig. 7. (Colour online) Equal-area projections (modern coordinates) of AMS principal axes of selected samples (according to criteria for which F12> 4, ϵ12 < 22.5° and
I-Kmin> 70°) for each Ordovician series from the five outcrops. (a) Lower Ordovician at the LJ outcrop (n= 24). (b) Lower Ordovician at the HH outcrop (n= 23). (c) Lower
Ordovician at the JF outcrop (n= 22). (d) Lower Ordovician at the NS outcrop (n= 30). (e) Lower Ordovician at the YH outcrop (n= 32). (f) Middle Ordovician at the LJ outcrop
(n= 30). (g) Middle Ordovician at the HH outcrop (n= 36). (h) Middle Ordovician at the JF outcrop (n= 40). (i) Middle Ordovician at the NS outcrop (n= 24). (j) Middle Ordovician at
the YH outcrop (n= 23). (k) Upper Ordovician at the LJ outcrop (n= 24). (l) Upper Ordovician at the HH outcrop (n= 28). (m) Upper Ordovician at the JF outcrop (n= 30). (n) Upper
Ordovician at the NS outcrop (n= 31). (o) Upper Ordovician at the YH outcrop (n= 18). Kmax =maximum principal axes of the 3D AMS ellipsoid; Kmin =minimum principal axes of
the 3D AMS ellipsoid; and D-Kmax = declination of maximum principal axes of the 3D AMS ellipsoid.
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(paleo-coordinates) during the Early Ordovician. The plate has
rotated ~184° counterclockwise since the Early Ordovician, so
the paleowind direction was ~349° in modern coordinates; (5)
the YCP was located at ~21°S, and the prevailing paleowind direc-
tion was ~165° (paleo-coordinates) during the Middle Ordovician.
The plate has rotated ~206° counterclockwise since the Middle
Ordovician, so the paleowind direction was ~319° in modern coor-
dinates; and (6) the YCP was located at ~16°S and the prevailing
paleowind direction was ~136° (paleo-coordinates) during the Late
Ordovician. The plate has rotated ~225° counterclockwise since
the Late Ordovician, so the paleowind direction was ~271° in
modern coordinates (Torsvik & Cocks, 2013; Cocks & Torsvik,
2021; Fig. 9).

The determination of paleowind directions can be of geological
significance for ancient carbonate platforms or basins. For exam-
ple, as shown in the present study, the paleogeography of a plate
can be constrained using wind directions.

6. Conclusions

The YCP was located in the low-latitude trade winds belt during the
Cambrian–Ordovician and was affected by the prevailing wind direc-
tions. Analysis of the sedimentary differentiation of carbonatemicrof-
acies and AMS on the platform indicated that the paleowind
directions over the YCP during the Early, Middle and Late
Cambrian were 296° ± 52°, 325° ± 57° and 339° ± 62° respectively,
whereas those during the Early, Middle and Late Ordovician were
349° ± 70°, 319° ± 73° and 271° ± 68°, respectively (modern coordi-
nates). The present study quantitatively reconstructed the prevailing
paleowind directions over the YCP through an analysis of sedimen-
tary differentiation andAMS. The results of the present study can pro-
vide a reference for the study of the paleoclimate of the YCP.

The present study provided evidence for the location of the YCP
during the Cambrian–Ordovician through the corresponding rela-
tionship between the prevailing paleowind directions over the YCP
and the trade winds in the Northern and Southern hemispheres.

Table 5. Maximum AMS axis (Kmax) with different preferred orientations and centroid D-Kmax values for each of the five study outcrops for each Ordovician series.
Detailed information is provided in Fig. 7

Outcrops Lower Ordovician Middle Ordovician Upper Ordovician

LJ 107°–232° (centroid 169°) 67°–211° (centroid 136°) 31°–142° (centroid 90°)

HH 100°–237° (centroid 168°) 79°–203° (centroid 139°) 32°–159° (centroid 89°)

JF 105°–234° (centroid 170°) 71°–212° (centroid 138°) 25°–146° (centroid 88°)

NS 107°–235° (centroid 171°) 84°–202° (centroid 140°) 27°–151° (centroid 93°)

YH 105°–239° (centroid 167°) 80°–211° (centroid 142°) 45°–146° (centroid 95°)

Mean 169° ± 70° 139° ± 73° 91° ± 68°

Fig. 8. (Colour online) Comprehensively interpretative rose diagram showing the prevailing paleowind directions for each epoch of the Cambrian–Ordovician. (a) Early Cambrian.
(b) Middle Cambrian. (c) Late Cambrian. (d) Early Ordovician. (e) Middle Ordovician. (f) Late Ordovician.
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The YCP was located at ~14°S, ~18°S and ~24°S during the Early,
Middle and Late Cambrian, respectively; corresponding values for
the Early, Middle and Late Ordovician were ~28°S, ~21°S and ~16°
S, respectively. The results of the present study can provide a refer-
ence for the study of the paleogeography of the YCP.
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Fig. 9. (Colour online) Relationship between present and Cambrian-Ordovician geographic orientations of the YCP. Paleowind orientations of the YCP are shown in modern
coordinate (left) and paleo-coordinate (right) frameworks. Data are for Early Cambrian (a, b), Middle Cambrian (c, d), Late Cambrian (e, f), Early Ordovician (g, h), Middle
Ordovician (i, j) and Late Ordovician (k, l). The prevailing wind directions for each Cambrian-Ordovician series are based on the AMS results from Tables 3 and 5 as well as
Figs. 6, 7. Syn-and post-Cambrian and Ordovician tectonic rotations are shown by tapered grey arrows.
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